Whitemarsh

Information Systems Corporation

Wy

W

Database Objects Brief Introduction

Whitemarsh Information Systema Corporation
2008 Althea Lone
Bowie, Marylond 20716
Tele: 301-249-1142.
Email: mmgormen@wiscorp.com
Web: www.wiscorp.com

Databose Objects Brief Introduction

Table of Contents
1. OVEIVIEW . . ittt e e e e e e e e e e e e e 1
2. The Business Case for Database Objects, 2
3. Components of Database Objects 2
4. Database Object Composition and Execution Paradigm 5
5. Database Objects Summary and Benefits 11
Copyright 1998, Whitemarsh Information Systems Corporation
“ ’ Proprietary Datey, All Righta Reserved
W/ ii

Databose Objects Brief Introduction

1. Overview

There are generally considered to be three classes of objects: display objects, wholly contained
process objects, and business objects. Display objects embrace buttons on a screen, a drop list of
menu choices, a graphical user interface (GUI), or complete engineering drawings. Wholly
contained process objects are for example, the COSINE function, a nautical distance function
that when given two geographical coordinates returns the geographic distance between them, or
a well-defined process that takes standard arguments and returns a specific value such as asking
for the net asset value for a business given all assets and liabilities. Finally, business objects
encompass business components like an insurance policy [information system] that accomplishes
whole business transactions in a certain manner.

While three object classes have their proponents and detractors, what all three object
classes have in common is that they are first and foremost self contained software
modules/systems in the form of an executable that behaves according to certain fixed rules.

A database object is none of these. It is its own class. While database objects share some
common names and definitions with the other three object classes, that is, encapsulation,
inheritance, and polymorphism, database objects are unique to both database and DBMS.

Database objects are identified, designed, implemented, operated through, and evolved,
or maintained through just one type of data processing facility, a database management system
(DBMS). If the available DBMS is an ANSI SQL3 DBMS (download SQL_BOM from the
www.wiscorp.com) then database object definition and use can be direct. Otherwise, database
objects can only be indirectly approached through proprietary facilities in one or more DBMSs.

Database objects are essential to the proper understanding, specification, implementation,
and maintenance of world-wide heterogeneous databases. Database objects fit within the
enterprise’s Knowledge Worker Framework (download the Knowledge Worker Framework book
from www.wiscorp.com).

Database objects are not new. They were started in certain DBMS types (e.g., IDMS,
IDS, GIM, Inquire, and Adabas) in the late 1960s. Relational DBMS such as DB2, Oracle,
Informix, and Sybase, however, stopped the march to database objects dead in its tracks. It was
not until the ANSI SQL3 data model moved away from relational and not until a whole
programming language was incorporated into ANSI SQL3 that the march to database objects
restarted. The newest versions of IDMS, DB2, Oracle, Informix, and Sybase have all started to
support the data structure and process features essential for database objects. Even if the
twenty-year delay had not happened, computers, networks, languages and operating systems
were just not sophisticated enough to make database objects successful.

Database objects were formulated almost 20 years ago by the late Matt Flavin in his 1979
Yourdon Monograph, Fundamentals of Information Modeling. During the Seventies, Matt (who
worked for Infodata of Rochester, NY and Fairfax, VA.), accomplished very early database
management system research and development. Infodata’s DBMS, Inquire, was widely used in
the U.S. Federal Government. Matt represented Infodata to the X3H2, the ANSI Database
Languages committee in the late Seventies.

Proprietary Data, All Rights Reserved

m Copyright 1998, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬂ! 1

Databose Objects Brief Introduction

Database objects existed only on paper only until the ANSI database language’s committee,
X3H2, working since early 1993 on the specification of SQL, formulated the essential linguistic
components of database objects.

2. The Business Case for Database Objects

Distributed, client/server data and processes are here to stay, and rightly so. Not only are they
empowering, they are essential because enterprises are highly distributed and world wide.
Enterprises must be able to respond to local needs, laws, customs and mores. But, if businesses
are designed and tuned to respond to local situations, how can they act in concert within their
world-wide communities? How can you have world-wide consistency and semantics without
suffocating local needs and practices? How can both ends of the information resource’s spectrum
be satisfied?

Business data needs far exceed today's DBMS's two dimensional table capabilities and
simple column-based constraints. Businesses cry out for semantically rich data management to
meet business needs across world-wide, heterogeneous hardware and operating system
environments. Business data management environments must behave consistently regardless of
their host computing hardware environment, operating systems, or DBMS vendors, and must be
easy to specify, implement, use and maintain.

Businesses require hierarchies of complex data tables, collections of integrated rules for
data integrity, well-defined procedure sets, and fixed transformations that move a business
policy—data is just executed policy--from one well-defined state to another. Examples of
business needs include insurance policies and claims, court cases and documents, public safety
incidents, sales and marketing databases that contain customers, sales organizations, forecasts,
orders, deliveries, and product sales statistics, inventory control and deployment, and human
resources.

3. Components of Database Objects

Database objects "live" entirely within the domain of the DBMS. Database objects can be both
persistent and non-persistent, and can span single or multiple-tables.

A persistent database object is one that is stored and is retrievable over long periods of
time. An example is an insurance policy along with its full compliment of payments, renewals,
and claims. Another example of a persistent object is the rotating-three dimensional views of a
mechanical part.

A non-persistent database object is one that is materialized and displayed but is not able
to be re-materialized because some of its components are not retained after the database object's
display is terminated.

Copyright 1998, Whitemarsh Information Systems Corporation

\ Proprietary Data, All Rights Reserved
W :

Databose Objects Brief Introduction

Non-persistent objects are dynamically produced from database data and exist only for the life of
their "display." An example might be evening-news weather displays. The weather map, that is,
the states, cities, streams, rivers, etc. are all persistent database data. The actual streams of
clouds, high and low pressure fronts, cloud formations, and the like are time-sequenced BLOBS
that are dynamically displayed across the screen. While the displayed database objects may be
recorded via videotape and redisplayed at a later time, the detailed components, which upon
retrieval makes up the non-persistent database objects, is not stored.

By the time the news-cast is over, the BLOB parts are discarded. Other than for a
videotape replay, the complete set of non-persistent database objects is gone. The persistent part
is traditional data structures with the appropriate quantity of indexes. The BLOBs are just
non-indexed streams of binary data that are stored in a very primitive format.

Persistent database objects are those that are stored in a database on a permanent basis.
Included are traditional "relational”" data, abstract data types of complex structures (like an entire
auto accident claim that might include BLOBs, free text streams, etc.).

Single table database objects are those that are fully defined within a single row of an
SQL/99 table structure. With SQL/99, columns can support very complex structures, such as
simple values, lists, sets, multi-sets, and abstract data types of arbitrary complexity. This
capability is quite common in hierarchical DBMSs like System 2000 and in independent logical
file data model DBMSs such as Adabas, Model 204, Inquire, and Datacom/DB.

For example, in a product sales database, the single table called sales has product number
as the primary key with other columns for product name, product description, and the like. The
sales table sales column in contrast, contains product sales by year by month by region, district
and territory by salesman. That's a single column with six dimensions of values. Prior to SQL/99
such product sales information would require multiple tables with the attendant keys, joins, and
computer processing melt-downs. Since the salesman's object identifier is contained as a integral
component of the sales data, the salesman's full set of data is accessible through normal SQL
language processing. A referenced database object, that is, the referenced salesman's data is not
considered a formal part of a single table database object.

Multi-table objects are those that are implemented across multiple tables. For example,
an insurance policy may have several dozen tables that make up its full definition. One and only
one table is considered as the database object's root table. The database object root table contains
among many things, the object's identity column. A row from the root table is the head-row of
the database object. All other related tables within the multi-table database object contain other
information related to the object. In the insurance policy example, a claim might be a contained
in one or more database object tables. Other database object tables would contain the
underwriting information regarding the person about whom the policy was issued. The person is
a different single or multi-table database object. Each table within a multi-table object may
consist of single valued columns, it can also support lists, sets, multi-sets, and abstract data types
of arbitrary complexity.

Proprietary Data, All Rights Reserved

m Copyright 1998, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬂ! 3

Databose Objects Brief Introduction

Not only do most businesses contain multi-table database objects, the majority of business
applications are examples of multi-table database objects. A quick look at business applications
reveals that inescapable conclusion.

Database objects, regardless of persistence and regardless of whether single or
multi-tables contain the same four-part composition:

Data Structure: The set of data structures (simple and complex collections of
tables) that map onto the different value sets for real world database objects such
as an auto accident, vehicle and emergency medicine incident.

Database Object Process: The set of database object processes that enforce the
integrity of columns (simple or complex), references between database objects
and actions among contained data structure segments, the proper computer-based
rules governing data structure segment insertion, modification, and deletion. For
example, accomplishing the proper and complete storage of an auto accident.

Database Object Information System: The set of specifications that control,
sequence, and iterate the execution of various database object processes that cause
changes in database object states to achieve specific value-based states in
conformance to the requirements of business policies. For example, the reception
and database posting of data from business information system activities (screens,
data edits, storage, interim reports, etc.) that accomplish entry of the auto accident
information.

Database Object State: The value states of a database object that represent the
after-state of the successful accomplishment of one or more recognizable business
events. Examples of business events are auto accident initiation, involved vehicle
entry, involved person entry, and auto accident DUI (driving under the influence
of alcohol/drugs) involvement. Database object state changes are initiated through
named business events that are contained in business functions. The business
function, auto accident investigation includes the business event,
auto-accident-incident initiation, which in turn causes the incident initiation
database object information system to execute, which in turn causes several
database object processes to cause the auto accident incident to be materialized in
the database.

A database object is specified to the SQL/99 DBMS through the SQL/99 definition language
(DDL). All four components of a database object operate within the "firewall" of the DBMS.
This ensures that database objects are protected from improper access or manipulation by 3GLs,

or 4GLs.

W

Copyright 1998, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved
4

Databose Objects Brief Introduction

4. Database Object Composition and Execution Paradigm

Figure 1 depicts the database object composition paradigm. Depicted in this figure is the
database object instance at a moment in time. This figure represents a trivial case of a database
object. There is only one state, one database object information system, one set of database
object processes that transform different database object data structure segments.

Each white rectangle in Figure 1 represents a segment in the database object’s data
structure. Segments are either NULL or valued. In this figure, there is a root segment, two
descendent segments, and for one segment, there are two additional descendent segments. When
the database object structure (5 segments) is in the NULL state only the structure exists. A
database object in the null state is equivalent to a tree without leaves. As the database object
progresses through states, different data structure segments become valued. Some segments only
contain one instance while others can contain multiple instances.

Database management systems, regardless of data model (network, hierarchical,
independent logical file, and relational) exhibit the NULL and valued concept. After the data
definition language is read and compiled by the DBMS, the database’s state can be queried. In
the case of a NULL database, the row counts of all tables is zero.

Each database object data structure segment is equivalent to an ANSI SQL/99 table. The
minimum essential field types are: single valued, multiple valued, group, repeating group and
nested repeating group. In the EMPLOYEE example, a single value field is SOCIAL
SECURITY NUMBER or BIRTH DATE. A multiple-value field is TELEPHONE NUMBERS.
A group field is ADDRESS with its contained fields of STREET, CITY, STATE, and ZIP. A
repeating group is a group field with multiple instances, for example, DEPENDENTS with the
contained fields SSN, NAME, BIRTHDATE, and SEX. A nested repeating group is a repeating
group that allows a contained repeating group. For example, DEPENDENTS containing
HOBBIES.

Intersecting each database segment, represented in Figure 1 through partially hidden
circles, is a series (from none to many) of database object processes. Each database object
process executes when some action (e.g., add, delete, or modify) is taken. The actions can be the
changing of a value (NULL to non-null or reverse) of a database object segment field, the
insertion of a database object data structure instance, or the modification of a database object
data structure instance. The three types of database object processes are field, action, and
references. A field level database object process are those that protect the allowed set of values
for a database object. For example, there is probably a business rule that states that the value of
SEX for an EMPLOYEE must be either MALE or FEMALE. This rule would therefore prevent
either NULL (that is, unknown) or some other value such as YES.

The action type of database object process includes BEFORE, AFTER, and then verb
types such as INSERT, DELETE, MODIFY. The action type and verb type enable six different
actions that to occur for each database object segment change. The process logic contained in
each database object process can be to validate or compute. For example, the business might
want to know the age of an EMPLOYEE candidate upon application. This could be computed

Proprietary Data, All Rights Reserved

m Copyright 1998, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬂ! 5

Database Objects Brief Introduction

when the EMPLOYEE BIOGRAPHIC database object segment instance was installed through
an AFTER INSERT action that would compute the age and then perform a database object
segment modification to install the age value.

The references action ensures that a particular database object segment instance can
neither be inserted, modified, or deleted without checking the existence of another database

3 N

C €
¢
& -

Data structure segment

Database object
information system

Database object process Database object state

Figure 1. Database Object Composition Paradigm

Copyright 1998, Whitemarsh Information Systems Corporation
“ ’ Proprietary Datey, All Righta Reserved
W/

6

Databose Objects Brief Introduction

object segment instance. In the example for EMPLOYEE, the third type of database object
process can enforce the business rule that no EMPLOYEE BIOGRAPHIC database object
segment instance is allowed to be installed without there being one or more SKILL instances.

Surrounding the entire database object in Figure 1 is an outer database object information
system. In the example of Figure 1 only one database object information system is shown. In
reality, many database object information systems may cause database object transformations
from one value state to another. For example, the database object information system that creates
the employee requisition state would certainly be different from the database object information
system that transforms an employee requisition to an employee candidate.

In the EMPLOYEE database object example, the null employee is transformed to the
representation of an EMPLOYEE REQUISITION by valuing some one or more fields from one
or more database object segment instances. In this example, there may merely be a single
database object segment called EMPLOYEE REQUISITION with the fields: REQUISITION
NUMBER, EMPLOYEE CLASS, EMPLOYEE SALARY RANGE, and then one or more
instances of REQUIRED EMPLOYEE SKILLs that have been valued. Given that this
information system’s actions are accomplished, then the employee requisition exists. Upon
query, 10 employee requisitions may be “open” and eligible to be “filled.”

The next state for the database object EMPLOYEE might be EMPLOYEE
CANDIDATE. That state has the EMPLOYEE REQUISITION state as a prerequisite. Another
database object information system executes, finding a targeted database object that is in
EMPLOYEE REQUISITION stage, and adds to it a list of persons who represent EMPLOYEE
candidates. In this situation, the database object segment EMPLOYEE BIOGRAPHIC would be
valued with an employee candidate’s name, address, phone number, current employer, and
available skills. When this state, EMPLOYEE CANDIDATE is achieved, it too can be queried
so that employee candidate screening and interviewing can begin. During the execution of the
EMPLOYEE CANDIDATE database object information system, certain database object
processes such as VALIDATE TELEPHONE AREA CODE, VALIDATE ZIP CODE, and
VALIDATE SKILLs would execute, thus enabling only valid data to be entered into the
database. The remaining series of database object states are achieved through this process of
proceeding from a prior state via a database object information system to the next state and at the
same time protecting the database object’s value instantiation by means of database object
processes.

The outer most rectangle in Figure 1 represents the named state that in which the
database object currently resides. For the database object EMPLOYEE, the value state might be
EMPLOYEE REQUISITION. This represents some well defined state in the business’ life cycle
for an employee. The database object’s state is achieved through the execution of one or more
database object information systems. The state’s achievement is binary. It is either achieved, or
the effects of the database object information system that attempts to achieve it is rolled back.
The state of the database object can be queried. That is, the set of all database objects in the
EMPLOYEE REQUISITION state can be found and then traversed.

Proprietary Data, All Rights Reserved

m Copyright 1998, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬂ! 7

Databose Objects Brief Introduction

The execution paradigm is shown in Figure 2 which shows the overall process by which a
database object changes states. A database object must contain a prerequisite state so that it can
be transformed to its next state. Database objects are selected for transformation in response both
to the prerequisite state and because of some contained field’s values. For example, the database
object selection criteria might be to obtain all the EMPLOYEE REQUISITIONS where
FULFILLMENT MONTH equals February 1996. Requested values from the database object are

Prerequisite
State

Execution Sequence (effectively)

1. Data is obtained through 3GL
and 4GL

2. Database object requested state
is invoked through Business
Information System. (Outside Square)

Business

Information
System

(3GL or 4GL)

3. Data is passed to the database
object information system
Transformed (Rounded Edge Square)

State

4. Database object processes are
passed data and they perform
their actions (Circles to rear of
white squares

Note: transformations accomplish
value changes such as field value
changes, inserts or deletes. Structure

definitions however do not change.

5. Database object data structure
is modified through inserts,
changes, and deletes (connected
collection of white squares)

6. If success, then commit,
otherwise rollback.

Figure 2. Database Object Execution Paradigm

Proprietary Data, All Rights Reserved

m Copyright 1998, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬂ! 8

Databose Objects Brief Introduction

provided to the calling agent, that is, a 3GL or 4GL program. The program then performs its own
logic and provides changed values back to the DBMS so that the database object’s state can
change. In this case, the EMPLOYEE REQUISITION’s employee counselor might be assigned
to a particular human resources staff person for action. Assuming that the change is accepted,
then the database object’s state might be called ASSIGNED EMPLOYEE REQUISITION. Other
state changes might be to transform an EMPLOYEE REQUISITION to one that has
EMPLOYEE candidates.

The states of the database object are those that are identified through database object
analysis. The names of the states are predefined and to each state is assigned all the appropriate
database object information systems. Assigned to the database object information systems are the
database object processes, which in turn act on the database object segments.

While the proceeding example set appears to be hierarchical, a database object can be
modified through many different database object information systems and their contained
database object processes. The critical database object component that keeps the database object
progressing through the correct value state sequence is the fact that a database object cannot be
transformed from one state to another without first being in the prerequisite state. This prevents
for example, a CANDIDATE EMPLOYEE being installed without there first being an
EMPLOYEE REQUISITION.

The reason database objects are critical to client/server, heterogeneous, multiple-DBMS,
world wide environments is depicted in Figure 3 which enumerates all the different types of
change agents that surround the database objects. If the critical semantics of a business is stored
both in its data and its computer programs, AND if there are many different types of language
(C, COBOL, 4GL, MS/Access, Sybase’s Power Builder, etc.), then the probability of having
consistent semantics across this programming language environment is ZERO. Either a business
must decide on one and only one DBMS, one and only one operating system, and one and only
one 4GL programming language, or it must move the semantics of its essential business policies
and procedures inside the “firewall” of the DBMS. But since it ranges from impractical to
impossible to demand that a business operate only one brand of DBMS, these critical database
object must be moved inside the ANSI SQL language. It is only through the ANSI SQL language
that business can ensure that database object semantics are protected.

Proprietary Data, All Rights Reserved

m Copyright 1998, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬂ! 9

Databose Objects Brief Introduction

Client in
MS/Access

Client Access
Through ODBC
and Power Builder

DBMS with
SQL Enhanced
4GL Language

ANSI Standard SQL
DBMS Environment on
CLient or Server

On-line
CLient with
Client-side DBMS
access through
SQL/CLI

Server based
Job in DBMS
with embedded
SQL access

| Data structure segment

Database object
information system
Q Database Object process

Database object state

Figure 3. Myriad of Database Object Invoking Agents

Copyright 1998, Whitemarsh Information Systems Corporation
‘ﬂ ’ Proprietary Data, All Rights Reserved
W/ 10

Databose Objects Brief Introduction

There are five key evaluation criteria by which an object approach can be evaluated:

o Does the approach to objects make business applications easier to analyze and
design. Are the results are more complete, self contained, and intuitively obvious
to understand?

o Is the result of the analysis and design easy to encode in unambiguous syntax
within an ANSI standard language?

° Are the object classes that result from compiling the object class syntax easy to
instantiate and are the object classes able to be interrogated as to their class
definitions?

o Are the object classes and the objects able to easily ported to a large variety of

computers from PCs to mainframes across a wide variety of operating systems?

o Are the object classes and objects able to be easily accessed across networks of a
large variety of computers from PCs to mainframes and across networks of a wide
variety of operating systems?

These evaluation criteria should be assessed against any object class and object instance proposal
that is brought before Riverview.

With respect to database objects, currently the main SQL vendors, e.g., Oracle, Sybase,

Informix and IBM can all implement the database object paradigm stated in this appendix. The
resulting syntax however is not currently ISO/ANSI standard. It is the intention of the ISO and

ANSI database language committees to maximize the standard syntax so that all the above
evaluation criteria can be answered in the affirmative.

5. Database Objects Summary and Benefits
The benefits derived from database objects include:
o Whole containment within SQL/99 DBMS
° Access to both type and instance components
o Complete expression through syntax

° Import and export through ISO/ANSI standard SQL/99 facilities

Proprietary Data, All Rights Reserved

m Copyright 1998, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬂ! 11

Databose Objects Brief Introduction

o Ability to be distributed and consistent operations via all SQL compliant DBMSs
° Independence from presentation-layer and operating-system bindings
Because database objects are wholly contained within SQL/99 DBMS they can be centrally

accessed and manipulated regardless of the end-user environment, that is, batch, on-line,
stand-alone "fat" clients, or traditional client/server.

Proprietary Data, All Rights Reserved

m Copyright 1998, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬂ! 12

