
Data Management Program:
Database Interface Architectures

Whitemarsh Information Systems Corporation
2008 Althea Lane

Bowie, Maryland 20716
 Tele: 301-249-1142

Email: mmgorman@wiscorp.com
Web: www.wiscorp.com

Data Management Program: Database Interface Architectures

Copyright 2005, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

ii

Table of Contents

Acknowledgments . iv

1.0 Introduction . 1

2.0 Point-to-Point Interfaces . 1

3.0 Near Term Baseline Data Architecture: Integrated Data Environments 4

4.0 Target Data Architecture: Infosphere based on Standard Data Structures 7

5.0 Database Interface Architecture Summary . 13

Data Management Program: Database Interface Architectures

Copyright 2005, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

iii

Figures

Figure 1. Three forms of Data Interchange. 1
Figure 2. Point-to-point system translator. 2
Figure 3. Integrated Data Environments . 4
Figure 4. Three Integrated Data Environment options. 5
Figure 5. Ideal IDE configuration of systems to minimize interfaces . 7
Figure 6. Option One for InfoSphere: Integrated data environment. 9
Figure 7. Option 2 for InfoSphere: Direct data exchange via system internal translations. 11
Figure 8. Option 3 for InfoSphere: Direct data exchange via shared data structures. 12

Data Management Program: Database Interface Architectures

Copyright 2005, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

iv

Acknowledgments

This material is an evolution of documents that were updated during the time frame: September
2003 through December 2004. Contributors were Bruce Haberkamp, James Blalock, and
Michael Gorman of the Office of the CIO, United States Army. The foundational components of
this work has been favorably reviewed by subject matter experts within the U.S. Department of
Defense.

Data Management Program: Database Interface Architectures

Copyright 2005, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

1

Future Vision of Joint Interoperability:
Beyond Seamlessness

• Today (Baseline)
– we still rely on stovepipe systems
– many data ownership issues
– interoperability through “gadgetry”
– technological fixes of limited useful

lifespans

• Near-term: Seamlessness
– integrated (but still separate) systems
– common message sets, operating systems,

and hardware

• Far-term (Target): InfoSphere
– single, virtual database
– platform independent
– ownership of data elements, data may not

reside on system you own

Stovepipe Systems

Seamlessness

InfoSphere

Figure 1. Three forms of Data Interchange.

1.0 Introduction

The three data architectures for exchanging data illustrated in Figure 1 are:

! Point to point interfaces
! Integrated data environments, and
! Infosphere data environments based on ISO 11179 based shared data elements and

segments

The data management program’s data interface strategy is to proceed from the point-to-point
environments to integrated data environments and possibly to “infosphere” data environments
that are based on ISO 11179 based shared data elements and shared data segments. This gradual
migration is also depicted in Figure 1.

2.0 Point-to-Point Interfaces

The myriad of existing legacy "stovepipe" information application systems are generally based
on database designs of tables and columns, which, for the most part, are intended to characterize
common data distilled from the data requirements derived from common, or similar processes. It
is, however, because these database designs of tables and columns are not exactly the same, one

Data Management Program: Database Interface Architectures

Copyright 2005, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

2

with the other, that impedes direct data sharing between application systems.
Approaches for achieving interoperability between application systems focus on creating
interface translators (often called "data mediators"). These allow legacy application systems to
share data even though the structure and semantics of their respective databases of tables and
columns are defined differently.

In the legacy environment, interoperability is commonly achieved by direct point-to-point
translation systems between any application system "A", and any application system "B". These
translators effectively map the database designs supporting application system “A” to the
equivalent database designs in application system B and vice versa. Figure 2 illustrates this
approach. Each database table column set mapping represents a semantic translation of the same
or different database table columns across the same set of data values.

The way this would be accomplished in a DBMS environment would be to have the System A
create a SQL View of the same granularity as a System B view. The Interface Translator in the
middle would map the view columns from System A to the view columns from System B. The
System A SQL view then maps to the specific database table columns. The System B SQL view
maps to its specific database table column.

It is traditional that database applications are program centric. Thus, there is very little incentive
to build a database design to support wide community. Because of this narrow focus, different
systems from within different environments have negotiated point-to-point interfaces. That is,
direct point-to-point translation systems between any application system "A", and any
application system "B".

The number of point-to-point translators required is a direct function of the numbers of distinct
pairings of application systems sharing data. For n number of distinct systems, this could mean
as many as n(n-1)/2 point-to-point interfaces. For example, a network of five applications
systems, each required to share data with the other four, would require 10 point-to-point
interfaces. If 50 systems are to maintain interfaces with each other the quantity of such point to
point interfaces is (25*24)/2, or 300 interfaces.

Each interface consumes considerable resources. In a USAF study done in the middle 1990s, it
was determined that each interface environment cost the $335,000 each and every year.

DB-A TB-1 Col-1
DB-A TB-6 Col-5
DB-A TB-9 Col-3

DB-A TB-n Col-x

DB-B TB-4 Col-2
DB-B TB-3 Col-7
DB-B TB-8 Col-4

DB-B TB-m Col-y

DB-A TB-1 Col-1
DB-A TB-6 Col-5
DB-A TB-9 Col-3

DB-A TB-n Col-x

DB-B TB-4 Col-2
DB-B TB-3 Col-7
DB-B TB-8 Col-4

DB-B TB-m Col-y

Legend: DB = Database TB = Table Col = Column

System “A” System “B”Data Interface Translator
DB-A TB-1 Col-1
DB-A TB-6 Col-5
DB-A TB-9 Col-3

DB-A TB-n Col-x

DB-B TB-4 Col-2
DB-B TB-3 Col-7
DB-B TB-8 Col-4

DB-B TB-m Col-y

DB-A TB-1 Col-1
DB-A TB-6 Col-5
DB-A TB-9 Col-3

DB-A TB-n Col-x

DB-B TB-4 Col-2
DB-B TB-3 Col-7
DB-B TB-8 Col-4

DB-B TB-m Col-y

Legend: DB = Database TB = Table Col = Column

System “A” System “B”Data Interface Translator
DB-A TB-1 Col-1
DB-A TB-6 Col-5
DB-A TB-9 Col-3

DB-A TB-n Col-x

DB-B TB-4 Col-2
DB-B TB-3 Col-7
DB-B TB-8 Col-4

DB-B TB-m Col-y

DB-A TB-1 Col-1
DB-A TB-6 Col-5
DB-A TB-9 Col-3

DB-A TB-n Col-x

DB-B TB-4 Col-2
DB-B TB-3 Col-7
DB-B TB-8 Col-4

DB-B TB-m Col-y

Legend: DB = Database TB = Table Col = Column

DB-A TB-1 Col-1
DB-A TB-6 Col-5
DB-A TB-9 Col-3

DB-A TB-n Col-x

DB-A TB-1 Col-1
DB-A TB-6 Col-5
DB-A TB-9 Col-3

DB-A TB-n Col-x

DB-B TB-4 Col-2
DB-B TB-3 Col-7
DB-B TB-8 Col-4

DB-B TB-m Col-y

DB-B TB-4 Col-2
DB-B TB-3 Col-7
DB-B TB-8 Col-4

DB-B TB-m Col-y

DB-A TB-1 Col-1
DB-A TB-6 Col-5
DB-A TB-9 Col-3

DB-A TB-n Col-x

DB-B TB-4 Col-2
DB-B TB-3 Col-7
DB-B TB-8 Col-4

DB-B TB-m Col-y

DB-A TB-1 Col-1
DB-A TB-6 Col-5
DB-A TB-9 Col-3

DB-A TB-n Col-x

DB-B TB-4 Col-2
DB-B TB-3 Col-7
DB-B TB-8 Col-4

DB-B TB-m Col-y

Legend: DB = Database TB = Table Col = Column

System “A” System “B”Data Interface Translator

Figure 2. Point-to-point system translator.

Data Management Program: Database Interface Architectures

Copyright 2005, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

3

Consequently, the set of interfaces across 5 systems would cost about $3.35 million. The cost of
the 300 interfaces would cost $100.5 million per year. That is a considerable amount of
resources. In addition to financial resources, the cost in scarce technical talent is considerable. In
the first case, $3.3 million in new battle field systems cannot be built. In the second case, $100.5
million cannot be built each and every year.

Simple point-to-point interfaces are complex, and complex interfaces are very difficult to create
and vastly more costly to maintain. Complicating factors for point-to-point interfaces are
mismatches that can occur in the granularity, time synchronization, and code set values between
mapped database table columns. This explains why these kinds of interfaces are generally costly
to create and maintain, and difficult to manage and keep current.

XML has been touted as the low-cost solution to point-to-point interfaces. However, without the
prerequisite data standardization, the only savings resulting from XML is the ability to actually
compose and read ASCII files. If neither side of a data exchange understand the semantics,
granularity, and precision of the data, then all the work of understanding the source’s data is still
necessary.

The medium of data exchange would do little to make this approach desirability. If the exchange
were XML based, System A would have to have a XML schema for the export. There would
then have to be a XSLT to translate System A data to System B data, and finally, there would
have another XML schema for the import. Arguably, in this scenario, XML represents more
work.

If net-centricity merely requires that programs create and post data asset metadata cataglog data,
create and post XML schemas for program data exchange transactions, and post the URL for
data asset access, then not only will no progress be made on eliminating point-to-point data
exchanges, but also programs will have the blessing of those espousing this simple tag and post
approach, and then exoneration from any obligation to subsequently create the necessary
consensus based data standards necessary to make net-centricity a success. Without consensus
based data standardization at least at the community of interest level, there will be a blizzard of
metadata catalog entries and a similar blizzard of data asset XML Schemas that will have to be
sorted through by data asset users. While there may be increased interoperability, it will only be
the connectivity type. It will not be the understandability interoperability with a minimum of
complexity and latency.

In short, to achieve any meaningful set of benefits from net-centricity then first the quantity of
interfaces must be severely reduced, and then because of these interface reductions, there will
then be a similar reduction in the quantity of metadata catalog entries and XML Schemas.

Data Management Program: Database Interface Architectures

Copyright 2005, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

4

3.0 Near Term Baseline Data Architecture: Integrated Data Environments

Recent initiatives for achieving information interoperability have focused on creating data
interface translators that translate data between groups, or "families", of legacy source systems
that exist within some common process, subject area, or functional business area. Such systems
are known as Integrated Data Environments (IDE). The common primary characteristic of these
systems is the creation of some kind of common IDE schema to which each of the participating
source system can be mapped (See Figure 3). So for a network of five source systems that share
data with each other, the single IDE interface performs the same function as the former ten
point-to-point interfaces. This is a definite improvement, but it is still not a complete solution.
This does not, for example, immediately solve the mismatch problem cited above. Rather, it
makes the problem area in which it is to be solved more focused and manageable.

IDEs tend to be narrowly focused on application systems that support specific functional
business areas or processes. There is an interoperability environment among the individual
application systems that participate in the IDE. The IDE becomes a "super database" of all data
that is to be shared among all IDE member systems. Such super databases are not free. They
require definition, system development, and ongoing maintenance. These databases represent a
high level of policy-consensus across a wide community.

But this solution still does not provide for interoperability between two application systems that
are not members of the same IDE, except in the unlikely event that the database schemas of the
two systems are identical or equivalent. Assuming that the database schemas of two application
systems, C and F, are not identical or equivalent, Figure 4 demonstrates three options for how
data might be shared when application system C in IDE #1 develops a requirement to share data
with application system F in IDE #2.

The three options are:

Option one: This reflects the situation where system C would participate in both IDE #1 and
IDE #2. This option creates the added flexibility for system C to share data with systems D and E
as well as with system F should that need develop.

Option two: This is the simple point-to-point interface and the least flexible of the three options.

Option three: This would require an interface translator between IDE #1 and IDE #2 for the
IDE systems' shared data. In this case, if data is to be shared between System C and System F,
then that shared data must be stored in IDE #1 and IDE #2 respectively. This would allow
system C to share data with system F via the interface between the two IDEs. The added benefit
to this solution is that it would also permit data sharing between all the other systems
participating in the two IDEs should such a requirement develop.

Data Management Program: Database Interface Architectures

Copyright 2005, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

5

Sys E
Schema

Sys B
Schema

Sys D
Schema

Sys C
Schema

Sys A
Schema

System E

Sys E
Schema

I DE
INTERFACE TRANSLATOR

IDE
Schema

System D

Sys D
Schema

System B

Sys B
Schema

System C

Sys C
Schema

Maps
Maps

Maps

Maps M
aps

System A

Sys A
Schema

Sys E
Schema

Sys B
Schema

Sys D
Schema

Sys C
Schema

Sys A
Schema

System E

Sys E
Schema

System E

Sys E
Schema

I DE
INTERFACE TRANSLATOR

IDE
Schema

System D

Sys D
Schema

System D

Sys D
Schema

System B

Sys B
Schema

System B

Sys B
Schema

System C

Sys C
Schema

System C

Sys C
Schema

Maps
Maps

Maps

Maps M
aps

System A

Sys A
Schema

System A

Sys A
Schema

Figure 3. Integrated Data Environments

Data Management Program: Database Interface Architectures

Copyright 2005, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

6

In spite of their complexity and cost, the advent of IDEs is an important incremental step on the
path toward achieving transparent and seamless information interoperability among automated in
formation systems. Their main advantage is that they offer the promise of creating
interoperability among systems supporting distinct functional business areas, and by so doing
they greatly reduce the number of required point-to-point interface translators between
individual application systems. Consider that for a network of 30 application systems, the
potential number of point-to-point interfaces needed to support understanding-based data
interoperability between any two systems could be as many as 435. If these same 30 systems
could be organized into five IDEs, each consisting of six application systems, then the number of
data interfaces required to support interoperability between each pair of IDEs would be reduced
to 10 - a significant reduction from a possible 435 point-to-point interfaces between individual
systems. (See Figure 26).

In spite of their complexity and cost, the advent of IDEs is an important incremental step on the
path toward achieving transparent and seamless information interoperability among automated
information systems. Their main advantage is that they offer the promise of creating
interoperability among systems supporting distinct functional business areas, and by so doing
they greatly reduce the number of required point-to-point interface translators between
individual application systems. Consider that for a network of 30 application systems, the
potential number of point-to-point interfaces needed to support understanding-based data
interoperability between any two systems could be as many as 435. If these same 30 systems
could be organized into five IDEs, each consisting of six application systems, then the number of
data interfaces required to support interoperability between each pair of IDEs would be reduced

System A

System B

System C

IDE # 1

System D

System E

System F

IDE # 2

Point - to - Point
Interface

Option One

Option Two

Option
Three

System A

System B

System C

IDE # 1

System D

System E

System F

IDE # 2

Point - to - Point
Interface

Point - to - Point
Interface

Option One

Option Two

Option
Three

Figure 4. Three Integrated Data Environment options.

Data Management Program: Database Interface Architectures

Copyright 2005, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

7

to 10 - a significant reduction from a possible 435 point-to-point interfaces between individual
systems. (See Figure 5).

4.0 Target Data Architecture: Infosphere based on Standard Data Structures

Even as IDEs represent a significant improvement over point-to-point interfaces for achieving
information interoperability, a better and more efficient means for achieving this goal would be
to define database tables based on shared data segments, which, in turn, are based on ISO 11179
based shared data elements. Thus, for every atomic business fact required to conduct the
business, only database table column is required to represent that atomic business fact. No

IDE

IDE

IDE

IDE

IDE

MATERIEL MANAGEMENT

DISTRIBUTION

MAINTENANCE

TRANSPORTATION

ENGINEERING

1

2

Data Interface
Translator=

3

4

5
IDE

IDE

IDE

IDE

IDE

MATERIEL MANAGEMENT

DISTRIBUTION

MAINTENANCE

TRANSPORTATION

ENGINEERING

1

2

Data Interface
Translator= Data Interface
Translator=

3

4

5

Figure 5. Ideal IDE configuration of systems to minimize interfaces

Data Management Program: Database Interface Architectures

Copyright 2005, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

8

duplicate or redundant database table columns need to exist to represent the same business fact.
If indeed such shared data segments were created, then the ability to develop semantic
translators, based on shared data segments with their ISO 11179 based shared data elements, to
facilitate data exchange between individual application systems or between IDE systems, would
be greatly enhanced.

Shared data segments standardize the complete set of data for policy instances. When constraints
and state transforms are added that then manage the life cycle of instances, the shared data
segments can be transformed into business rule infused database tables.

The existence of shared data segments would create several options for exchanging data between
systems.

Option 1: This option requires individual application systems to have their database tables based
on shared data segments that enable mapping among database table columns. (See Figure 6).

Option 2: This option has the shared data segment based logical database schema as the core
schema for an "Enterprise IDE." Every source application system would then create a localized
shared data segment based data portal to which they would have translated the data they wished
to share. With this option, the various systems would have been perceived as all having shared
data segment based common schemas.(See Figure 7).

Option 3: The third option would require all source application systems to develop their
database designs using shared data segment based database schemas. This would entirely
eliminate the need for any data translation since the structure and semantics of any particular
database table column represented in any system would be identical. Direct exchange of data
could then take place. (See Figure 8).

The extent to which data would be "instantly" translatable would still depend, for example, on
common data item value sets, granularity, and time synchronization. Data warehouses, the class
of databases designed especially to support analysis and reporting, are increasingly common and
in such instances, atomic data is often cast into different time and summarization dimensions. In
these situations, while data warehouse database table columns may be based on shared data
segments, they still require further analysis before value set translation between IDE systems and
data warehouses is possible. However, this analysis would be greatly simplified by the
deployment of shared data segments.

The three options depicted in Figures 6, 7, and 8 represent incremental steps for how an
enterprise information environment composed of legacy stovepipe systems might migrate to an
information interoperability environment through the use of standardized data structures.

Incremental Step 1: This corresponds to Figure 6 where legacy systems would create internal
mappings of their legacy system database table columns to the ISO 11179 based shared data
elements represented within the shared data segments for those legacy system database table

Data Management Program: Database Interface Architectures

Copyright 2005, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

9

columns with data sharing requirements. Data could then be directly shared between systems that
had implemented internal mappings between legacy system database table columns and columns
within the IDE’s shared data segment based database table columns. Point-to-point interfaces
would still be required to share data with systems that had not implemented internal mappings.

Incremental Step 2: This is accomplished over time as upgrades and modifications increase the
amount of implemented standardized data in use in source legacy application systems and reach
a critical mass, migration would occur through the development of functionally oriented IDEs,
evolving to a single Enterprise IDE corresponding to Figure 7.

Incremental Step 3: This corresponds to Figure 8 when all enterprise systems have fully
implemented standardized data as the basis of their internal schemas, either through modification
or by replacement with new systems. This would equate to an interoperable information
environment characterized by direct point-to-point data exchange between systems based on
shared data structures. This kind of information environment was a goal of the DoD Data
Standardization Program that has resulted in the creation of the Defense Data Dictionary System
(DDDS) repository of DoD ISO 11179 based shared data elements. It is unfortunate that
suboptimal engineering caused this program to fail as the understanding-based data-
interoperability problems that the DDDS program were targeted to address still exist, have
grown much larger, and are more critical today than ever to solve in net-centric environments.

Data Management Program: Database Interface Architectures

Copyright 2005, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

10

Schema D

System N

Schema N

System M

Schema M

System L

Schema L

System A

Schema A
System P

Schema PSystem O

Schema O

System D

Schema D

System C

Schema C

System B

Schema B

System H

Schema H

System G

Schema G

System F

Schema F

System E

Schema E

System K

Schema K

System J

Schema J
System I

Schema I

ENTERPRISE IDE
Schema C

Schema B
Schema A

Schema I
Schema H

Schema G

Schema F

Schema E
Schema M

Schema L

Schema K
Schema J

Schema P

Schema O

Schema N

IDE – SDE
SCHEMA

Schema D

System N

Schema N

System M

Schema M

System L

Schema L

System A

Schema A
System P

Schema PSystem O

Schema O

System D

Schema D

System C

Schema C

System B

Schema B

System H

Schema H

System G

Schema G

System F

Schema F

System E

Schema E

System K

Schema K

System J

Schema J
System I

Schema I

ENTERPRISE IDE
Schema C

Schema B
Schema A

Schema I
Schema H

Schema G

Schema F

Schema E
Schema M

Schema L

Schema K
Schema J

Schema P

Schema O

Schema N

IDE – SDE
SCHEMA

Figure 6. Option One for InfoSphere: Integrated data environment.

Data Management Program: Database Interface Architectures

Copyright 2005, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

11

TB-4 Col-1 SDE-9
TB-7 Col-3 SDE-4
TB-9 Col-6 SDE-7

TB-n Col-x SDE-n

System B

TB-2 Col-7 SDE-9
TB-3 Col-4 SDE-4
TB-7 Col-3 SDE-7

TB-n Col-x SDE-n

System C
TB-1 Col-2 SDE-9
TB-4 Col-6 SDE-4
TB-8 Col-1 SDE-7

TB-n Col-x SDE-n

System D

TB-5 Col-4 SDE-9
TB-9 Col-8 SDE-4
TB-8 Col-6 SDE-7

TB-n Col-x SDE-n

System E

TB-1 Col-2 SDE-9
TB-4 Col-6 SDE-4
TB-8 Col-1 SDE-7

TB-n Col-x SDE-n

System A

Direct Data Exchange
is Executed As

Standard Data
Elements. Translation
Occurs Internally In

Each System

TB-4 Col-1 SDE-9
TB-7 Col-3 SDE-4
TB-9 Col-6 SDE-7

TB-n Col-x SDE-n

System B

TB-2 Col-7 SDE-9
TB-3 Col-4 SDE-4
TB-7 Col-3 SDE-7

TB-n Col-x SDE-n

System C
TB-1 Col-2 SDE-9
TB-4 Col-6 SDE-4
TB-8 Col-1 SDE-7

TB-n Col-x SDE-n

System D

TB-5 Col-4 SDE-9
TB-9 Col-8 SDE-4
TB-8 Col-6 SDE-7

TB-n Col-x SDE-n

System E

TB-1 Col-2 SDE-9
TB-4 Col-6 SDE-4
TB-8 Col-1 SDE-7

TB-n Col-x SDE-n

System A

Direct Data Exchange
is Executed As

Standard Data
Elements. Translation
Occurs Internally In

Each System

Figure 7. Option 2 for InfoSphere: Direct data exchange via system internal translations.

Data Management Program: Database Interface Architectures

Copyright 2005, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

12

SDS- 1
SDS- 2
SDS- 3
SDs- 4

SDS- n

A

SDS- 1
SDS- 2
SDS- 3
SDS- 4

SDS- n

B

SDS- 1
SDS- 2
SDS- 3
SDS- 4

SDS- n

C
SDS- 1
SDS- 2
SDS- 3
SDS- 4

SDS- n

D

SDS- 1
SDS- 2
SDS- 3
SDS- 4

SDS- n

E

SDS- 1
SDS- 2
SDS- 3
SDS- 4

SDS- n

F

Direct Exchange of Data Using
Shared Data Structures

1

2

3

4

5

6
7

8
9

10
11

12

14
13

15

n(n-1)
2=Potential Direct

Data Exchanges = 15

SDS- 1
SDS- 2
SDS- 3
SDs- 4

SDS- n

A
SDS- 1
SDS- 2
SDS- 3
SDs- 4

SDS- n

A

SDS- 1
SDS- 2
SDS- 3
SDS- 4

SDS- n

B
SDS- 1
SDS- 2
SDS- 3
SDS- 4

SDS- n

B

SDS- 1
SDS- 2
SDS- 3
SDS- 4

SDS- n

C
SDS- 1
SDS- 2
SDS- 3
SDS- 4

SDS- n

C
SDS- 1
SDS- 2
SDS- 3
SDS- 4

SDS- n

D
SDS- 1
SDS- 2
SDS- 3
SDS- 4

SDS- n

D

SDS- 1
SDS- 2
SDS- 3
SDS- 4

SDS- n

E
SDS- 1
SDS- 2
SDS- 3
SDS- 4

SDS- n

E

SDS- 1
SDS- 2
SDS- 3
SDS- 4

SDS- n

F
SDS- 1
SDS- 2
SDS- 3
SDS- 4

SDS- n

F

Direct Exchange of Data Using
Shared Data Structures

1

2

3

4

5

6
7

8
9

10
11

12

14
13

15

n(n-1)
2=Potential Direct

Data Exchanges = 15n(n-1)
2

n(n-1)
2=Potential Direct

Data Exchanges = 15

Figure 8. Option 3 for InfoSphere: Direct data exchange via shared data structures.

Data Management Program: Database Interface Architectures

Copyright 2005, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

13

5.0 Database Interface Architecture Summary

Starting in the early days of data processing, all data was owned, possessed, and processed by
the program within which the data was captured. As time moved on, other programs wanted to
share data. This was done, not by sharing, but by extracting, transforming and loading a subset of
that data. Each such effort was really another system. Eventually, there became a massive
quantity of these ETL systems, each built with a point-to-point orientation. The enterprise’s
view, semantics, granularities and precision were no where to be found. As shown above, the
financial obligations to manage this essentially zero-value effort was significant. The USAF
projected in 1995 that this amount was $175 million. Across the DoD it would likely then be $1
Billion.

It is therefore key that this massive infrastructure of stove-pipe solutions be dismantled and
replaced with database exchange environments that are not only less costly and more efficient
but also that reflect enterprise view, semantics, granularity, and precision. In short, Net-Centric.

