SQL:1999

A Tutorial

Jim Melton

jmelton@us.oracle.com
jim.melton@acm.org

Consulting Member of Technical Staff
Oracle Server Technologies

Today’s Agenda

10,000 meter view of SQL:1999

Drill down into some interesting features
Brief look at other parts of standard
Quick review of process and timetable

© 1999 Oracle Corp.

What 1s SQL:1999?

“*SQL3”: Third generation of SQL standard
Significant enhancement over SQL-92
Principle theme: object orientation, but...
Other new features, too

© 1999 Oracle Corp.

What is SQL:1999?

Multi-part standard — ISO/IEC 9075-n:1999
— Part 1: SQL/Framework
Part 2: SQL/Foundation
Part 3: SQL/CLI
Part 4. SQL/PSM
Part 5: SQL/Bindings

© 1999 Oracle Corp.

Part 1. SQL/Framework

Common definitions & concepts
Structure of multi-part standard
Basic conformance structure & statement

About 75 pages

© 1999 Oracle Corp.

Part 2: SQL/Foundation

The “meat” of the standard

Omits host language bindings, dynamic SQL,
call interface, and similar issues

Traditional SQL and...
Object-oriented SQL
About 1100 pages

© 1999 Oracle Corp.

“Traditional” Features

Data types
Predicates
Semantics
Security

Active Database

© 1999 Oracle Corp.

New Data Types

LARGE OBJECT

— CHARACTER LARGE OBJECT —
CLOB

— BINARY LARGE OBJECT — BLOB
BOOLEAN
ARRAY — dat at ype ARRAY [n]

ROW — ROW (nane type, ..)
Distinct user-defined types

© 1999 Oracle Corp.

New Data Types — Large Object

CHARACTER/ BINARY LARGE OBJECT

WAR AND PEACE CLOB(25M)
CHARACTER SET CYRI LLI C

EMPLOYEE_PHOTO BLOB(50K)

Normal character string literals and hex string
literals apply

SUBSTRI NG, TRI M | | , etc., all apply

© 1999 Oracle Corp.

New Data Types — Large Object

However:

— Comparison only for = and <>

— No GROUP BY or ORDER BY

— No DI STI NCT

— No PRI MARY KEY or FORElI GN KEY

© 1999 Oracle Corp.

New Data Types — BOOLEAN

POLI TI CI ANS LI E BOOLEAN

Boolean value expressions are, in
effect, predicates (and vice versa)

Boolean literals:
TRUE, FALSE, UNKNOAN

COL1 AND (COL2 OR NOT COL3)

© 1999 Oracle Corp.

New Data Types — ARRAY

Varying-length arrays of element
having specified type

COL1 | NTEGER ARRAY [50]
“50” Is the maximum cardinality

Actual cardinality determined by
highest occupied element (even if null)

No arrays of arrays or multi-dimension
arrays

© 1999 Oracle Corp.

New Data Types — ROW

Explicit rows of fields (name/type pairs)
Implicit rows in SQL-86, et seq

CO.1 (nane VARCHAR(50),
dept | NTEGER)

© 1999 Oracle Corp.

New Predicates

SIMILAR — UNIX®-like regular expression
DISTINCT — accounts for null values
Type Predicate...later

© 1999 Oracle Corp.

New Predicates — SIMILAR

UNIX®-like regular expression
More powerful than LI KE

NAME SIM LAR TO
- (SQL-(86] 89]92[99)) | (SQA(1]2]3))"

However, not identical to UNIX syntax

© 1999 Oracle Corp.

New Predicates — DISTINCT

Differs from equality test — accounts for
null values
(10, 'abc', null)
(10, "abc', null) iIsunknown
(10, "abc', nu)

| S ROM
(10, 'abc', nu) Is false

© 1999 Oracle Corp.

New Semantics

View update — functional dependencies
Recursion
Locators — Array, LOB, and UDT

Savepoints — single-nested
subtransactions

© 1999 Oracle Corp.

New Semantics — View Update

Better view update semantics

\ more views can be updated

PRI MARY KEY, FORElI GN KEY, UNI QUE
constraints are used

Application of relational model to SQL ©

© 1999 Oracle Corp.

New Semantics — Recursion

WITH clause & recursive query

expressions
Recursive views

QL AS SELECT...FROM ..WHERE. . .
Q@ AS SELECT...FROM .. \WHERE. . .
SELECT. .. FROM Ql, @ WHERE...

Omit RECURSI VE for query shorthand use

© 1999 Oracle Corp.

New Semantics — Locators

A locator Is a value that uniquely identifies
an instance of a “thing” in the database

— Array

— LOB

— UDT
Allows operations (e.g., SUBSTR) without
moving value to the host program

Only valid on client side!

© 1999 Oracle Corp.

New Semantics — Savepoints

Behaves like single-nested
subtransactions

ROLLBACK TO SAVEPO NT allows
“partial rollback” of transaction

RELEASE SAVEPO NT acts like tentative
commit of part of transaction

© 1999 Oracle Corp.

New Security Features — Roles

Privileges assigned to authorization IDs
Privileges assigned to roles

Roles assigned to authorization IDs
Roles assigned to other roles

mproves manageabillity of databases

© 1999 Oracle Corp.

Active Database — Triggers

Database object tightly bound to a table

Fires when certain event happens on table
Per-statement activation
Per-row activation
Before or after statement or row action
Access to table or row values possible

© 1999 Oracle Corp.

Triggers

CREATE TRIGGER trigl

BEFORE UPDATE OF col 1, col 2

ON thl1l

REFERENCI NG OLD ROW AS or ow
FOR EACH ROW

VWHEN or ow. col 3 > 100
| NSERT | NTO audit VALUES

(CURRENT_USER, 't bl 1",
or ow. col 1, orow. col 2);

© 1999 Oracle Corp.

Object Orientation

Structured user-defined types
Attributes & behavior

Encapsulated: functions & methods
Observers & mutators

Type hierarchies (single inheritance)
User-defined CAST, ordering

Typed tables & reference types

© 1999 Oracle Corp.

User-Defined Types

Three major topics to cover:
— Distinct types

— Structured types

— Reference types

© 1999 Oracle Corp.

Distinct Types

Based on built-in type
CREATE TYPE | Q FI NAL

Cannot mix source type and distinct type

In expressions
DECLARE VARI ABLE X | NTEGER;

DECLARE VARI ABLE Y | Q
... XtY --INVALI D EXPR!
... X+CAST(Y AS I NTEGER) --K

© 1999 Oracle Corp.

User-defined CASTSs (distinct)

No implicit casts to/from structured types

User-defined functions provide capability
Example: cast from | Qtype to | NTECER

In CREATE TYPE:
CAST (SOURCE AS DI STI NCT)
WTH int to Iq
CAST (DI STI NCT AS SCOURCE)
WTH ig to I nt

© 1999 Oracle Corp.

Structured Types

Once called “abstract data types”

May have arbitrarily-complex structure
Analogous to st ruct Iin C language
Stored data b state P attributes

Behavior b semantics P methods &
functions & procedures

Other characteristics, too...
Oracle’s implemented & implementing this

© 1999 Oracle Corp.

Attributes

“Stored data”

Each attribute can be:
— Built-in type, including collection type
— User-defined type

System generates one “get” function
(observer) and one “set” function (mutator)
for each attribute — not overloadable

© 1999 Oracle Corp.

Encapsulation

Hide implementation from users

Allows implementation to change without
affecting applications — provided interface
remains constant

Application accesses everything through
functional interface, even attributes (using
observer and mutator functions)

© 1999 Oracle Corp.

Procedures, Functions, Methods

Generic concept: routine b procedure,

function, method — usually “stored”

Procedure: input & output parameters;
Invoked using “CALL” statement

Function: input parameters only (output
returned as “value” of function); invoked
using functional notation

Method: Special case of function

© 1999 Oracle Corp.

Procedures, Functions, Methods

Procedures
Can be overloaded

Same name, must have different number of
parameters/arguments

Data types of arguments not useable for
overloading

In any schema, not bound to structured type

© 1999 Oracle Corp.

Procedures, Functions, Methods

Functions

Can be overloaded (except get/set functions —
which are really methods, anyway!)

Multiple functions with same name, same number
of parameters

Distinguish by data types of arguments

But...use only compile-time data types (“declared
type”) for overloading —

In any schema, not bound to structured type

© 1999 Oracle Corp.

Procedures, Functions, Methods

T

Methods

Can be overloaded
Tightly bound to single structured type
Must be in same schema as type definition

First argument implicit, distinguished —
argument type Is associated structured type
All arguments but first use declared type for

resolution; first argument uses most-specific
(“run-time”) type

© 1999 Oracle Corp.

Procedures, functions, methods

SQL routines
— Written in SQL
— Parameters of any SQL data type

External routines

— Written in Ada, C, COBOL, Fortran, M,
Pascal, PL/l (and Java...later today!)

— Parameters have impedance mismatch
— Can “call back” into database
Tutorial all on its own!

© 1999 Oracle Corp.

Dot vs functional notation

Dot notation: a. b. ¢
Functional notation: c(b(a))
Two sides of the same coin!

Functions must use functional notation,
and methods must use dot notation

Observer: SELECT EMP. AGE FROM . .
Mutator: SET EMP. AGE = 10

© 1999 Oracle Corp.

Dot vs Functional Notation

Any number of levels deep
X.Y.Z.W. T

Does not reveal physical implementation
(“syntactic sugar”)

X.y.z.W.r(s) U r(w(z(y(x))),s)

© 1999 Oracle Corp.

Encapsulation redux

Consider:
CREATE TYPE rational AS
(numer at or | NTECGER,
denom nat or | NTEGER)

Implicit functions (one pair of two)
CREATE FUNCTI ON nunerator (rational)
RETURNS | NTEGER
CREATE FUNCTI ON nuner at or
(rational, | NTEGER)
RETURNS r at i onal

© 1999 Oracle Corp.

Constructor functions

These are , SO No “new object” Is
created

Instead, a has values assigned

DECLARE VARI ABLE ratvar rational;

SET ratvar = rational (5,7);

| NSERT | NTO tabl el (ratcol)
VALUES (rational (13, 131));

© 1999 Oracle Corp.

Constructor functions

System-generated default constructor
CREATE FUNCTI ON rati onal ()

RETURNS r at 1 onal

Overloadable: Any number of user-defined

constructors:

CREATE FUNCTI ON rati onal (nuner, denom
RETURNS r at i onal

CREATE FUNCTI ON rati onal (denom
RETURNS r at i onal

© 1999 Oracle Corp.

Type Hierarchies

Allows specialization of existing types
“Subtype” & “Supertype”

Person

© 1999 Oracle Corp.

Inheritance

Subtype inherits everything from
supertype

SQL:1999 supports only single
Inheritance (could be extended to multiple
later)
In subtype definition:

— New attributes can be added

— New methods can be added

— Methods can be over-ridden

© 1999 Oracle Corp.

Inheritance

CREATE TYPE enp UNDER person
(salary DECI MAL(6, 2),
dept depart nent)
METHOD give raise(...)...
OVERRI DI NG METHOD

address(...)...;

© 1999 Oracle Corp.

Inheritance

CREATE TYPE depart nent (
dept nane CHARACTER(30) ,
manager enpl oyee, ...)

DECLARE VARI ABLE x depart nment;
SET X. manager =
executive('Otencio',...);

© 1999 Oracle Corp.

Structured Type Syntax

CREATE TYPE nane

| UNDER supertype-nane |

AS (attrib-nane type,...)
[NOT] | NSTANTI ABLE]
NOT | FI NAL

REF ref-options]
net hod- spec, ...]

© 1999 Oracle Corp.

Structured Type Syntax

REF ref-options P

— User-defined:
REF USI NG predefi ned-type

| ref-cast-option]

— Derived:
REF (attrib-name, ...)

— System-generated:
REF | S SYSTEM GENERATED

© 1999 Oracle Corp.

Structured Type Syntax

nmet hod-spec b

— QOriginal method:
[| NSTANCE | STATIC] METHCOD nane

(param nane type,...)
RETURNS t ype

— Over-riding method:
OVERRI DI NG original-method

© 1999 Oracle Corp.

User-defined CASTSs (structured)

Implicit casts to/from structured types

User-defined functions provide capability
Example: cast fromr at | onal to REAL

Separate from CREATE TYPE:
CREATE CAST (rational AS REAL)
WTH rational to real
AS ASSI GNIVENT

Implicit casting with optional AS ASSI GNVENT

© 1999 Oracle Corp.

User-defined CASTSs (structured)

CREATE FUNCTI ON rational to real
(ratval rational)
RETURNS REAL
RETURN
rat val . nuner/ratval . denom

Usage:
... CAST (ratvar AS REAL). ..

© 1999 Oracle Corp.

User-defined Ordering

Required in order to have comparison of
structured types

Ordering forms:
— EQUALS ONLY BY <category>
— ORDER FULL BY <cat egory>

Ordering categories: RELATI VE W TH,
MAP W TH, or STATE

User-defined functions do the job

© 1999 Oracle Corp.

User-defined Ordering

CREATE ORDERI NG FOR r at i onal
CRDER FULL BY MAP W TH
rat _map
CREATE FUNCTI ON rat _map
(paramrational)
RETURNS REAL

RETURN
param nuner/ param denomn

© 1999 Oracle Corp.

User-defined Ordering

...ratvarl > ratvar?2...

IS equivalent to
...ratmap(ratvarl) >

rat map(ratvar?2). ..

© 1999 Oracle Corp.

Typed Tables

Instances of type are rows In a table

Behaves very much like objects

CREATE TABLE rati onal s
OF rati onal
REF IS i1d col ref-option

Creates a base table with one column per
attribute, plus one “self-referencing”
column

© 1999 Oracle Corp.

Typed Tables

r ef - opt 1 on must correspond to the
r ef - opt i ons in the type definition

Can add additional columns if desired

get/set functions operate on
corresponding columns

constructor must operate in context of
| NSERT or UPDATE statement

© 1999 Oracle Corp.

Table Hierarchies

Corresponds to type hierarchies

Supertable must be “of” supertype

Subtable must be “of” subtype

However, allowed to “skip” types

—

Person

Magr

© 1999 Oracle Corp.

Reference Types

Allows one site to reference (identify, point
to) another

Only instances of structured types can be
referenced...

...but only If they are rows In a typed table

© 1999 Oracle Corp.

Reference Types

Reference value of a row/instance

explicitly represented in row:
REF |I'S col -nane ref-option

Reference value never changes while row
exists, never identifies a different row,
unique in catalog (database)

Object ID (OID)? | believe it!

© 1999 Oracle Corp.

Reference Types

REF(type) [SCOPE t abl e- nane]

A given REF type can only reference
Instances of a single, specified structured
type

If specified, the SCOPE clause restricts the

references to the specified table:
REF(rational) SCOPE rationals

© 1999 Oracle Corp.

Using References

Form “path expressions”

CREATE TABLE speci al nunbers
(nane CHARACTER(25) ,
nunber REF(rational)
SCOPE rationals))

SELECT nane

FROM speci al _nunbers

VWHERE nunber -> nuner
AND nunber -> denom

© 1999 Oracle Corp.

Using References

SQL statement’s privileges must be
appropriate for operation on referenced
table and columns (a/k/a attributes)

SELECT(r ati onal s) privilege required for
SELECT nane
FROM speci al _nunbers
VWHERE nunber -> nuner
AND nunber -> denom

© 1999 Oracle Corp.

Relationship to Java™ Object
Model

Several aspects of SQL:1999 object
model were driven by Java object model

— Methods with single distinguished parameter
— Single inheritance

What's not in SQL:19997

— EXxplicit “interface” notion
— Inheritance of interfaces

© 1999 Oracle Corp.

Information Schema

Self-describing “catalog” of database

Describes every object and relationship:
— Tables and views; columns
— UDTs; attributes
— Data types
— Routines

Defined In terms of views based on tables
In Definition Schema

© 1999 Oracle Corp.

Definition Schema

Not required to be implemented:
“Conforming SQL language shall not
reference the Definition Schema”

Base tables model the architecture of SQL

© 1999 Oracle Corp.

Conformance to SQL:1999

Core SQL
— Entry SQL-92
— + Much of Intermediate SQL-92
— + Some of Full SQL-92
— + A few new SQL3 features

Packages & Parts

© 1999 Oracle Corp.

Core SQL:1999

T

Entry SQL-92, plus
CHARACTER VARYING, length > 0
UPPER/LOWER case conversion functions
AS keyword for correlation names: FROM EMP AS E
Qualified asterisk: SELECT E.* FROM EMP AS E
EXCEPT DISTINCT
UNION & EXCEPT on “compatible” data types
Expressions in VALUES clause
Value expressions in ORDER BY

© 1999 Oracle Corp.

Core SQL:1999 (continued)

Holdable cursors
PRIMARY KEY implies NOT NULL

Column names in FOREIGN KEY different order than
iIn PRIMARY KEY

SET TRANSACTION ISOLATION LEVEL
SERIALIZABLE

SET TRANSACTION READ ONLY or READ WRITE
Queries with subqueries may be updatable

Minimal Information Schema, Documentation Schema
More schema definition language statements

© 1999 Oracle Corp.

Core SQL:1999 (continued)

LEFT & RIGHT OUTER JOIN

DATE, TIME, & TIMESTAMP (but not time zones)
Grouped operations

CAST functions

Explicit DEFAULT in VALUES and UPDATE...SET
CASE expression

Value expressions in NULL predicate

Distinct data types

Basic flagging

© 1999 Oracle Corp.

Packages

Enhanced datetime facilities
Enhanced integrity management
OLAP facillities

PSM & CLI

Basic Object Support & Enhanced Object
Support

Active Database
SQL/MM Support

© 1999 Oracle Corp.

Part 4: SQL/PSM

PSM-96 specified:
— functions & procedures
— SQL-server modules
— computational completeness

PSM-99 specifies:
— SQL-server modules
— computational completeness

Analogous to PL/SQL, Transact-SQL, etc.
About 160 pages

© 1999 Oracle Corp.

SQL-server Modules

Optional for conformance to PSM

“Persistent modules”
CREATE MODULE nodnane
| opt 1 ons]
rout | ne-def:

EXECUTE privilege on module P EXECUTE
privilege on each routine

© 1999 Oracle Corp.

Computational Completeness

Compound statement

SQL variable declaration
Assignment statement

CASE statement

F statement

TERATE and LEAVE statements

| OOP, WHILE, REPEAT, and FOR
statements

© 1999 Oracle Corp.

Compound Statement

| | abel:]

BEGN]|[[NOT | ATOM C]

. | ocal -declaration; ...]
ocal -cursor-decl; ...]
. | ocal -handl er-decl; ...]
- SQL-statenment; ...]

END [| abel]

© 1999 Oracle Corp.

Condition Declaration

DECLARE cond- nane CONDI TI ON
| FOR sqgl st at e-val ue |

IF FOR sqgl st at e- val ue specified, then
cond- nane Is an alias for that value

Otherwise, cond- nane Is a “user-defined
condition”

© 1999 Oracle Corp.

Handler Declaration

DECLARE t ype HANDLER
FOR cond- |1 st
SQL- st at enent

t ype b CONTI NUE, EXI T, or UNDO
cond- |1 st b list of conditions:

— sqgl st at e-val ue

— condi t1 on- nane

— SQLEXCEPTI ON, SQLWARNI NG, or
NOT' FOUND

© 1999 Oracle Corp.

SQL Variable Declaration

DECLARE var - nane-| 1 st
dat at ype [default-val ue]

Any data type, including structured types,

REF types, ROW types, collection types,
etc.

Default value assigned when variable

“site” Is created (e.d., on entry to routine In
which declared)

© 1999 Oracle Corp.

Assignment Statement

SET target = source
t ar get can be:

— SQL variable, SQL parameter, host parameter
— row site-nane. fi el d- nane

— udt - si de- nane. net hod- nane

sour ce can be:
— Value expression of appropriate type
— Contextually-typed value: NULL, EMPTY

© 1999 Oracle Corp.

Assignment Statement

SET ratvar. nuner = 10

IS equivalent to
SET ratvar = ratvar. nuner (10)

IS equivalent (in some sense!) to
rat var. nuner (ratvar, 10)

© 1999 Oracle Corp.

CASE Statement

Simple CASE statement:
CASE val ue- expressi on-0

VWHEN val ue- expression-1
THEN SQ.-statenent-list-1

VWHEN val ue- expressi on-2
THEN SQL-statenent-|1st-2

ELSE SQL-statenent-|1st-n

© 1999 Oracle Corp.

CASE Statement

Searched CASE statement:
CASE

VWHEN search-condition-1
THEN SQ.-statenent-list-1

VWHEN sear ch-condi tion-2
THEN SQL-statenent-|1st-2

ELSE SQL-statenent-|1st-n

© 1999 Oracle Corp.

|- Statement

| F search-condition-1
THEN st at ement - | | st
| ELSElI F search-condition-2
THEN statenent-11st |
| ELSE statenent-Ilist]
END | F

© 1999 Oracle Corp.

LOOP Statement

| | abel :]

LOCP
SQL-statenent-|1 st

END LOOP [| abel]

Loops “forever” or...

...or until forced termination:
— LEAVE

— | TERATE

© 1999 Oracle Corp.

L EAVE and ITERATE Statements

LEAVE | abel

Immediately branches to the statement
after the statement ending the containing
statement (not just looping statements!)

| TERATE | abel

Immediately branches to the statement
ending the containing looping statement

© 1999 Oracle Corp.

WHILE and REPEAT Statements

| | abel :]

VWH LE search-conditi on DO
SQ.-statenment-| 1 st

END VH LE [| abel]

[| abel:]
REPEAT SQL- st atenent-|1 st

UNTI L search-conditi on
END REPEAT [| abel]

© 1999 Oracle Corp.

FOR Statement

[| abel:]

FOR for-| oop-vari abl e-nanme AS
| cursor-nane [sensitivVvity]
CURSOR FOR |
cursor-specification
DO SQL- st atenent -1 1 st

END FOR [| abel]

© 1999 Oracle Corp.

Part 5: SQL/BIndings

Embedded SQL
Dynamic SQL
“Direct Invocation”
About 250 pages

© 1999 Oracle Corp.

Embedded SQL

SQL embedded In: Little new since
Ada SQL-92
C
COBOL
Fortran
MUMPS
Pascal
PL/I

© 1999 Oracle Corp.

Embedded SQL

Embedded SQL DECLARE Sections

— Declares host variables for use in SQL
statements

— Generates implicit conversions to minimize
the impedance mismatch

EXEC SQL..;
EXEC SQL..<new | ne>

&SQL(..)

© 1999 Oracle Corp.

Dynamic SQL

Depends on “SQL descriptor areas”

Most products (including Oracle) use
SQLDA instead

PREPARE statements for repeated
execution

EXECUTE prepared statements
EXECUTE | MVEDI ATE If only one use

Little new since SQL-92

© 1999 Oracle Corp.

Direct Invocation

“Interactive SQL”

Most of the same statements, but...
..."multi-row select statement” added
Nothing new since SQL-92

© 1999 Oracle Corp.

Part 3: SQL/CL]

Call-Level Interface
Best-known implementation: ODBC
CLI-95: Revision In progress

Align with SQL:1999 features and ODBC
3.0 features

About 400 pages

© 1999 Oracle Corp.

SQL/CLI

Analogous to dynamic SQL, but...

Better support for shrink-wrapped applications
— No precompilation or even recompilation
— Binary code works with multiple DBMSs

Alternative to protocol-based interoperability
such as RDA — doesn’t solve “network” problem

Uses handles to manage resources

CLI descriptor areas analogous to dynamic
SQL’s system descriptor areas

© 1999 Oracle Corp.

SQL/CLI

Multi-row fetch
Multiple & parallel result set processing

General SQL:1999 alignment, including support
for new data types

— unstructured row types
— structured types
— locators

© 1999 Oracle Corp.

SQL/CLI

Environment functions
— AllocHandle & AllocEnv
— GetEnvAttr & SetEnvAttr
— FreeHandle & FreeEnv

Everything depends on the environment handle

© 1999 Oracle Corp.

SQL/CLI

Connection functions
AllocHandle & AllocConnect
GetConnectAttr & SetConnectAttr
Connect & Disconnect
FreeHandle & FreeConnect

Implicit set connection

© 1999 Oracle Corp.

SQL/CLI

Statement functions
— AllocHandle & AllocStmt
— GetStmtAttr & SetStmtAttr
— FreeHandle & FreeStmt

Statement execution functions

— Prepare & Execute & ExecDirect
— StartTran & EndTran

© 1999 Oracle Corp.

SQL/CLI

Descriptor functions (IPD, IRD; APD, ARD)
AllocHandle & FreeHandle
GetDescField & SetDescField
GetDescRec & SetDescRec

DescribeCol & ColAttribute & NumResultCols
CopyDesc

BindCol & BindParameter
GetData & GetParamData & PutData

© 1999 Oracle Corp.

SQL/CLI

Cursor functions

GetCursorName & SetCursorName
Fetch & FetchScroll

CloseCursor
MoreResults & NextResult

© 1999 Oracle Corp.

SQL/CLI

Diagnostic functions

— GetDiagField & GetDiagRec
— Error

— RowCount

General functions

— DataSources
— GetFunctions & Getinfo & GetFeaturelnfo

— Cancel
— GetSessioninfo

© 1999 Oracle Corp.

SQL/CLI

Locator functions
— GetLength & GetPosition & GetSubstring
Metadata functions
Tables & TablePrivileges

Columns & ColumnPrivileges
SpecialColumns

PrimaryKeys & ForeignKeys
GetTypelnfo

© 1999 Oracle Corp.

SQL/CLI Example

£y

void main () {
SQLHENV henv;
SQLHDBC hdbc;
SQLHSTMT hst nt ;
SQLRETURN rc,
SQLINTEGER runs, runs_ind, title iInd;
SQLCHAR title[101];

/1l Allocate environnent handl e
rc = SQLAI | ocHandl e (SQ._HANDLE ENV,
SQL NULL HANDLE, &henv);
I1f (rc !'= SQL_SUCCESS) {
report _and exit (rc,
"Al'l ocate Environnent Failed"); }

© 1999 Oracle Corp.

SQL/CLI Example (continued)

£y

/] Create connection
rc = SQLAI | ocHandl e(SQL_HANDLE DBC, henv, &hdbc);
1 f (rc !'= SQ._SUCCESS) {

report _and exit (rc,

"Al'l ocate DBC handle Failed"); }

rc = SQLConnect (hdbc,

(SQLCHAR *) "Mbovies", SQ._NTS,

(SQLCHAR *) "dba", SQ._NTS,

(SQLCHAR *) "sqgl", SQ. _NTS);
1 f (rc !'= SQ._SUCCESS) {

report _and exit (rc,

"All ocate Environnent Failed"); }

© 1999 Oracle Corp.

SQL/CLI Example (continued)

)

rc = SQLAI | ocHandl e(SQL._ HANDLE STMI, hdbc, &hstnt);
/| execute the select statenent
rc = SQLExecDirect (hstnt,
(SQLCHAR *) "SELECT title, runs "
"FROM novies "
"WHERE vyear I ntroduced = '1980"'",
SQL_NTS);
I1f (rc !'= SQ. _SUCCESS) {
report _and exit (rc,
"Stat enent Execution Failed"); }
[/ bind the result colums to vari abl es
SQ.Bi ndCol (hstnt, 1, SQ. C CHAR, title, 100,
&itle_ ind);
SQLBI ndCol (hstnt, 2, SQ. _C ULONG &runs, 0,
& uns_i nd);

© 1999 Oracle Corp.

SQL/CLI Example (continued)

£y

/] get data from dat abase
while ((rc = SQLFetch (hstnt)) !'= SQ. _NO DATA) {
I1f (rc !'= SQ. _SUCCESS) {
report _and exit (rc, "Fetch Failed"); }
cout << "\"" << title << "\'"";
1 f (runs_ind >= 0)
cout << ", " << runs << " mnutes";
cout << endl; }
[/ C eanup
SQLFreeHandl e(SQL_HANDLE _STMI, hstnt);
SQLD sconnect (hdbc);

}

© 1999 Oracle Corp.

New Parts of the SQL Standard

Part 7: SQL/Temporal

© 1999 Oracle Corp.

Part 7: SQL/Temporal

Work temporarily suspended for SQL3
focusing

Two strongly opposed philosophies
Work expected to continue late 1999

Distinguish from time-series data

— Most vendors support time-series
— Few vendors have market need for temporal

© 1999 Oracle Corp.

New Parts of the SQL Standard

Part 9: SOL/MED

© 1999 Oracle Corp.

Part 9: SQL/MED

Management of External Data

Seen as way to give SQL access to non-
SQL data (e.g., flat files, even sensors)

Foreign tables, abstract LOBs(?): SQL API
DatalLink: SQL control, native API
Federated database?

(Non-final) Committee Draft late 1998

© 1999 Oracle Corp.

Foreign Servers

SQL-aware or non-SQL-aware

Mix-and-match: multiple foreign servers can be
Involved In single statement execution, along
with local SQL-server

Accessed via foreign-data wrapper
Handle-based API (“light-weight CLI”)

Create a market for 3rd-party “foreign-data
wrappers” to control various foreign servers

© 1999 Oracle Corp.

Foreign Tables

SQL API for non-SQL data, user-defined
functions for semantics

Foreign-data wrapper decides how to
support table semantics for foreign tables

— Possibly limited to “SELECT * FROM T”
— Possibly unlimited SQL statement capabilities

© 1999 Oracle Corp.

Foreign servers, tables, etc.

REA
REA
REA

E RE
E RE
E RE

REAT

'E USER

GN DATA WRAPPER
GN SERVER

GN TABLE
MAPPING

| TER and DROP for each CREATE

© 1999 Oracle Corp.

Federated Database

Still under consideration and discussion
Foreign tables, foreign columns, etc.
“Import” metadata or describe it

Current products:
— Oracle’s Transparent Gateway
— IBM'’s Data Joiner
— Sybase’s Omni

© 1999 Oracle Corp.

Datalink

Native API for non-SQL data, requires
*hooks” to keep data source under
database control (even transactional)

For example, filesystem will deny DELETE
of a file If a Datalink has attached it to a
cell in a database

© 1999 Oracle Corp.

New Parts of the SQL Standard

°* Part 10: SQL/OLB

© 1999 Oracle Corp.

Part 10: SQL/OLB

Object Language Bindings
SQLJ Part 0
SQL embedded in Java

ANSI pu

plication of X3.135.10:1998

(orientec

towards SQL-92)

ISO FCD starting late 1998 (aimed at
JDBC 2.0 and SQL:1999)

© 1999 Oracle Corp.

Part 10: SQL/OLB

Based on JDBC paradigm/model; can share
context with JDBC for mix-and-match

Instead of cursor, uses strongly-typed iterators
Provides “default” runtime using JDBC, or...

...Implementation-defined “customizations” for
better alignment with products

© 1999 Oracle Corp.

Jo]W/e]W\-

Amendment 1 to SQL:1999

Driven by Oracle and IBM, with participation
from Informix and others

Possible standardization in 2001

© 1999 Oracle Corp.

Part 11: SQL/Schemata

Part 5: SQL/Bindings now merged with Part 2:
SQL/Foundation

Information and Definition Schema definitions
moved to new Part 11: SQL/Schemata

No functionality change, no conformance
Implications...merely an “editorial detail”

© 1999 Oracle Corp.

Implementations

Most vendors say “about 2 or 3 product
cycles to conform to Core SQL:1999”
Suggests late 2001 for conforming products
A few vendors claim they will conform sooner

Vendors will choose packages based on their
perception of marketplace needs

Vendors will implement selected other
features as needed

© 1999 Oracle Corp.

Process

T

ANSI — American National Standards
INSt.

NIST — National Inst. Of Stds &
Technology

ISO — Int'l Organization for
Standardization

X/Open (a/k/a The Open Group)
SQL Access Group
SQLJ (non)consortium — more later

© 1999 Oracle Corp.

ISO Organization

&

© 1999 Oracle Corp.

SQL:1999 — Did It Take Too
L.ong?

) A%
)

Yes

© 1999 Oracle Corp.

SQL:1999 — Did It Take Too
L.ong?

But why?
Tried to do too much
Extreme controversy over object model

Distracted by parallel processing of CLI, PSM,
and other work

Reduced resources, increased technology

© 1999 Oracle Corp.

SQL:1999 — Did It Take Too
Long?

Avoiding that error in future
— Smaller increments

— Plan for 3-year cycle
(“SQL:200n", not “SQL4")

— Depend more on
“Incremental” parts

© 1999 Oracle Corp.

Related Standards Efforts

SQL/MM
RDA

RMDM
Export/Import
SQLJ

— Part 1: SQL Routines Using the Java™
Programming Language (ANSI NCITS 331.1)

— Part 2: SQL Types Using the Java™
Programming Language

© 1999 Oracle Corp.

SQOL/MM — ISO/IEC 13249-n

)

Multi-part standard
— Part 1. Framework
Part 2: Full-text
Part 3: Spatial
Part 4. General Purpose Facilities
Part 5: Still Image

Class libraries of SQL:1999 structured types

© 1999 Oracle Corp.

RDA — ISO/IEC 9579

First version based on OSI...no interest
(generic and specializations)

Second version “tacked on” TCP/IP support

Third version is SQL-only, transport-
iIndependent (but optimized for Internet)

Little vendor interest...mostly Canadian and UK
government interest

New work on security, SQL/MED support,
distributed transactions

© 1999 Oracle Corp.

RMDM — ISO/IEC 10032

Reference Model for Data Management

Provides a context for discussing Issues
surrounding data management, including
metadata, etc.

Widely ignored ©

© 1999 Oracle Corp.

Export/Import — ISO/IEC
13238-n

Multi-part standard
— Framework

— SQL Specialization
— IRDS Specialization
Generally ignored

Vendors sometimes actually hostile ©

© 1999 Oracle Corp.

SQLJ— ANSI NCITS 331.n

Currently not part of SQL standard, may change
later (if submitted to and adopted by ISO)

Non-consortium, all major database vendors and
some other participants

Develop specs, leave publication to others
NCITS 331.1 = SQLJ Part 1
SQLJ Part 2 expected to be NCITS 331.2

© 1999 Oracle Corp.

Summary

10,000 meter view of SQL:1999

Drilled down for some interesting features
Brief look at other parts of standard

Quick review of process and timetable

© 1999 Oracle Corp.

Questions?

© 1999 Oracle Corp.

