Whitemarsh

Information Systems Corporation

Wy

W

Datcbaze Objects Overview

Whitemarsh Information Systema Corporation
2008 Althea Lone
Bowie, Marylond 20716
Tele: 301-249-1142.
Email: mmgormen@wiscorp.com
Web: www.wiscorp.com

Database Objects Overview

Table of Contents

1. OB JeCt TYPES .« vttt e 1
2. Why Database is Essential to Businessttt 1
3. The Business Case for Database Objects 3
4. The Data Processing Case for Database Objects, 7
5. Not All Objects arethe Same i 11
6. Business Objectsot 19
7. ANSI/X3H2, The Database Languages Committee 21
8. ANSI X3H2 Database ObjectS oottt ettt 24
9. Object Oriented Environmentsottt 26
10. Database Object Composition and Execution Paradigm 30
11. Database Objects Summary and Benefits 36
Copyright 1998, Whitemarsh Information Systems Corporation
‘\ﬂ" Proprietary Datey, All Righta Reserved
YV ii

Database Objects Overview

1. Object Types

There are generally considered to be five different types of objects: display, process, language
objects, database, and business. These five distinct types of objects are required by organizations
as they employ modern, cost-effective computing technologies in world-wide heterogeneous
environments.

Because current and accurate information is the essential competitive edge, database
objects are a key type of object because they are easy to specify, cost effective to implement, and
are highly portable among heterogenous computing environments.

All five object types have their proponents and detractors. All object types, except
database objects are first and foremost self contained software that executes according to certain
fixed rules. Database objects are different because they are instances of a data structure that
proceeds through predefined states according to embedded process transformations.

While database objects share some common names and definitions with the other four
object types, they are however unique to database. They are identified, designed, implemented,
operated through, evolved, or maintained through just one type of data processing facility, an
ANSI SQL database management system (DBMS). If the available ANSI/SQL DBMS is an
SQL3 compliant then database object definition and use can be direct. Otherwise, database
objects can only be achieved through its proprietary facilities.

Database objects are not new. They were started in certain DBMS types in the late 1960s.
It was not until the ANSI SQL3 data model expanded beyond the relational model and not until a
whole programming language was incorporated into ANSI SQL3 that database objects became
possible.

2. Why Database is Essential to Business

Database is the application of quality organization, planning, and management. Central to these
organizational characteristics are carefully crafted policies and procedures. Designed well,
business policies and procedures become database objects' that can be deployed throughout the
organization in a client/server fashion to maximize sharing and consistency while minimizing
data hoarding and irregularity.

Database objects are unique to database. Database objects are defined through, updated,
manipulated, and deleted through the facilities of database management systems. Not just any
DBMS however. Only those DBMSs containing the database object facilities contained in ANSI
standard SQL/3. Simply stated, a database object is an ANSI DBMS controlled expression of data
that is transformed through a discrete set of value states according to a fixed set of rules and
processes matching a well formed and defined business policy. A database object therefore
contains four interrelated parts: a data structure, data integrity rules, value state transformation
processes, and a set of predefined states.

Copyright 1998, Whitemarsh Information Systems Corporation

‘\ﬂ" Proprietary Data, All Rights Reserved
YV 1

Database Objects Overview

Database objects are the foundation stones for enterprise database. Organizations not
pursuing their specification, implementation and evolution are condemned to complicated,
redundant specifications, expensive implementation and difficult operation, evolution and
maintenance. Database objects are not new, rather they are an optimization of true concepts from
the past. They are now practical to specify, implement and maintain through CASE, code
generators and repositories. Finally, database objects significantly optimize traditional systems
analysis, design, implementation, testing, and maintenance activities.

The database object concepts were formulated almost 20 years ago by Matt Flavin.
During the Seventies, Matt who worked for Infodata of Rochester, NY and Fairfax, VA. Infodata
accomplished very early database management system research and development. Infodata’s
DBMS, Inquire, was widely used in the U.S. Federal Government. Matt represented Infodata to
the X3H2, the ANSI Database Languages committee in the late Seventies.

Matt clearly knew the difference between DBMS and database. The former a technology,
and the latter the application of quality planning, organization, and management. When Matt
joined Yourdon, Incorporated in New York City, he began development of an information
modeling discipline based on database objects. As Matt would often say, “database objects are
squarely based on an enterprise’s policy.” Matt insisted that fundamental business policy
discovery and formulation was the very first step in discovery. Matt's Yourdon Monograph,
Fundamentals of Information Modeling, set out the basic steps to identify and specify database
objects. Matt’s contribution to database was cut short with his untimely death in 1984.

Database objects existed only on paper only until the ANSI database languages
committee, X3H2, working since early 1993 on the specification of SQL, formulated the
essential linguistic components of database objects. These exist under the name of SQL/3. This
book presents database objects first as requirements, then as an example, then through an
enumeration of the SQL/3 facilities that enable them.

Database objects, but not through SQL were validated almost 10 years ago through a
large scale database project for the U.S. Army.

An Army General in 1985 wanted PECO, a contractor located in Towa, to develop 10 systems in
one year when the contractor had previously developed 2 systems in three years; and at less cost.
By implementing the Whitemarsh methodology that is based on CASE, code generators, and
repositories, the mission was accomplished. The systems, instead of costing 1000% (10 times
100%) only cost 360%, a reduction of 64% per system.

As to the long term benefit to the Enterprise? The Army General proposed a modification to the
fundamental set of algorithms that governed Reliability, Availability and Maintainability (RAM).
The 10 systems were already deployed. These systems were collecting data world-wide and
producing the RAM studies the Army desperately needed to predict its material reorders. When the
change request came down, the repository was immediately put to use isolating the exact area of
the specifications that had to change. The specifications led to the systems; the systems led to the
programs; and the programs led to the modules. The changes were identified. When it was
reported that all 10 systems could be changed and reassembled, all documentation changed, all
user-manuals regenerated, reprinted, and redeployed in two weeks, the message came back down,

“Stop! We merely wanted to give you six month’s notice!”

Copyright 1998, Whitemarsh Information Systems Corporation

\ Proprietary Data, All Rights Reserved
W :

Database Objects Overview

Everything described in this paper has been accomplished many times since 1985 with
commercially available software and hardware.

Database is fundamentally a multiple-user information system component. Databases are
the least useful when they are private. Fully developed and world-wide, databases enable
enterprises to share policy, plans and work products. At the core of database is its most critical
component, database objects because:

° Businesses are world wide, heterogeneous, and client server.

o The only common component of database information systems through out the
enterprise is SQL.

° Consequently, database objects must be completely specified within the firewall
of SQL if there is any hope for consistent, world-wide semantics.

3. The Business Case for Database Objects

Distributed, client/server data and processes are here to stay, and rightly so. Not only are they
empowering, they are essential because enterprises are highly distributed and world wide.
Enterprises must be able to respond to local needs, laws, customs and mores. But, if business are
designed and tuned to respond to local situations, how can they act in concert within their world
wide communities? How can you have world-wide consistency and semantics without
suffocating local needs and practices? How can both ends of the information resources spectrum
be satisfied?

Business data needs far exceed today's DBMS's two dimensional table capabilities.
Businesses cry out for semantically rich data management to meet business needs across world-
wide, heterogeneous hardware and operating system environments. Business data management
environments must behave consistently regardless of their host computing hardware environment
and must be easy to specify, implement, use and maintain.

Businesses require hierarchies of complex data tables, collections of integrated rules for
data integrity, well defined procedure sets, and fixed transformations that move a business policy
from one well defined state to another. Examples of business needs include insurance policies
and claims, court cases and documents, public safety incidents, sales and marketing databases
that contain customers, sales organizations, forecasts, orders, deliveries, and product sales
statistics, inventory control and deployment, and human resources. The business case for
database objects is compelling:

Two managers were trying to produce a three year marketing plan. One manager stated that the
sales in the East were up. The other said they were flat. The first showed numbers to prove the
point. The second showed an equally impressive set of numbers that proved the counter point.

Copyright 1998, Whitemarsh Information Systems Corporation

\ Proprietary Data, All Rights Reserved
W ,

Database Objects Overview

Finally, it was discovered that one manager was using “sales” based on sales

organizations credited for specific sales, and the other was using “sales” based on addresses of

product deliveries. In exasperation, they both exclaimed: “How can we plan when we’re not

working off the same sheet of music!”

What should be on the sheet of music? The notes for the oboe’s part, the violins, or the

orchestra director? The orchestra director’s score not only contains a unified set of notes for all

parts, but also the rhythm (cadence, meter, pulse), tempo (momentum and speed), articulation

(clearness, distinctiveness), and expression (phraseology and style).

The marketing plan certainly required much more than just notes. To be effective,

accurate, and able to respond to unforseen emergencies (first violinist’s broken string), it requires

both the static (sales numbers) and the dynamics (all the environmentals). With both, agreements

(quality music) can be reached. Plans can be executed, tracked, and adjusted, just like a good

symphony.

This paper is all about the development of the symphonic scores through which organizations
plan, conduct and modify their enterprise (establishment (static) and campaigns (dynamic)). In
today’s information system’s parlance, the symphonic scores are database objects’. Because
we’re talking about enterprise-wide database, the term database objects becomes an artful
shorthand for what is involved in a successful business symphony.

But, what forms the basis of an database object? Simply, it is a business’ policies and
procedures. While policies can exist without procedures, the converse is not true. This
ontological priority dictates that procedure is dependent on policy. Not only do they go together
like hand and glove, the glove (procedure) serves no useful purpose without the hand (policy).

A database object is a person, place, or thing that has internal consistency, and is
transformed from one state to another through well defined rules. The minimum value states are
null and valued. The internal behavior of a database object as it transforms from one state to
another is immaterial to its user. Database objects conform to the requirements of business rather

than the converse.’

In this paper, a database objects exist in two forms: defined meta data and instances. The context
of its use as metadata or instance is clear. When ambiguous, then the term database object
metadata or the term database object instance is employed.

The internal specifications of a database object are independent of its implementation. Because
database object specifications are ANSI SQL standard, different SQL DBMS vendors (here “DB”
stands for database object) are free to implement the ANSI SQL specifications as they like just so
long as two conditions are true: the database object specifications are portable from one
SQL/DBMS to another, and the behavior of the same database object is same, from the user point
of view, even though the database object is implemented by different SQL/DBMS vendors.
database objects range from the trivial to the complex. A #rivial database object is: 1) is a simple
data structure (a set of single value fields), 2) is instantiated through simple databases processes
(INSERT, MODIFY, DELETE) that are 3) part of one encapsulating information system, and 4)
takes on a minimum of two values states: null and valued. A complex database object is: 1) a
complex data structure with multiple segments containing single, multi-valued, groups, repeating
groups, and nested repeating groups of fields, 2) in instantiated through collections of database
processes that are 3) part of one or more collections of complex information systems, and 4) that

(continued...)

Copyright 1998, Whitemarsh Information Systems Corporation

\ Proprietary Datey, All Righta Reserved
W :

Database Objects Overview

Policies and procedures, that is, database objects, bring order, consistency, and
predictability. The larger the enterprise, the greater the dependence on policies and procedures.
Data is the evidence of policy execution. An employee's record is proof that policies have been
carried out. Procedures are the techniques, methods, or processes by which policies are carried
out. If an enterprise has the policy is to be profitable, then its balance statement, produced by
processing all the general and subsidiary journals is the measure of adherence to the policy. If
policy is met the enterprise must be profitable.

Within an enterprise, policies, and in turn, data exist in two major areas: infrastructure
and programmatic. Infrastructure areas address internal policy, such as human resource
management, finance, and support services (e.g., plant security, information systems, and
facilities). Programmatic areas address external products that are designed, manufactured,
marketed and sold. For a traditional business this might be steel products, building products,
automobiles, or houses. For an intellectual product business these might be mortgages, insurance
policies, courses, and students.

Policies and their associated data address the well bounded infrastructure and
programmatic areas. The data takes on common every day names such as employees, facility,
mortgage, insurance policy, and student. The data representing these common names are
complex, that is, whole multiple-level structures.

The procedures are named, and their data actions are associated with specific subsets of
the named data structure. The names of the procedure sets represent data structure
transformations from one recognizable state to another. Each state represents a determined value
set within the business. Procedure examples include: establishing an employee requisition,
accomplishing employee hiring, and performing employee assignment.

Enterprise database is an organizational operating condition in which there is both
defined policy coherence and integrity as well as consistency in policy transformations
throughout the enterprise irrespective of functional and organizational style and irrespective of
policy transformation technology (that is, computers, operating systems, programming
languages, and database management systems).

Organizations not pursuing database object specification, implementation, and
management information system (MIS) evolution through database objects will never achieve
enterprise database. Rather, they will be left with complicated, redundant MIS specifications,
expensive MIS implementation and inconsistent difficult MIS operation, evolution and
maintenance.

Enterprise database is the expression, population, use, and manipulation of all database
objects. Enterprise database contains not only all “real” database objects, but also all the policies

3(...continued)
take on a whole series of discrete business policy recognizable states from null to any number of
discrete valued states back to a null state. In short, the full life cycle of a business resource
(employee, contract, asset, etc.).

Copyright 1998, Whitemarsh Information Systems Corporation

\ Proprietary Data, All Rights Reserved
W :

Database Objects Overview

and procedures surrounding their specification, implementation and evolution. Value is not only
in the “data,” but also in the specification of the data. The information technology assets of the
enterprise are both its database objects and also its enterprise meta-objects. If only the former
were valued, then only musical notes would be needed for a great symphonic score.
Performances are differentiated however, from the grade-school band to first-rate orchestra
because of the musicians’ talent that is coupled with the quality of the orchestra director’s
interpretation of the score’s rhythms, tempo, articulation, and dynamics.

Proprietary Data, All Rights Reserved

m Copyright 1998, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬂ! 6

Database Objects Overview

4. The Data Processing Case for Database Objects

Among the very first reasons for commercial DBMS (database management systems such as
IDMS, IMS, Total, IDS, and DMS-1100) was to preserve the investment in COBOL programs
by removing the data definition from the program to another persistent object called the DBMS’s
data dictionary. As DBMS grew in popularity, the quantity of out-of-control files was replaced
with the same quantity of out-of-control databases.

Files containing data that were defined through an ad hoc semantics definition process
were replaced with databases defined through the same ad hoc semantics definition process.
Simply, nothing had improved.

Corporations attempting enterprise-wide semantics must have a single organizational unit
that defines or coordinates enterprise database object semantics. Figure 1 provides a critical set
of business questions and the sets of answers that are possible when semantics and data are either
centralized or decentralized. Even when this figure was first presented in the Whitemarsh course,
Managing Database: Four Critical Factors in 1981, it was quite clear that corporations were
headed towards distributed database.

During the next ten years (1982-1992), the entire data processing industry was turned on
its head three different times: first with mini-computers, then PCs, and finally client/server.
Mainframes that occupied large rooms were replaced with more powerful computers that
occupied the space of a single desk. In 1981, the cost ratio of computer to staff year was 26 to 1.
Today, the ratio has changed to about 1 to 6. That’s a ratio change of 156 times. Because of this
tremendous ratio change, not only are computers everywhere, there is also real demand to reduce
staff costs.

In the book, Enterprise Database in a Client/Server Environment’, Figure 1 was
supplemented with Figure 2 that cited the same questions and contrasted them to the answers for
centralized versus decentralized development and execution control. It was very clear that
without centralized control over process definition that enterprise-wide client/server database
was absolutely impossible.

Since 1994, two events have occurred that now force centralized definition of database
objects to have any hope for enterprise-wide database.

o A dramatic increase in different programming language development
environments

° The ANSI SQL call level interface (CLI)

The book, Enterprise Database in a Client/Server Environment was published by John Wiley &
Sons in 1994. This book is now available through Whitemarsh Press.

Copyright 1998, Whitemarsh Information Systems Corporation

\ Proprietary Data, All Rights Reserved
W :

Database Objects Overview

Semantic Control

Centralized Decentralized

Questions
regarding data Data Storage Control

distribution effects
ISTIbUT Centralized Decentralized Centralized Decentralized

Is data able to be yes yes no no
shared among
sites?

Is concurrent yes maybe no no
processing of the
same data
possible?

Are common or yes yes no no
corporate reports
possible?

Can there be an yes maybe no no
overbearing "big
brother" feeling?

Is there local no maybe yes yes
control and
ownership?
Does there need to yes yes no no

be common data
standards &
policies?

Can local data maybe yes maybe yes
requirements be
satisfied?

Figure 1. Data Semantics and Storage Control

Copyright 1998, Whitemarsh Information Systems Corporation

\ Proprietary Data, All Rights Reserved
W \

Database Objects Overview

Organizations are now able to use SQL based DBMSs through program development
environments that are neither controlled by nor owned by the DBMS vendors. Prior to 1994, end
users developed database applications using 3GLs such as COBOL and embedded access
commands to the DBMS, or through the DBMS vendors own self-contained 4GL facilities such
as Oracle’s Forms. In these environments, central definition control was possible because either
the database’s semantics were centrally defined in the 3GL programs, or they were commonly
accessed through the DBMS vendors’ self-contained 4GL procedures.

Questions
regarding system
distribution
effects

Is the same
program able to
be shared among
sites?

Development Control

Centralized

Decentralized

yes

Execution Location

yes

no

Centralized Decentralized Centralized Decentralized

no

Is concurrent
processing of the
same data
possible?

yes

maybe

no

no

Are common or
corporate reports
| guaranteed?

yes

maybe

no

no

Can there be an
overbearing "big
brother" feeling?

yes

maybe

no

no

Is there local
control and
ownership?

no

maybe

yes

yes

Does there need
to be common
processing
standards &
practices?

yes

yes

no

no

Can local
processing
requirements be
satisfied?

maybe

yes

maybe

yes

Figure 2. Process Semantics and Execution Control

W

Copyright 1998, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

9

Database Objects Overview

Since 1994, however, through Microsoft’s ODBC” (open database connectivity) drivers,
the DBMS engine has become completely independent from the program development
environment. Organizations can adopt multiple end-user program development environments
such as Oracle’s Forms, Sybase’s Power-Soft, Information Builder’s Focus, TopSpeed
Corporation’s Clarion for Windows, Borland’s Delphi, or Microsoft’s Visual Basic. Through any
of these different program environments, databases under the control of any SQL vendor can be
accessed and updated. While this may seem to be a great increase in development and
deployment flexibility, it is a complete disaster for enterprise-wide business semantics because
there is no longer a central design, development, and deployment authority for business
semantics.

Enterprise database environments that consisted of a relatively small set of well
controlled main-frames through which business semantics® were centrally defined and controlled
no longer exist. In their place are from hundreds through tens-of thousands of clients and servers.
Because of the great spread of clients and servers, columns 2 from both Figures 1 and 2 can only
be achieved by:

o Forcing all end-users to employ the same combination of DBMS, computer brand,
operating system and program development environment, or

° Having a highly educated business subject matter expert data processing staff for
each unique combination of DBMS, computer brand, operating system and
program development environment

Both these alternatives are both impractical and politically impossible for world-wide,
heterogenous organizations

To regain control over business semantics, enterprises must have business semantics
control inside the ANSI SQL fire-wall. This can be done through database objects. Through
database objects, the business’ semantics can be centrally defined and controlled through the
ANSI SQL engine and their consistent use is independent of any program development
environment. Because of database objects, end-user business information systems programmed
in the program development environments cited above that access business databases will always
receive the same behavior, and be subject to the same business rules.

An ODBC driver enables a 4GL to invoke calls to an SQL engine through reinterpretations by the
ODBC driver to call a specific SQL engine. Thus, any 4GL can be a data manipulation language
agent for any SQL engine. The ODBC is thus a universal translator.

The business semantics were defined through closely matched pairs of DBMS data definition
language (data structures and integrity constraints) and 3GLs or vendor contained 4GLs
(transactions, computation, and database access logic).

Copyright 1998, Whitemarsh Information Systems Corporation

\ Proprietary Data, All Rights Reserved
W »

Database Objects Overview

The database object development environment is accomplished through database object
oriented systems analysis and design activities’ that result in a series of ANSI SQL syntax
statements that fully define the database objects. The defined database object language streams
are portable from one ANSI SQL DBMS to another and are activated through the database’s
schema creation process.

As a consequence of ANSI SQL database objects, Figure 3, which is an amalgamation of
Figures 1 and 2, results. An enterprise database environment in which semantic control is
extended only to data (Figure 1) will never achieve enterprise database. An enterprise database
environment in which semantic control is extended to process--but separately--will also never
achieve enterprise database. Simply put, semantic control must be accomplished in a lock step
manner for all four components of database objects (data structures, processes, information
systems, and state) for organizations to have a chance at enterprise database success. Thus,
Figure 3 is not just an update to Figures 1 and 2, it is an essential replacement.

Database objects can only have a positive effect on the computer to staff cost ratio
because a relatively small quantity of business subject matter expert staffs, supplemented with a
ANSI SQL database object construction experts, can now define the business’s database objects,
once and for all. Lesser business subject matter expert staffs can be employed or contracted to
use the program development environment “de jour” to obtain, store, and maintain business’s
database object instances according to the particular style and computing environments of the
individual world-wide business units.

5. Not All Objects are the Same

While there are no silver bullets, objects can certainly help. Objects come in a variety of forms.
There's traditional software based objects like screen "buttons" or software routines like
COSINE, SQRT, etc. In short, there are five fundamentally different classes of objects:

Process

Display

Language
Database(described above)
Business

See Chapter 11 of Database Objects, the Foundation Stones of Enterprise Database, Whitemarsh
Press, 1997 (www.wiscorp.com).

Copyright 1998, Whitemarsh Information Systems Corporation

\ Proprietary Data, All Rights Reserved
W $

Database Objects Overview

Semantic Control

Questions Centralized Decentralized
regarding

database object Development Control

distribution

affocts Centralized Decentralized Centralized Decentralized
Are database yes yes no no
objects able to

be shared

among sites?

Is concurrent yes maybe no no
processing of
the same
database object
instance
possible?

Are common or yes yes no no
corporate
reports

possible?

Can there be an yes maybe no no
overbearing
"big brother"
feeling?

Is there local no maybe yes yes
control and
ownership?

Does there need yes yes no no
to be common
data standards
& policies?

Can local data maybe yes maybe yes
requirements be
satisfied?

Figure 3. Database Objects Semantics and Development Control

Copyright 1998, Whitemarsh Information Systems Corporation

\ Proprietary Data, All Rights Reserved
W 8

Database Objects Overview

A process object is a well defined unit of programming language code that is compiled and
during its execution accomplishes a specific operation. Display object examples include icons,
boxes, and windows on a computer screen. Language objects include mathematic operations
such as SUMs, AVGs, SQRT or the trigonometric operation SINE or COSINE have been known
the data processing community almost since its inception. Business objects are a conceptual
component of a business or enterprise that exhibits certain behavior.

Because there are a number of different types of object classes, listening to persons
making object presentations can often result in different definitions and examples with the
consequence of confusion and mystery. The analogy is with the two words, work and record. Is
the presenter using the words in their noun form or their verb form? Depending on which, the
definitions and examples are different. Similarly with objects, it is necessary to understand each
different type and to understand which type is being addressed by the speaker. The table over the
next pages provides characteristics of the most common types of objects.

Three variations of the word object are essential to understanding the table: object class
type, object class, and object. First, object. An object is something real such as a specific
instance of a patient, or an automobile traversing the campus. An object class is an abstract
representation/definition of all patients or all automobiles. Buick is an object class. A Buick with
the VIN number 12320598203984038 is an object of the object class Buick automobile. A object
class type is a category of object classes that are dissimilar with respect to their object class
attributes. For example, a button on a computer screen doesn’t have gas consumption statistics,
weight, or is likely to rust. Similarly, an object class automobile is unlikely to have been
programmed in the language “C,” or exhibit “shadow” when selected.

In addition to these three terms, since the set of object classes under discussion are all
related to just computing, three additional columns within the table are of interest: definition
environment, execution environment, and portability considerations. The definition environment
presents the characteristics/languages and/or computer support required to fully express the
object’s class. Once the object class is instantiated, the object’s execution environment is
essential to understand. That is, is it proprietary, commonly available, etc. Finally, when objects
finally exist, are they portable from one execution environment to the next, or are they captive to
the specific execution environment.

Copyright 1998, Whitemarsh Information Systems Corporation

\ Proprietary Data, All Rights Reserved
W »

Database Objects Overview

when activated
or pushed
performs a
predetermined
function

98 Start button

Object Class Business Example Object Class Object Class Object
Type Definition Definition Execution or Portability
Environment Object use Characteristics
Environment
Display object A button/icon Windows 98 Windows Windows 98 Portable only
on a computer Explorer Icon operating operating when included
screen that or the Windows | system system in the Windows

98 operating
system. There
may be similar
functions in
other operating
systems, but the
specific object
is not portable
across operating
systems from
different
vendors

W

Copyright 1998, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

14

Database Objects Overview

For example, an
object class
programmed in
a proprietary
4GL can only
operate within
computers that
support it and
possibly that are
also executing a
“run-time”
module from
the language
vendor of the
4GL. Once
installed, and
only if the
object’s class
conforms to an
external
specification for
inter object
access and data
exchange can
the object
“interact” with
other objects.

Object Class Business Example Object Class Object Class Object
Type Definition Definition Execution or Portability
Environment Object use Characteristics
Environment
Process object A named Computation of | Defined through | The object can Portability is
activity that quantity of beds | use ofa exist and likely low
when invoked available for computer operate only between
accomplishes a | patient intake language such within environments
certain result as COBOL, computing supporting
Cognos’ environments different 4GLs
Powerhouse, or | that or operating
a DBMS such accommodate systems not
as Oracle its existence. accommodating

the specific
4GL. The data
representation
component of
the object is
likely
incomplete and
not portable.

W

Copyright 1998, Whitemarsh Information Syatems Corporation

15

Proprietary Data, All Rights Reserved

Database Objects Overview

assembler and
used within the
language
FORTRAN.
Given that its
meaning and
results are well
defined and
external to the
computing
environment
(they are!) Then
whenever
SQRT is
invoked, the
result is
predictable.

languages, and
the like.

Object Class Business Example Object Class Object Class Object
Type Definition Definition Execution or Portability
Environment Object use Characteristics
Environment
Language A formal The syntax The definition SQRT is The actual
object expression of SQRT, or the environment is executable assembler code
syntax withina | mathematical the language within every representing the
computer function cosign | one level lower | language that object class is
language that or tangent. or more detailed | offers its not portable to
when used Included are that the expression to different
accomplishes a | also language language in the language’s operating
certain result commands such | which the programmer. systems.
as READ, or language object | Languages that | However, the
PRINT. is used. For commonly offer | behavior of the
example, the SQRT are all invoked object
SQRT function | 3GLs, most is portable.
might be 4GLs, financial | Thus, when
programmed in | modelling ever “49" in

input, the result
“7" must be the
only allow
result.

W

Copyright 1998, Whitemarsh Information Syatems Corporation
Proprietary Data, All Rights Reserved

16

Database Objects Overview

more and more
of a database
object’s syntax
will become
vendor
independent.

external
specification for
inter object
access and data
exchange can
the object
“interact” with
other objects.

Object Class Business Example Object Class Object Class Object
Type Definition Definition Execution or Portability
Environment Object use Characteristics
Environment
Database object | An organization | Patient and the The definition ISO/ANSI Database object
of data defined states of | environment is standard SQL class definitions
structures, patient such as the computer based DBMSs exist as syntax.
embedded identified, language SQL. are required to Database
processes, admitted, Currently a define and to objects exist as
control logic, assessed, significant execute value-pairs of
and named treated, amount of the database syntax and
states that occur | discharged SQL will be objects. Once value (Name =
is a well defined vendor installed, and Gorman).
order. proprietary. As | only if the ASCII files of
SQL/3 becomes | object’s class object class
standardized conforms to an | definitions and

values are
exchangable
between SQL
based DBMSs.
Additionally,
one SQL based
application
environment
can configure
and submit an
SQL compliant
command to
another SQL
envirornment to
interrogate both
the other SQL
environment’s
object class and
its objects.

W

Copyright 1998, Whitemarsh Information Syatems Corporation

17

Proprietary Data, All Rights Reserved

Database Objects Overview

accomplished,
the object class
may be
syntactically
expressed, for
example, in any
combination of
3GL, 4GL, and
SQL DBMS.
Once
completely
defined/express
ed, the object
class is
transformed to
an “executable”
through
traditional data
processing
methods. Once
executable, it is
made available
to end users as a
menu item on a
screen, or a
invocable
system,
subsystem, or
function.

object’s class
conforms to an
external
specification for
inter object
access and data
exchange can
the object
“interact” with
other objects.

Object Class Business Example Object Class Object Class Object
Type Definition Definition Execution or Portability
Environment Object use Characteristics
Environment
Business object | A conceptual Patient within A business The object class | The objects
component ofa | Riverview object class is exists as an require the
business or expressed installable exact operating
enterprise that through component ofa | system and
exhibits certain traditional business likely DBMS
behavior requirements application. environments
analysis and Once installed, within which
design. Once and only if the their object

classes were
expressed. The
actual objects
are portable
only to the
extent that
another object
class of the
same type
contains data
loading
facilities and
has been
configured to
behave in
congruent ways.

Business objects are frequently described in the trade press and are described extensively in
papers submitted by ANSI/X3H7 as well as the business object management special interest
group (BOMSIGQG) of the Object Management Group (OMG). Because business objects and

database objects can be confused, business objects are further described.

6. Business Objects

W

Copyright 1998, Whitemarsh Information Syatems Corporation

18

Proprietary Data, All Rights Reserved

Database Objects Overview

The Object Management Group (OMG) is its 1995 OMB Business Application Architecture
White Paper, Draft 2, describes the business object as a representation of a thing active in the
business domain, including a least its business name and definition, attributes, behavior,
relationships, and constraints. A business object may represent, a person, place or concept. The
representation may be in a natural language, a modeling language, or a programming language.
Business objects are employed to represent whole insurance policies, automobile accident
reports, patient medical records, and the like. Because a business object is, at its core, a process
with encapsulated data it is not the same as a database object. Regardless of type, all objects
share common properties: encapsulation, inheritance, and polymorphism?®.

While all objects bring together data and process, business objects when fully defined
and deployed within the business environment, bring together enterprise policy and procedure.
Business data is the consequence of business policy execution. Procedures are the business'
methods. Quality business objects are reflections of quality business policy and procedure.

While it is obvious that business objects are needed, it is not at all obvious how to define,
deploy, and manipulate them in world-wide, heterogeneous hardware and software environments
while both empowering but not suffocating local needs and practices.

Traditional computer programming languages do not contain sufficient data modeling,
access and processing facilities to fully handle business objects. Further, computer programming
languages encapsulate data to such an extent that the defined and contained business objects are
truly captive of the programming language within which they are defined, captured, stored, and
manipulated. Simply, traditional programming languages are “data poor.”

Once programming language based objects are created they are so bound within the
language's constructs and to the business' local needs and practices that any attempt at a world
wide community of business objects is impossible. Finally, there is no world-wide standard
business programming language. While “C” is certainly world-wide, it lacks robust DBMS
qualitites and is not able to be used by the “mere mortals.” C is the language through which
compilers, DBMSs, and other end-user tools are created.

Similarly, traditional relational data management systems (DBMSs), the successors of
previously far richer network, and hierarchical DBMSs, treat data far too simply to handle
business' complex policies and procedures. Traditional relational DBMSs are “data and end-user

Encapsulation means that the object is shielded from the “influences” of its outside environment.
Standard money arithmetic processes defined within the insurance policy object regarding
premium computation can be made independent of the currency of the money through which the
premium is to be paid given via the arguments of dollars exchange rate and other standard inputs.

Inheritance means that any contained objects can presume on the properties of any
containing object. A woman, a contained object, assumes the all properties of a human, the
containing object.

Polymorphism means that an invoking command to compute REMAINING BALANCE
may in fact invoke different processes depending on the “invoking environment.” That is, for
example, whether the required remaining balance is for a loan, and invoice, or a real-estate
mortgage.

Copyright 1998, Whitemarsh Information Systems Corporation

\ Proprietary Data, All Rights Reserved
W »

Database Objects Overview

language poor.” The only way to make traditional relational DBMSs handle the needs of
business objects is to fully encapsulate the relational DBMS data within procedure rich
programming languages. Once that is done however, we're right back to the programming
language environment in which business objects are so bound to the language's constructs and to
the business' local needs and practices that any attempt at a world wide community of business
objects is impossible.

SQL is the language through which relational databases are defined and data is entered,
manipulated, reported and protected. SQL is world wide, and because of the very strong ANSI
and ISO standards activities SQL is essentially identical where ever it is used. Through 1992,
however, the SQL language was only able to manipulate relational, two dimensional collections
of database data. While elegant and simple, these data collections are clearly incapable of
handling the complex needs of business, without significant, labor intensive systems analysis,
design, and programming efforts.

Business objects, as described by the Object Management Group, are software products
that live within traditional computing environments. OMG's business objects are defined,
employed, and are manipulated by traditional object oriented languages such as C++, Smalltalk,
4GLs such as Sybase's Power Builder, Oracle Forms, Clarion for Windows, or Microsoft's
Visual Basic, and are stored either in traditional file structures, relational database management
systems, or hybrid object-relational database management systems. Because all these language
environments operate differently on different computing environments, OMG's Business Objects
cannot satisfy the demands of business environments for objects which are:

° Easy to specify, implement, use and maintain

° Operate on world-wide, heterogeneous hardware and operating system
environments, and

° Behave consistently regardless of their host computing hardware environment

Proprietary Data, All Rights Reserved

m Copyright 1998, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬂ! 20

Database Objects Overview

7. ANSI/X3H2, The Database Languages Committee

When ANSI database standards were started in 1978°, one of its most critical objectives was to
separate data structure definition, loading, update, deletion, and protection from the computing
languages that access and use the data. With advent of ANSI database language standards, data
and process were formally defined as separate.

Possibly in reaction to separateness or possibly as a natural evolution to programming
languages, objects arose. At an ANSI X3H2 meeting in 1991, a member presented a paper that
when decided clearly set database objects apart from process or business objects. Process or
business objects are defined first and foremost as self contained processing units within the
context of a programming language. Once they proceed through the necessary stages to become
processing units they can stand-alone. At the X3H2 meeting the key question was whether a
database would store objects that were defined and created by an object-oriented programming
language like OO-COBOL, C, or C++, or whether objects are defined by and stored within a
database such that it is accessible and employed by different programming languages such as
0O0-COBOL, C, or C++.

Data processing as seen through the evolution of its computing languages clearly shows
that data has always been a self-contained component. For example, while data is both an
important component of both COBOL and FORTRAN, each programming language treats data
differently. The differences start with fundamental data types, definable data structures, and
techniques for access. This fundamental difference between the languages caused the great data
redundancy and semantics mismatch of the mid 1960s through the mid 1980s.

X3H2, rather than allow objects to grow--differently--within the very different
computing languages such as COBOL and C++, decided right from the very beginning to
develop database language extensions to fully encompass objects. Hence, database objects.
Because database objects are defined within the realm of database management systems rather
than a programming language, the descriptive characteristics of objects are seen differently.

There are several key differences between business/process objects and database objects.
Business/process objects stand and operate alone in an acceptable computing environment once
they proceed through a compile and execution unit creation stage. database objects in contrast
require the continued existence of the database management system. The business and process
unit contains all its parts (data, methods, etc.).

Business/process objects are commonly not accessible through various programming
languages. Rather they are captive within the language through which they are developed.
Further, if stored in a database, they are seen as BLOBs (binary large objects). Hospitable
computing environments such as Microsoft’s Window’s 95 may allow information to be

ANSI's committee, X3 (Computers and Information Systems), created a technical committee,
X3H2 to standardize languages for persistent data definition, loading, data update, access, and
protection. The history of ANSI database standards is provided in the Whitemarsh on Database
paper, ANSI Database Standards.

Proprietary Data, All Rights Reserved

m Copyright 1998, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬂ! 21

Database Objects Overview

presented to or obtained from process objects because of pre-defined conventions. The meaning
of the business/process object is however fixed and is not determinable.

Database objects are completely defined through syntax. Once defined, the syntax is able
to be read and then acted upon by any ANSI SQL/3 DBMS, regardless of vendor and computing
platform. The syntax of database objects is stored in SQL schema information tables. Once
schema information tables are loaded with database object syntax, the DBMS can then use the
database object’s semantics to enter, store, and manipulate store the data component of database
objects. The database object processes and the database object information systems are
automatically invoked and operate on the entered, stored, or manipulated data in support of the
database object’s transformation from one value state to another.

Because database objects are represented as syntax that is stored in schema information
tables, end-users through their programming language agents are able to request that databases
determine the location, nature, and characteristics of database objects. Requests can thus be
launched to find the complete set of employee-candidate database objects. As the request is
processed through the network of possible database object locations, the schema information
tables can be accessed to first determine if employee database objects exist. If they do, then it
can be determined whether there are employees in the employee-candidate state. Once found, the
employee-candidate object themselves can be retrieved and copies returned to the requesting
language agent. The reason this two part query process is possible is because database objects
exist in two forms: type and instance, where the type is represented through metadata (the full
syntax of its four parts) and the instances are represented by the actual database objects.

Because of this dual existence paradigm (type and instance), programming language
agents can query database object schema information tables as to the state of an object. If a
database object is known to exist a request can be launched to both find it and to return its state
name.

Programming language agents can be created to dynamically format screens (the
characteristics of business information systems) based on the required characteristics of the next
state of a database object.

Requests can be made to properly report a set of database objects that share a common
characteristic. For example, the set of all female persons within a personnel database might
produce some that are employee candidates, new hires, are eligible for reviews and/or
promotions, or are retired. Each database object existence would have to be found, its state
determined, and then its metadata consulted so as to determine the type, kind, and format of the
data to be reported.

Finally, a request can be launched to give an employee a promotion. That request would
determine not only the current state of the employee, but also next allowed state. If the
promotion state is allowed a change would be instigated. If not allowed, the database object
change to the promotion state would be disallowed.

While the differences between the business/process objects and database objects are
significant indeed, each type of object has its unique role, characteristics and important uses. Not
only can all three types exist, they must co-exist to fully realize the full benefits of objects.

Proprietary Data, All Rights Reserved

m Copyright 1998, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬂ! 22

Database Objects Overview

Unique to database objects is the type-instance paradigm that is absolutely essential for
businesses to achieve heterogeneous, world-wide enterprise database. Businesses have been
attempting database objects for at least thirty years. Only now through ANSI standard SQL/3 are
database objects now possible. Database objects represent a technology independent, vendor,
computing platform and operating system independent marriage between data and process
semantics.

Since 1992, the ANSI and ISO database languages committees have been expanding SQL
well beyond its relational strictures. SQL/3 is now powerful enough to handle business's need for
objects, hereafter called database objects. SQL/3 now contains both the data and manipulation
facilities to handle both traditional data such as columns and rows, and also non traditional
complex data structures for groups, repeating groups, abstract data types of arbitrary complexity,
binary and character large objects (BLOBS and CLOBS), and full text processing. SQL/3 also
contains a full data manipulation language for stored procedures, and a full complement of data
integrity rules, actions, and procedures. Finally, SQL/3 contains fully developed facilities for
transaction management.

SQL/3 does not however have language facilities to interface directly with the end user.
That is, SQL does not have the necessary screen painters and full report writing languages that
produce eye-pleasing end-user screens and reports. Not only is that not bad, that's good! SQL
was designed expressly to be employed through end-user programming language environments,
that is, through C, COBOL, and any myriad of fourth generation languages such as Oracle
Forms, Sybase's Power-Builder, Information Builder's FOCUS Six, or Top Speed's Clarion for
Windows. It is through the vendor proprietary, hardware and operating system specific facilities
that SQL/3 can satisfy the requirements of heterogeneous hardware, operating system, and end-
user presentation and reporting environments.

It is precisely because SQL does not have end-user facilities that database objects are
equally and commonly accessible from these languages. A SQL object is not tied to or captive
within any one programming language. A SQL object is able to be defined independently from
but commonly accessed through all the standard programming and end-user languages.

If SQL did have all the standard programming and end-user languages facilities then it
would become just another business object language environment, which when fully employed
would result in business objects that are so bound to the language's constructs and to the
business' local needs and practices that any attempt at a world wide community of business
objects would be impossible. In short, SQL is not just one of the languages through which
business objects can be deployed. Rather, it can be used as the sole language for specification,
implementation, and evolution. Because of this significant difference, the database objects can
be defined at a level sufficient for world wide semantics without having to be suffocated by the
needs of the local needs, customs, and mores.

Proprietary Data, All Rights Reserved

m Copyright 1998, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬂ! 23

Database Objects Overview

8. ANSI X3H2 Database Objects

Database objects "live" entirely within the domain of the ANSI X3H2 DBMS. Database objects
can be both persistent and non-persistent, and can be either single or multiple-table objects.

A persistent database object is one that is stored and is retrievable over long periods of
time. An example is an insurance policy along with its full compliment of payments, renewals,
and claims. Another example of a persistent object are rotating-three dimensional views of a
mechanical part.

A non-persistent database object is one that is materialized and displayed but is not able
to be re-materialized because some of its components are not retained after the database object's
display is terminated.

Non-persistent objects are dynamically produced from database data and exist only for
the life of their "display." An example might be evening news weather displays. The weather
map, that is, the states, cities, streams, rivers, etc are all persistent database data. The actual
streams of clouds, high and low pressure fronts, cloud formations, and the like are time-
sequenced BLOBS that are dynamically displayed across the screen. While the displayed
database objects may be recorded via videotape and redisplayed at a later time, the detailed
components, which upon retrieval make up the non-persistent database objects, is not stored.

By the time the news cast is over, the BLOB parts are discarded. Other than for a
videotape replay, the complete set of the non-persistent database objects are gone. The persistent
part is traditional data structures with the appropriate quantity of indexes. The BLOBs are just
non-indexed streams of binary data that are stored in a very primitive format.

Persistent database objects are those that are stored in a database on a permanent basis.
Included are traditional "relational" data, abstract data types of complex structures (like an entire
auto accident claim that might include BLOBs, free text streams, etc.).

Single table database objects are those that are fully defined within a single row of an
SQL table structure. The database object may further be stored within a single cell within a
column. With SQL/3, very complex structures can be defined within a column. This capability is
quite common in hierarchical DBMSs like System 2000 and in independent logical file data
model DBMSs such as Adabas, Model 204, Inquire, and Datacom/DB. Not only can a single
column support single valued items, it can also support lists, sets, multi-sets, and abstract data
types of arbitrary complexity.

For example, in a product sales database, the single table called sales has product number
as the primary key with other columns for product name, product description, and the like. The
sales column in contrast, contains product sales by year by month by region, district and territory
by salesman. That's a single column with six dimensions of values. Prior to SQL/3 such product
sales information would require multiple tables. Since the salesman's object identifier is
contained as a integral component of the sales data, the salesman's full set of data is accessible
through normal SQL language processing. A referenced database object, that is, the referenced
salesman's data is not considered a formal part of a single table database object.

Multi-table objects are those that are implemented across multiple tables. For example,
an insurance policy may have several dozen tables that make up its full definition. One and only

Proprietary Data, All Rights Reserved

m Copyright 1998, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬂ! 24

Database Objects Overview

one table is considered as the database object's root table. The database object root table contains
among many things, the object's identity column. A row from the root table is the head-row of
the database object. All other related tables within the multi-table database object contain other
information related to the object. In the insurance policy example, a claim might be a contained
in one or more database object tables. Other database object tables would contain the
underwriting information regarding the person about whom the policy was issued. The person is
a different single or multi-table database object. Each table within a multi-table object may
consist of single valued columns, it can also support lists, sets, multi-sets, and abstract data types
of arbitrary complexity.

Not only do most businesses contain multi-table database objects, the majority of
business applications are examples of multi-table database objects. A quick look at business
applications reveals that inescapable conclusion.

Database objects, regardless of persistence and regardless of whether single or multi-
table contain the same four-part composition:

o Data Structure: the set of data structures that map onto the different value sets for
real world database objects such as an auto accident, vehicle and emergency
medicine incident.

° Database Object Process: the set of database object processes that enforce the
integrity of data structure fields, references between database objects and actions
among contained data structure segments, the proper computer-based rules
governing data structure segment insertion, modification, and deletion. For
example, the proper and complete storage of an auto accident.

° Database Object Information System: the set of specifications that control,
sequence, and iterate the execution of various database object processes that cause
changes in database object states to achieve specific value-based states in
conformance to the requirements of business policies. For example, the reception
and database posting of data from business information system activities (screens,
data edits, storage, interim reports, etc.) that accomplish entry of the auto accident
information.

o Database Object State: The value states of a database object that represent the
after-state of the successful accomplishment of one or more recognizable business
events. Examples of business events are auto accident initiation, involved vehicle
entry, involved person entry, and auto accident DUI (driving under the influence
of alcohol/drugs) involvement. Database object state changes are initiated through
named business events that are contained in business functions. The business
function, auto accident investigation includes the business event, auto-accident-
incident initiation, which in turn causes the incident initiation database object

Copyright 1998, Whitemarsh Information Systems Corporation

\ Proprietary Data, All Rights Reserved
W .

Database Objects Overview

information system to execute, which in turn causes several database object
processes to cause the auto accident incident to be materialized in the database.

A database object is specified to the SQL DBMS through the SQL definition language (DDL).
All four components of a database object operate within the “firewall” of the DBMS. This
ensures that database objects are protected from improper access or manipulation by 3GLs, or
4GLs. A DBMS that only defines, instantiates, and manipulates two dimensional data structures
is merely a simplified functional subset of the DBMS that defines, instantiates, and manipulates
database objects.

Database objects are discovered through the systems analysis and design technique
called resource life cycle analysis. This technique, formulated by Ron Ross'’. A resource life-
cycle is the set of essential steps for manipulating a critical corporate resource. Examples of
corporate resources are: employees, contracts, customers. At the highest level, each resource is a
database object. Also at this high level, each resource life-cycle represents the highest level set
of states that the database object proceeds through from creation to termination.

9. Object Oriented Environments

Knowledge worker environments must be object oriented. That is, they must work in whole
activities rather than specialized subsets of activities. Real product workers work in highly
specialized environments in order to produce real products such as aircraft, automobiles, and
other manufactured products. Real product environments are not required to be object-oriented.
Rather, they are just required to be exact and correct for every iteration of the product or
subproduct that is manufactured. Knowledge worker environments must be object oriented
because they involve whole collections of data and processes, and because the knowledge
worker products are abstract and are highly variable either by design or necessity.

The three heralded characteristics of objects are encapsulation, inheritance, and
polymorphism. The most critical aspect of an object oriented environment is encapsulation.
Encapsulation means that the component (that is, its data and attendant processes) that is within
the capsule is accessible only through the well defined rules imposed by the capsule. An EKG
machine is an example of complete encapsulation. The machine contains all the materials and
processes necessary to capture the EKG signals, record them on paper, and to react to
unacceptable signal changes. Encapsulation has been a characteristic of well defined, designed,
implemented, and maintained data processing systems and environments since the early 1950s.

Encapsulation existed well before data processing. A business form that contains not only
the blank fields for data entry and also all the sets of instructions, look-up tables, etc., is

Ron Ross’s Resource Life Cycle Analysis is presented in the book, Resource Life Cycle Analysis,
The Database Research Group, Boston, MA. 1994

Copyright 1998, Whitemarsh Information Systems Corporation

\ Proprietary Data, All Rights Reserved
W ”

Database Objects Overview

encapsulated. If the data entry person had to rely on external tables and/or external instructions
and if the wrong set was employed then there would be two consequences:

° broken encapsulation
o bad data entry

From a formal viewpoint, encapsulation means that the object is shielded from the “influences”
of its outside environment. Standard money arithmetic processes defined within the insurance
policy object regarding premium computation can be configured independent of the currency of
the money represented by the premium given the arguments of dollars exchange rate and other
standard inputs.

Inheritance means that any contained objects can presume on the properties of any
containing object. A woman, a contained object, assumes the all properties of a human, the
containing object.

Polymorphism means that an invoking command to compute REMAINING BALANCE
may in fact invoke different processes depending on the “invoking environment.” That is, for
example, whether the required remaining balance is for a loan, and invoice, or a real-estate
mortgage.

All successful computing environments must strive to be object-oriented because this
lessens errors, increases the quality of designs, and lowers the costs of application and database
development. The knowledge worker framework is depicted on the next page. This knowledge
worker framework embraces all organizations, functions, business information systems,
databases, interfaces between functions and business information systems, and Riverview’s
missions. Each component within the framework should be object-oriented. An object oriented
component can contain references or make use of “outside” object-oriented components. Those
references must however be unambiguous.

Given that the knowledge worker environments are heavily dependent on commercial
off-the-shelf (COTS) packages, then these COTS packages must be as object-oriented as
possible. Given also that there are large, broad, and integrated databases that are used by the
COTS packages, then the business information systems that support the databases must too be
object-oriented so as to ensure that each business information system receives consistent data.
When multiple business information systems store data then that data must be stored through
singly defined, and consistently applied encapsulated business rules.

If during the evolution and maintenance of the knowledge worker environment an object
oriented component is changed then the change/evolution must be available to and employed by
all referencing object oriented components at the same instant. Otherwise, data and process
corruption will occur.

Copyright 1998, Whitemarsh Information Systems Corporation

\ Proprietary Data, All Rights Reserved
W .

Database Objects Overview

Knowledge Worker Framework
. . Man-Machine Interface
Viewpoint
Machine Interface Man
Primary
Business Responsi-
Database Information Business Business bility
Project Deliverables Mission Object System Event Function Organization
Scope List of business List of major List of business List of interface List of major List of
missions business information events business organizations
resources Systems scenarios
Specificati Architect
pecilication Business Mission Resource life Information Event Business Organization
hierarchies cycles sequencing and sequencing and scenario charts, jobs and
hierarchies hierarchies sequencing and descriptions
hierarchies
Specification System Database object | Database object | Information Invocation Best practices, Job roles, .
and hierarchies models system designs protocols, input quality responsibilities, Architect
and output data, measures and and activity and
Implemen- and messages accomplishment | schedules Engineer
tation assessments
Technology Policy execution | Logical DBMS Information Presentation Activity Procedure
enforcement Schemas systems layer information | sequences to manuals, task
application system accomplish lists, quality
designs instigators business measures and
Implemen- scenarios assessments
tation
Deployment Installed Physical DBMS Implemented Client & server Office policies Daily schedules, Ensi
business policy Schemas information windows and/or and procedures shift and ngineer
and procedures systems batch execution to accomplish personnel
mechanisms activities assignments
Operations Operating DBMS Views Operating Start, stop, and Detailed Daily activity
Operation business information messages procedure based | executions, and
systems instructions assessments

W

Copyright 1998, Whitemarsh Information Systems Corporation

Proprietary Data, All Rights Reserved

28

Database Objects Overview

The knowledge worker environment is complex. That is, there will be objects of all
object class types. With respect to the Knowledge Worker Framework, business object generally
conform to the Business Information System column. Database object conform to the database
object column. As a consequence there will be an interaction between the two columns. The
most effective object environment will be one where the maximum amount of a business’ object
class is defined as database objects.

Figure 4 depicts a high level diagram of the models that are involved in a database object
environment. There are six distinct technology independent models above the line and three
technology dependent models below the line. The technology independent models represent the
specification of a database object environment while the models below the line represent an
implementation of database objects.

The specification models in the database object environment include:

Mission

Database object

Business information systems
Business events

Business function

Business Organization

The mission and the database object model are presented in this appendix. The remaining
database object environment models are presented in the book, Database Objects, The
Foundation Stones of Enterprise Database.

The mission model provides a description of the ultimate aim, goal, or database objective
to be served by the database objects. The database objects operate within the scope of their
business information systems. The business function triggers the execution of business
information systems via business events. Business functions are accomplished by business
organizations. The intersections between all the models are many-to-many. That means for
example, that one or more database objects serve the needs of one or more missions. Similarly,
the intersection of database objects and missions, that is, mission based database objects are what
is accomplished by one or more business information systems. Many to many relationships are
employed to ensure that each model can be employed one or more times.

Copyright 1998, Whitemarsh Information Systems Corporation

\ Proprietary Data, All Rights Reserved
W "

Database Objects Overview

Business Organizational
; function unit that
2:;{:?8 that performs |y accomplishes
. that invoke work and is business
Il;:;smesii business %‘:lgmd by functions
formation b . ess
N | Y| information S
ey |
Database objects/’ database object for bysinm y
required for transformations functions
specific mission Y
A
Database Object Model : - - .
Mission et Saibase ‘Lf | [Databass Business Business Business Business
Model Structure| | Processes sy;;f‘;s ™ || Object Information Event Function Organization
States izgtiel}ls Model Model Model
€]
Processes for
data structure_, | Logic to control
fntegrity database Ny
object value
states
y
Implemented Database Objects
Implemented Implemented Hardware
Database Information < Deployment
Object Systems Model
Model Model
y
Security
Maodel

Figure 4. Essential Meta Models Required for Database Object Environments

10. Database Object Composition and Execution Paradigm

Figure 5 depicts the database object composition paradigm. Depicted in this figure is the
database object instance at a moment in time. This figure represents a trivial case of a database
object. There is only one state, one database object information system, one set of database
object processes that transform different database object data structure segments.

Each white rectangle in Figure 6 represents a segment in the database object’s data
structure. Segments are either NULL or valued. In this figure, there is a root segment, two
descendent segments, and for one segment, there are two additional descendent segments. When
the database object structure (5 segments) is in the NULL state only the structure exists. A
database object in the null state is equivalent to a tree without leaves. As the database object

Copyright 1998, Whitemarsh Information Syastems Corporation
Proprietary Data, All Rights Reserved

W *

Database Objects Overview

progresses through states, different data structure segments become valued. Some segments only
contain one instance while others can contain multiple instances.

Database management systems, regardless of data model (network, hierarchical,
independent logical file, and relational) exhibit the NULL and valued concept. After the data
definition language is read and compiled by the DBMS, the database’s state can be queried. In
the case of a NULL database, the row counts of all tables is zero.

Each database object data structure segment is equivalent to an ANSI SQL/3 table. The
minimum essential field types are: single valued, multiple valued, group, repeating group and
nested repeating group. In the EMPLOYEE example, a single value field is SOCIAL

3 N

o,
¢
& -

Data structure segment

Database object
information system

@ Database object process Database object state

Figure 5. Database Object Composition Paradigm

Proprietary Data, All Rights Reserved

m Copyright 1998, Whitemarsh Information Syastems Corporation
‘ ‘

\

lﬂ! 31

Database Objects Overview

SECURITY NUMBER or BIRTH DATE. A multiple-value field is TELEPHONE NUMBERS.
A group field is ADDRESS with its contained fields of STREET, CITY, STATE, and ZIP. A
repeating group is a group field with multiple instances, for example, DEPENDENTS with the
contained fields SSN, NAME, BIRTHDATE, and SEX. A nested repeating group is a repeating
group that allows a contained repeating group. For example, DEPENDENTS containing
HOBBIES.

Intersecting each database segment, represented in Figure 6 through partially hidden
circles, is a series (from none to many) of database object processes. Each database object
process executes when some action (e.g., add, delete, or modify) is taken. The actions can be the
changing of a value (NULL to non-null or reverse) of a database object segment field, the
insertion of a database object data structure instance, or the modification of a database object
data structure instance. The three types of database object processes are field, action, and
references. A field level database object process are those that protect the allowed set of values
for a database object. For example, there is probably a business rule that states that the value of
SEX for an EMPLOYEE must be either MALE or FEMALE. This rule would therefore prevent
either NULL (that is, unknown) or some other value such as YES.

The action type of database object process includes BEFORE, AFTER, and then verb
types such as INSERT, DELETE, MODIFY. The action type and verb type enable six different
actions that to occur for each database object segment change. The process logic contained in
each database object process can be to validate or compute. For example, the business might
want to know the age of an EMPLOYEE candidate upon application. This could be computed
when the EMPLOYEE BIOGRAPHIC database object segment instance was installed through
an AFTER INSERT action that would compute the age and then perform a database object
segment modification to install the age value.

The references action ensures that a particular database object segment instance can
neither be inserted, modified, or deleted without checking the existence of another database.
object segment instance. In the example for EMPLOYEE, the third type of database object
process can enforce the business rule that no EMPLOYEE BIOGRAPHIC database object
segment instance is allowed to be installed without there being one or more SKILL instances.

Surrounding the entire database object in Figure 6 is an outer database object information
system. In the example of Figure 6 only one database object information system is shown. In
reality, many database object information systems may cause database object transformations
from one value state to another. For example, the database object information system that creates
the employee requisition state would certainly be different from the database object information
system that transforms an employee requisition to an employee candidate.

In the EMPLOYEE database object example, the null employee is transformed to the
representation of an EMPLOYEE REQUISITION by valuing some one or more fields from one
or more database object segment instances. In this example, there may merely be a single
database object segment called EMPLOYEE REQUISITION with the fields: REQUISITION
NUMBER, EMPLOYEE CLASS, EMPLOYEE SALARY RANGE, and then one or more
instances of REQUIRED EMPLOYEE SKILLs that have been valued. Given that this

Proprietary Data, All Rights Reserved

m Copyright 1998, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬂ! 32

Database Objects Overview

Prerequisite
State

Execution Sequence (effectively)

1. Data is obtained through 3GL
and 4GL

2. Database object requested state
is invoked through Business
Information System. (Outside Square)

Business

Information
System

(3GL or 4GL)

3. Data is passed to the database
object information system
(Rounded Edge Square)

Transformed
State

4. Database object processes are
passed data and they perform
their actions (Circles to rear of
white squares

Note: transformations accomplish
value changes such as field value
changes, inserts or deletes. Structure

definitions however do not change.

5. Database object data structure
is modified through inserts,
changes, and deletes (connected
collection of white squares)

6. If success, then commit,
otherwise rollback.

Figure 6. Database Object Execution Paradigm

information system’s actions are accomplished, then the employee requisition exists. Upon
query, 10 employee requisitions may be “open” and eligible to be “filled.”

The next state for the database object EMPLOYEE might be EMPLOYEE
CANDIDATE. That state has the EMPLOYEE REQUISITION state as a prerequisite. Another
database object information system executes, finding a targeted database object that is in
EMPLOYEE REQUISITION stage, and adds to it a list of persons who represent EMPLOYEE
candidates. In this situation, the database object segment EMPLOYEE BIOGRAPHIC would be
valued with an employee candidate’s name, address, phone number, current employer, and
available skills. When this state, EMPLOYEE CANDIDATE is achieved, it too can be queried
so that employee candidate screening and interviewing can begin. During the execution of the
EMPLOYEE CANDIDATE database object information system, certain database object
processes such as VALIDATE TELEPHONE AREA CODE, VALIDATE ZIP CODE, and
VALIDATE SKILLs would execute, thus enabling only valid data to be entered into the
database. The remaining series of database object states are achieved through this process of

Proprietary Data, All Rights Reserved

m Copyright 1998, Whitemarsh Information Syastems Corporation
‘ ‘

\

lﬂ! 33

Database Objects Overview

proceeding from a prior state via a database object information system to the next state and at the
same time protecting the database object’s value instantiation by means of database object
processes.

The outer most rectangle in Figure 5 represents the named state that in which the
database object currently resides. For the database object EMPLOYEE, the value state might be
EMPLOYEE REQUISITION. This represents some well defined state in the business’ life cycle
for an employee. The database object’s state is achieved through the execution of one or more
database object information systems. The state’s achievement is binary. It is either achieved, or
the effects of the database object information system that attempts to achieve it is rolled back.
The state of the database object can be queried. That is, the set of all database objects in the
EMPLOYEE REQUISITION state can be found and then traversed.

The execution paradigm is shown in Figure 6 which shows the overall process by which a
database object changes states. A database object must contain a prerequisite state so that it can
be transformed to its next state. Database objects are selected for transformation in response both
to the prerequisite state and because of some contained field’s values. For example, the database
object selection criteria might be to obtain all the EMPLOYEE REQUISITIONS where
FULFILLMENT MONTH equals February 1996. Requested values from the database object are
provided to the calling agent, that is, a 3GL or 4GL program. The program then performs its own
logic and provides changed values back to the DBMS so that the database object’s state can
change. In this case, the EMPLOYEE REQUISITION’s employee counselor might be assigned
to a particular human resources staff person for action. Assuming that the change is accepted,
then the database object’s state might be called ASSIGNED EMPLOYEE REQUISITION. Other
state changes might be to transform an EMPLOYEE REQUISITION to one that has
EMPLOYEE candidates.

The states of the database object are those that are identified through database object
analysis. The names of the states are predefined and to each state is assigned all the appropriate
database object information systems. Assigned to the database object information systems are the
database object processes, which in turn act on the database object segments.

While the proceeding example set appears to be hierarchical, a database object can be
modified through many different database object information systems and their contained
database object processes. The critical database object component that keeps the database object
progressing through the correct value state sequence is the fact that a database object cannot be
transformed from one state to another without first being in the prerequisite state. This prevents
for example, a CANDIDATE EMPLOYEE being installed without there first being an
EMPLOYEE REQUISITION.

The reason database objects are critical to client/server, heterogeneous, multiple-DBMS,
world wide environments is depicted in Figure 7 which enumerates all the different types of
change agents that surround the database objects. If the critical semantics of a business is stored
both in its data and its computer programs, AND if there are many different types of language
(C, COBOL, 4GL, MS/Access, Sybase’s Power Builder, etc.), then the probability of having
consistent semantics across this programming language environment is ZERO. Either a business

Proprietary Data, All Rights Reserved

m Copyright 1998, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬂ! 34

Database Objects Overview

On-line
3GL Access
e.g” "Cll

Client in
MS/Access

Client Access
Through ODBC
and Power Builder

DBMS with
SQL Enhanced
4GL Language

ANSI Standard SQL
DBMS Environment on
CLient or Server

On-line

CLient with Ser\{er based
Client-side DBMS pr in DBMS
access through with embedded

SQL/CLI SQL access

| Data structure segment D Database object

information system
Q Database Object process

Database object state

Figure 7. Myriad of Database Object Invoking Agents

must decide on one and only one DBMS, one and only one operating system, and one and only
one 4GL programming language, or it must move the semantics of its essential business policies
and procedures inside the “firewall” of the DBMS. But since it ranges from impractical to
impossible to demand that a business operate only one brand of DBMS, these critical database

object must be moved inside the ANSI SQL language. It is only through the ANSI SQL language
that business can ensure that database object semantics are protected.

Copyright 1998, Whitemarsh Information Systems Corporation
‘\ﬂ" Proprietary Date, All Rights Reserved
YV 35

Database Objects Overview

There are five key evaluation criteria by which an object approach can be evaluated:

Does the approach to objects make business applications easier to analyze and
design. Are the results are more complete, self contained, and intuitively obvious
to understand?

Is the result of the analysis and design easy to encode in unambiguous syntax
within an ANSI standard language?

Are the object classes that result from compiling the object class syntax easy to
instantiate and are the object classes able to be interrogated as to their class
definitions?

Are the object classes and the objects able to easily ported to a large variety of
computers from PCs to mainframes across a wide variety of operating systems?

Are the object classes and objects able to be easily accessed across networks of a
large variety of computers from PCs to mainframes and across networks of a wide
variety of operating systems?

These evaluation criteria should be assessed against any object class and object instance proposal
that is brought before Riverview.

With respect to database objects, currently the main SQL vendors, e.g., Oracle, Sybase,
Informix and IBM can all implement the database object paradigm stated in this appendix. The
resulting syntax however is not currently ISO/ANSI standard. It is the intention of the ISO and
ANSI database language committees to maximize the standard syntax so that all the above
evaluation criteria can be answered in the affirmative.

11. Database Objects Summary and Benefits

The database object benefits include:

Whole containment within SQL DBMS

Access to both type and instance components

Complete expression through syntax

Import and export through ISO/ANSI standard SQL facilities

Ability to be distributed and consistent operations via all SQL compliant DBMSs
Independence from presentation-layer and operating-system bindings

Because database objects are wholly contained within SQL DBMS they can be centrally
accessed and manipulated regardless of the end-user environment, that is, batch, on-line, stand-
alone “fat” clients, or traditional client/server.

Copyright 1998, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved
36

Database Objects Overview

SQL DBMS databases contain both type and instance data. Type-data is metadata.
Instance data is traditional data. For an employee database, type data are the table, column,
integrity definitions, stored procedures and the like. Instance data are the actual employee
records.

Type data is critical for distributed data and process databases because it can be queried
to then determine the exact semantics required for database access operations. For example, if
there is a currency exchange data object on a server, a query can determine the arguments and
data types of the required inputs. Transactions can then be formulated and successfully
accomplished.

Database objects are completely expressible as syntax enabling SQL compliant DBMSs
to receive new database object syntax for inclusion, requirements to delete database objects from
the type and instance data, and command and data strings that cause updates to standard
reference data that can act as dynamic integrity constraints.

A fundamental requirement of any compliant SQL DBMS is that it be able to import and
export both type and instance data through standard SQL commands. Applications are able to
export or import data through standard character set strings. When a new computer site is
established, a central server can be activated to down load command strings of syntax and
standard reference data. Once down loaded and stored within the SQL/3 DBMS, the database
objects are immediately operational regardless of the DBMS brand, operating systems type,
hardware vendor, or 3" or 4™ generation language tools that access and manipulate the newly
installed database objects.

Because of ISO and ANSI standards, database objects operate consistently regardless of
the SQL DBMS, operating system, and vagaries of the different presentation layer facilities.
Enterprises are able to then have centralized semantics that control the fundamental operations of
the business objects that are essential to world wide, heterogeneous computing environments.

Finally, database objects are independent from presentation-layer and operating-system
bindings. This enables use of local language conventions within the confines of standard policy
essentials. For example, regardless of their local abbreviations and local names, there are only
two sexes. Additionally, local vendors may provide their own presentation layer facilities, report
writers, formats, paper sizes, screen formats, and the like. Given database objects, these localized
peculiarities can be accommodated. And, because the database object environment is DBMS
based, additional and localized database objects can be easily created and deployed with
automatic integration into the standard database object environments essential for effective
world-wide, heterogeneous environments. In summary, database objects:

° Are easy to specify, implement, use and maintain

o Can operate on world-wide, heterogeneous hardware and operating system
environments, and

° Can behave consistently regardless of their host computing hardware environ

Copyright 1998, Whitemarsh Information Systems Corporation

\ Proprietary Data, All Rights Reserved
W .

