
Page 1 of 51

File: DM32.2-2014-00024R1_JSON-SQL-Proposal-1

Printed: Thursday, 06 March, 2014 at 13:44

Number of pages: 51

WG3:PEK-___

DM32.2-2014-00024R1
2014-03-06 — 06 March, 2014

Authoritative Version: Adobe Acrobat Portable Document Format (PDF)

ISO
International Organization for

Standardization

ANSI
American National Standards Institute

 INCITS DM32.2
Database

ISO/IEC JTC 1/SC 32
Data Management and Interchange

WG 3
Database Languages

Project: ANSI: 1234D — ISO: 1.32.03.05

Title: SQL/JSON, Part 1

Status: Change proposal

Author: Jim Melton, Fred Zemke, Beda Hammerschmidt, Krishna Kulkarni, Zhen Hua Liu, Jan-Eike
Michels, Doug McMahon, Fatma Özcan, Hamid Pirahesh

Abstract: JSON provides a data model that is becoming increasingly important in the data
management world, particularly in Web- and Cloud-based communities. NoSQL “database”
systems are beginning to gain market attention in those communities and several of them use
JSON as their guiding data model. It is important that SQL respond to the requirement to
support JSON data by providing facilities for storage, retrieval, querying, and manipulation
of JSON data in the context of SQL.

References:

[ACIDtxns] Distributed Transaction Processing: Concepts and Techniques, Gray, Jim, and Reuter,
Andreas; Morgan Kaufmann, 1993; ISBN 1-55860-190-2

[Avro] http://avro.apache.org/

[BSON] http://bsonspec.org/

[ECMAscript] ECMAScript Language Specification, http://www.ecma-
international.org/publications/files/ecma-st/ECMA-262.pdf

http://avro.apache.org/
http://bsonspec.org/
http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 2 of 51

[FoundCD] INCITS DM32.2-2012-153 = WG3:USN-003, (Committee Draft) Foundation for SQL
(SQL/Foundation), 23 October 2012

[Hadoop] http://hadoop.apache.org/

[HDFS] Hadoop Distributed File System, http://wiki.apache.org/hadoop/ProjectDescription

[JDIF] The JSON Data Interchange Format, http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-404.pdf

[JAQL] http://code.google.com/p/jaql/wiki/JaqlOverview

[JPath] http://projects.plural.cc/jsonij/wiki/JPath

[JSONintro] Introducing JSON; http://www.json.org/

[JSONiq] http://www.jsoniq.org

[JSONPath] http://goessner.net/articles/JsonPath/

[JSONschema] http://json-schema.org

[MEDCD] INCITS DM32.2-2012-156 = WG3:USN-006, (Committee Draft) Management of External
Data (SQL/MED), 23 October 2012

[Mongo] http://www.mongodb.org/

[NoSQLDB] http://nosql-database.org/

[NoSQLdef] http://en.wikipedia.org/wiki/NoSQL

[RDFmodel] Resource Description Framework (RDF) Model and Syntax Specification, World Wide Web
Consortium, http://www.w3.org/TR/rdf-syntax/

[RFC1951] RFC 1951, DEFLATE Compressed Data Format Specification, P. Deutsch, May 1996;
http://tools.ietf.org/html/rfc1951

[RFC4627] RFC 4627, The application/json Media Type for JavaScript Object Notation (JSON), D.
Crockford, July 2006; http://tools.ietf.org/html/rfc4627

[SQLJSON2] DM32.2-2014-00025 = WG3:PEK=___, SQL/JSON, Part 2

[Unicode] The Unicode Standard, http://unicode.org

[XDM] (Recommendation) XQuery 1.0 and XPath 2.0 Data Model.
http://www.w3.org/TR/xpath-datamodel/

[XMLcast] INCITS H2-2004-020r1 = WG3-SIA-041, XMLCast, 4 April 2004 (Zemke, et al)

[XMLCD] INCITS DM32.2-2012-161 = WG3:USN-010, (Committee Draft) XML-Related
Specifications (SQL/XML), 23 October 2012

[XMLquery] INCITS H2-2004-021r1 = WG3-SIA-042, XMLQuery, 4 April 2004 (Zemke, et al)

[XMLtable] INCITS H2-2004-039r1 = WG3-SIA-051, XMLTable, 10 May 2004 (Zemke, et al)

[XPath] (Candidate Recommendation) XML Path Language (XPath) Version 3.0.
http://www.w3.org/TR/2012/CR-xpath-30-201212xx/

[XQuery] (Candidate Recommendation) XML Query Language (XQuery) Version 3.0.
http://www.w3.org/TR/2012/CR-xquery-30-201212xx/

http://hadoop.apache.org/
http://wiki.apache.org/hadoop/ProjectDescription
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://code.google.com/p/jaql/wiki/JaqlOverview
http://projects.plural.cc/jsonij/wiki/JPath
http://www.json.org/
http://www.jsoniq.org/
http://goessner.net/articles/JsonPath/
http://json-schema.org/
http://www.mongodb.org/
http://nosql-database.org/
http://en.wikipedia.org/wiki/NoSQL
http://www.w3.org/TR/rdf-syntax/
http://tools.ietf.org/html/rfc1951
http://tools.ietf.org/html/rfc4627
http://unicode.org/
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/2012/CR-xpath-30-201212xx/
http://www.w3.org/TR/2012/CR-xquery-30-201212xx/

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 3 of 51

[XSD] (Recommendation) XML Schema Part 1: Structures.
http://www.w3.org/TR/xmlschema-1/

and

(Recommendation) XML Schema Part 2: Datatypes.
http://www.w3.org/TR/xmlschema-2/

[OtherRefs] (Other references will be supplied as required.)

Note to reviewers: In this paper, I occasionally use boxed paragraphs like this one to signify notes to reviewers.
These notes are not to be applied to the referenced documents.

Note to reviewers: In this paper, I use the following conventions:

Red bold face text Indicates new text to be inserted into existing text
Blue strikeout text Indicates text to be deleted from existing text
Plain text Indicates existing text that is to be retained unchanged or new text that is part

of a new Subclause
Green boldface text Text in a revision of the present paper that differs from the previous version
[Note to proposal reader: …] Indicates notes to proposal readers that are not to be placed into the document

being modified
[Note to Editor: …] Indicates notes to the editor of the document being modified; these notes are

not to be placed into the document being modified

Boxed text Indicates “Editing/Merger instructions” that are placed into incremental parts

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 4 of 51

1. Discussion
1.1 Introduction

1.1.1 Ballot Comment Addressed

The present proposal, if accepted, will partially resolve the following ballot comment:

257. P02-USA-950 1-Major
Technical

JavaScript Object Notation (popularly known as JSON) [RFC4627] is becoming
increasingly important in Web- and Cloud-based communities for exchanging
data between Web-based applications. This has in turn led to the demands for
storage, retrieval, querying, and manipulation of JSON data in the context of
SQL It is important that SQL respond to these requirements by providing
appropriate extensions for handling JSON data.

Solution
None provided with comment.

1.1.2 What is JSON?

JSON [RFC4627, JSONintro] (an acronym for “JavaScript Object Notation”) is both a notation (that is, a
syntax) for representing data and a[n implied] data model. JSON is not an object-oriented data model in the
classic sense; that is, it does not define sets of classes and methods, type inheritance, or data abstraction.
Instead, JSON “objects” are simple data structures, including arrays. [RFC4627] says that JSON is a
serialization of structured data. Its initial intended use was as a data transfer syntax. (NOTE: The present
proposal references [RFC4627] normatively and places other relevant references into the Bibliography.)

[JDIF] is a recently-published (late 2013) ECMA standard that specifies the syntax of JSON very concisely.
There appear to be very minor differences between the syntax defined in [JDIF] and that in [RFC4627], but they
appear to be inadvertent and there are plans to eliminate them. It is not known whether ECMA1 intends to
submit [JDIF] for fast-track processing as an ISO/IEC standard.

The first-class objects in the JSON data model are objects and arrays. A JSON object is zero or more name-
value pairs and is enclosed in curly braces — {…}. A JSON array is an ordered sequence of zero or more
values and is enclosed in square brackets — […].

Here is an example of a JSON object:
{ "Name" : "Isaac Newton",
 "Weight" : 80,
 "Famous" : true,
 "Phone" : null }

The name-value pairs are separated by commas, and the names are separated from the values by colons. The
names are always strings and are enclosed in (double) quotation marks. The values may be strings, numbers,
Booleans (represented by the JSON literals true and false), and JSON nulls (represented by the JSON
literal null).

1 The name “ECMA” was once an acronym for “European Computer Manufacturer’s Association”, but is no longer an acronym at all.

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 5 of 51

Here is an example of a JSON array:
["Robert J. Oppenheimer", 98, false, "Beechwood 45789"]

JSON arrays and objects are fully nestable. That is, any JSON value is permitted to be an “atomic” value (a
string, number, or literal), a JSON object, or a JSON array.

JSON is sometimes used to represent associative arrays — arrays whose elements are addressed by content, not
by position. An associative array can be represented in JSON as a JSON object whose members are name-value
pairs; the name is used as the “index” into the “array” — that is, to locate the appropriate member in the object
— and the value is used as the content of the appropriate member. Here is such an associative array:
{ "Isaac Newton" : "apple harvester" ,
 "Robert J. Oppenheimer": "security risk" ,
 "Albert Einstein" : "patent clerk" ,
 "Stephen Hawking" : "inspiration" }

An extremely important part of JSON’s design is that it is inherently schema-less. Any JSON object can be
modified by adding new name-value pairs, even with names that were never considered when the object was
initially created…or designed. Similarly, any JSON array can be modified by changing the number of values in
the array. (Note that there is no inherent reason why a schema language could not be defined for JSON; the
JSON culture and the principal applications that use JSON do not provide impetus for such a schema language.)

The reason, its proponents claim, that JSON is (and should remain) schemaless, is that schemas tend to impose
restrictions on the structure of the data that would limit the ways in which JSON is principally used. (The
authors of the present paper are skeptical about such claims, in part because the same was also said about XML
and proven false in that domain. Similar arguments are made about the atomic type system of JSON —
numbers, strings, Booleans, and null. Note in particular that JSON does not recognize any atomic type
associated with date and time data. We believe that JSON is insufficiently mature for its proponents and users to
recognize the great value of data design and strong typing.) We discuss this subject a bit more in section 1.1.4.1
below.

JSON is, in many ways, isomorphic with XML. That is, JSON provides a syntax for representing semi-
structured data, just as does XML, and defines a semantic for that data, just as does XML. Of course, XML
elements can have attributes, for which JSON has no corresponding concept, and there are important detailed
differences (such as the exact set of characters usable in each language)2. But JSON is a convenient notation for
representation of semi-structured data, as is XML. JSON, it is true, is a bit more compact than XML, as it does
not provide “closing tags”. The reader of the present proposal must not presume that JSON can, or should,
replace XML in any sense.

1.1.3 Representations of JSON data

Before delving much deeper into the primary topic of the present proposal, readers should understand that
JSON data can be represented in several widely-acknowledged and -used forms. The most obvious and most
easily recognizable is its “character string” representation, in which JSON data is represented in Unicode
characters as plain text. More specifically, explicit characters such as the left square brace, comma, right curly
brace, quotation mark, and letters and digits are all used in their native Unicode representation (UTF-8, UTF-16,
UTF-32).

2 In addition, XML allows for elements with mixed content (that is, elements whose children are a mixture of ordinary text and other
elements); JSON provides no similar capability.

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 6 of 51

However, for a variety of reasons, JSON data is sometimes stored and exchanged in one of several binary
representations. For example, a binary representation of JSON data may be significantly smaller (fewer octets)
than the character representation of the same data, so a reduction in network bandwidth and or storage media
can be achieved by transferring or storing that data in a binary representation.

Readers should note that there are no published standards, either from traditional de jure standards
organizations nor from consortia or other de facto standards groups, for any binary representations of JSON.
The two described in the current paper are frequently used and may be representative of binary JSON
representations generally. However, they are not proposed in the facilities described in the current paper. The
following discussion is intended only to illustrate the use of and issues with binary serializations of JSON. No
proposal is being made to specify Avro, BSON, or any other binary representation of JSON for incorporation
into the SQL standard. It will be implementation-defined whether or not such representations are supported in
any particular implementation.

1.1.3.1 Avro [Avro]

Avro3 is described as a “data serialization system”. As such, its use is not limited to a binary representation or
as a compression representation of JSON data. However, a number of JSON environments have chosen Avro as
their preferred binary, compressed representation. Avro was designed in the scope of Hadoop [Hadoop].

Avro has a number of important characteristics that affect its choice as a JSON representation.

• Data is represented in a variable-length, “shortest” form; e.g., the integer 2 and the integer 2000 occupy
a different number of octets in an Avro string.

• Numbers are represented using a rather arcane “zig-zag” encoding (this notation “moves” the sign bit
from its normal position as the first bit to the last bit; doing so permits removing leading zeros from the
numbers, thus making their representation occupy fewer octets).

• There is not a one-to-one mapping between JSON atomic types and Avro atomic types.

• Avro data is always associated with an Avro schema. An Avro schema describes the physical structure
of the corresponding Avro data and is needed merely to “unpack” Avro data because of the variable-
length fields and the various encoding rules. An Avro schema may accompany each individual Avro
data string, or it may be specified separately and applied to all Avro data strings in, say, an Avro data
file. Avro schemas tell almost nothing about the data other than how it is packed into a data string. Avro
schemas are described in more detail in section 1.1.4.1 below.

• Avro strings can be encoded using JSON notation (which sort of contradicts its use as a different
representation for JSON data) or using a binary notation. Either notation can be compressed; the
preferred compression “codec4” is deflate [RFC1951]. (If the encoded string is not compressed, the
Avro specification says that it is “encoded using the null codec”.)

Readers should recognize that Avro is not a different kind of data at all. It is, instead, merely another way of
representing the same data that the JSON character string format represents. (It should be noted that not all
possible Avro strings can be treated as JSON data; similarly, not every character string is a valid bit of JSON

3 The term “Avro” does not appear to be an acronym, nor to mean anything in particular.
4 The term “codec” is an abbreviation of “encoder/decoder”

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 7 of 51

data.) In the present proposal, we refer to Avro as one possible serialization of JSON data; the character string
format is another serialization of the same data.

1.1.3.2 BSON [BSON]

BSON5 (some people seem to pronounce this term as though it were spelled “bison”, others as “beeson”) is
another data serialization system. [BSON] says that it is “a binary format in which zero or more key/value pairs
are stored as a single entity”, called a “document.” BSON is used by — and apparently was created for —
MongoDB [Mongo].

BSON strings are no less difficult for human beings to read than Avro strings are, but the design of BSON is
significantly different than Avro’s. A BSON document is roughly a sequence of elements, each of which is
introduced by a single-octet code (for example, the hexadecimal value ‘01’ identifies the element as a double
precision floating point value, which is always eight octets in length, and ‘0D’ identifies the element as a string
containing JavaScript code), followed by an optional element name, followed by the (mandatory) element
value.

It appears that element codes do not correspond to valid Unicode characters other than the so-called “control
characters” and similar restricted codepoints. This makes it possible to scan through a BSON string to find the
starting point of each element. As with Avro, there is no ability to “index” directly into a BSON string to locate
the start of the third or tenth element. Element names, for example, are defined to be “C strings”, meaning
strings terminated with an octet with the value zero. String values are defined to be a 4-octet value that specifies
the number of octets (not characters!) in the string, followed by characters occupying the specified number of
octets, followed by an octet with the value zero (apparently using both an explicit string length and a “null-
terminated” value).

BSON, like Avro, is not a different kind of data, but merely provides yet another way of representing JSON
data. (Also like Avro, not all BSON strings represent valid JSON data.)

1.1.3.3 Other JSON serializations

There are almost certainly other “binary” serializations of JSON defined by parties somewhere in the world, but
we do not believe that any of them have received the acceptance that Avro and BSON have. Until one or more
formats have wide adoption and a standardized specification, it is inappropriate to incorporate any of these into
the SQL standard. Implementations, of course, are free to support any such formats as implementation
extensions to the standard.

1.1.4 Schemas

1.1.4.1 JSON schemata

The present proposal is independent of any notion of schemata for JSON, primarily because the JSON
community generally rejects the need for such descriptions of “valid data”. JSON text is, of course, sufficiently
“self-describing” that data encoded in JSON is easily parsed and can often be used in application components
that have no specific knowledge of the data contained therein. This last fact explains why JSON is so successful
in the broader data management community, in spite of the lack of a standard way to document its structure.
The authors of the present proposal believe that there will eventually be a demand for standardized ways of

5 We have heard that the name “BSON” is intended to evoke the notion of “Binary JSON”.

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 8 of 51

describing JSON data structure for particular applications — that is, a schema language — but that time has not
arrived. This presents a key problem that will confront application developers.

[RFC4627] does not provide any mechanism by which JSON values can be tested for validity other than strict
syntactic validity, and neither does [JSONintro] or [ECMAscript]. By contrast, [XQuery] permits the
specification of an XML Schema against which XML values can be checked for structural (and, to an extent,
semantic) validity.

The authors of the present proposal have become aware of at least one effort to define a schema for JSON
[JSONschema] that would describe the structure of JSON data to be considered “valid” for some given
application. However, the most recent available draft of the specification is dated more than two years ago and
we have been unable to ascertain any significant amount of interest in the JSON community.

While a schema language for JSON data could be useful in some circumstances (just as an XML Schema
language is valuable in some circumstances), it does not appear that such a language is widely used, and it is
beyond the scope of the present proposal to create such a language.

1.1.4.2 Validity

In the XML world, the word “valid” is used to describe the state in which an XML document satisfies the
criteria given by an XML Schema (or Document Type Definition, DTD). A (much) less rigorous requirement
on XML documents is identified by the phrase “well-formed”. Well-formedness in XML is a syntactic
condition in which characters that are invalid in XML (e.g., “&” and “<”) are not present, elements are correctly
nested (e.g., no element “overlap” exists), attribute values do not contain instances of the specific quotation
marks (single or double) that are used to enclose the attribute values, etc.

There is no term in common use to describe such syntactic requirements on JSON data instances. The present
proposal uses the word “valid” to describe data instances that satisfy all JSON syntactic requirements
(corresponding to “well-formed” in the XML world). If future proposals define JSON schema facilities, the use
of “valid” would likely be extended to incorporate structural/semantic validity in addition to syntactic validity.

In order to make the concept of validity useful, the present proposal specifies a new SQL predicate, IS JSON, to
test the (syntactic) validity of JSON data instances. Additional syntax (analogous to that defined in Subclause
11.6 of [XMLCD]) would be specified to test schema-style validity should that be later proposed.

1.1.4.3 Avro schemata

Because Avro is a representation in which each “field” (a bit of JSON data) occupies no more octets than is
required, using the particular encoding method for data of each type, it is not possible to simply index to a
specific field in each Avro string. In fact, because of the way that Avro encodes its fields, it is not possible to
scan an Avro string and identify the start of the second, third, or twenty fifth field in that string.

Consequently, Avro specifies that each Avro value be described by an Avro schema. Avro schemata are
expressed in the character representation of JSON. The schema that represents an entire Avro string is
composed of “smaller” schemata that represent each field in the Avro string. The schema describes each field
by its name, data type, and (if not already unambiguous) length. Thus, an application wishing to access the
fields in an Avro string must first parse the schema of that string, then use that information to locate the desired
fields in the string and to “decode” the field contents into a value of a JSON data type.

Because each JSON text can be of a different size or contain different components, one might wish to provide a
different schema for each JSON text…a schema that uniquely describes that text and not (necessarily) any other
JSON text. This approach necessarily creates an increase in size of the JSON texts associated with those

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 9 of 51

schemata. For small JSON texts and/or JSON texts with a great many fields, the overhead (in octets) of
providing a schema for each such text in the Avro representation becomes unacceptable very quickly. For very
large JSON texts, particularly with small numbers of (very large) fields, the presence of a per-text schema may
be perfectly reasonable.

Avro does not require that a schema be provided along with each JSON text, individually. It does permit that
approach, but it also allows for a single schema to describe all of the Avro-represented JSON texts in a
“container file.” As long as all of the texts in that container file are sufficiently alike, a single schema is
adequate — and, of course, produces much-reduced overhead. In the context of the present proposal, an entire
column containing the Avro representation of JSON texts acts as the “container file.” The Avro schema
associated with such a column is part of the metadata describing the column.

In the preceding paragraph, the phrase “sufficiently alike” was used. By that phrase, we mean that each
object/array in the rows of a column contain the same number of members/elements, each having the same
name (for objects) and data type6. But, we also mean that the lengths (number of octets) of each
member/element must also be respectively the same, and that’s not always easy to ensure.

In order to eliminate the requirement that the lengths of each corresponding member/element in all
objects/arrays in the column be equal, the present proposal provides the ability for a column-level schema to
describe the objects/arrays in the column in general, but that each object/array also be allowed to contain an
object/array-specific schema that augments the column-level schema.

1.1.4.4 BSON schemata

Because the BSON representation of JSON contains a one-octet code as the first octet of every field, it is
possible to scan a BSON value and uniquely identify each field and its data type. Consequently, no sort of
schema is required for BSON-represented JSON data.

However, BSON — like Avro — uses variable-length fields, so that corresponding members/elements in
different objects/arrays can have significantly different lengths. Scanning BSON strings to locate those field
codes (and thus the fields themselves) requires CPU cycles. BSON might benefit from having a schema
capability somewhat similar to Avro’s, but it is certainly not necessary.

1.1.5 Why does JSON matter in the context of SQL? What is JSON’s relationship to NoSQL?

It is unclear that JSON and SQL [FoundCD] have any inherent relationship, but it is equally clear that the
technical, business, and government worlds are increasingly using both kinds of data (as well as XML data) in
their environments. Individual applications are required to access and manipulate all of these kinds of data,
often concurrently. As we have discovered with the use of SQL and XML data in individual applications, there
are great benefits when a single data management system can concurrently handle all of the data. Among the
benefits are: reduced administrative costs, improved security and transaction management, better performance
and greater optimizability, better resource allocation, and increased developer productivity.

We are convinced that incorporation of JSON into the SQL umbrella will offer implementers and users alike the
benefits described above. That fact easily justifies the relatively small increase in size and complexity of the
SQL standard, especially when the approach of the present proposal is used.

6 Therefore, the JSON objects “{ "name" : "Joe", "salary" : 85000 }” and “{ "name" : "Bob",
"salary" : 78000 }” are “sufficiently alike, but “{ "name" : "Ann", "bonus" : 85000 }” is not.

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 10 of 51

Most readers of the present proposal will have heard the term “NoSQL” [NoSQLdef], variously interpreted as
“no SQL” (meaning that SQL is not needed or used) or “Not only SQL” (meaning that SQL may be needed and
used, but other data models are of similar importance).

NoSQL7 database systems (we were tempted to put the latter two words into quotes, but resisted) [NoSQLDB]
are generally characterized by the following attributes:

• They do not use the relational model (they also do not use a number of other data models).

• They tend to be focused on “big data” and on applications for which “approximate” answers are often
adequate.

• They are optimized for data retrieval, not for data creation or update, nor on the relationships between
data.

• They usually do not use ACID [ACIDtxns] transactions; instead, they may offer transactional models
that result in “eventual consistency”.

• They tend to be designed using distributed, fault-tolerant, highly parallel hardware and software
architectures.

NoSQL database systems come in a very wide variety of kinds, base on their targeted marketplaces, data
models, and application requirements. They have been crudely taxonomized into:

• Key-value stores

• “BigTable” stores

• Document stores

• Graph databases

Key-value stores provide exactly the capability that the name implies: applications provide a key and are given
a value in return. Key-value stores may manage only “flat” pairs, or they may manage hierarchical pairs.

BigTable stores implement multi-dimensional arrays such that applications provide one or more index values
(often strings used as key values, instead of numeric indexes) that together provide the location of a cell, the
value of which is returned to the application.

Document stores, contrary to what the name many suggest to many, do not necessarily store textual documents
such as books, specifications, or magazines; instead, they store data that may be traditional textual documents or
organized collections of structured (and semi-structured) data.

Graph databases provide a way to store data that is generally linked together into graphs (often directed graphs,
sometimes trees in particular).

Many, but hardly all, NoSQL database systems manage data represented in JSON, especially key-value stores
and document stores. Graph databases often manage data that is isomorphic with RDF [RDFmodel] data.

7 The coiners of the term “NoSQL” did so for reasons of public relations rather than for any inherent bias against the SQL database
language. The term was first used to advertise a technical conference addressing open-source, non-relational database systems and was
thought to provide an interesting “hook” that would attract attendees.

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 11 of 51

We have observed that the rapidly increasing use of JSON to interchange data between Web applications has
caught the attention of academics, technologists, developers, and even management types. SQL database
implementers are increasingly convinced that they must support JSON data “natively” or risk losing market
share to implementations of NoSQL database systems. The present proposal offers a way by which such
implementers can provide that support in a common manner that will not further fragment the “real” DBMS
marketplace.

1.1.6 JSON terminology

Before we discuss the relationship between JSON and SQL, we must settle on specific terminology that the
present proposal (and the SQL standard) will use to reference the various “things” incorporated into the JSON
data model. JSON is, of course, taken from JavaScript, which has been standardized under the name
“ECMAScript” [ECMAscript]. [ECMAscript] defines the terminology for its objects, but [RFC4627] and
[JDIF] use terminology that is significantly different. Other specifications associated with JSON use still
different terminology.

The present specification proposes to stick as closely as possible to the notation in [RFC4627] in the belief that
most users of JSON will be familiar and comfortable with that terminology. To be clear, the following terms
and their definitions are used:

Term8 Definition

JSON text A sequence of tokens, which must be encoded in Unicode
[Unicode] (UTF-8 by default); insignificant white space may
be used anywhere in JSON text except within strings (where
all white space is significant), numbers, and literals — note
that JSON text is a single object or array

Token One of six structural characters (“{“, “}”, “[“, “]”, “:”, “,”),
strings, numbers, and literals

Value An object, array, number, string, or one of three literals

Type A primitive type or a structured type

Primitive type A string, a number, a Boolean, or a null

Primitive value A value that is a string, number, Boolean, or null

Structured type An object or an array

Structured value A value that is an object or an array

String A sequence of Unicode characters; some characters must be
“escaped” by preceding them with a reverse solidus (“\”),
while any or all characters can be represented in “Unicode
notation” comprising the string “\u” followed by four

8 Each term is implicitly qualified with the prefix “JSON”, e.g., JSON value, JSON object. The present proposal uses the qualification
whenever the use of the term would risk ambiguity in context and eschews it otherwise.

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 12 of 51

Term8 Definition
hexadecimal digits or two such strings representing the UTF-
16 surrogate pairs representing characters not on the Basic
Multilingual Plane (strings are surrounded by double-quote
characters, which are not part of the value of the strings)

Number A sequence comprising an integer part, optionally followed
by a fractional part and/or an exponent part (non-numeric
values, such as infinity and NaN are not permitted)

Boolean The literal “true” or the literal “false”

Null The literal “null”

Object A structure represented by a “{“, zero or more members9
separated by “,”, and “}”

Member A string followed by a colon followed by a value in an object
(a member is also known as a “name-value pair”; the name is
sometimes called a “key” and the second value is sometimes
called a “bound value”)

Array A structure represented by a “[“, zero or more elements
separated by “,”, and “]”

Element A value in an array

Field A member in an object, an element in an array, a name in a
member, or a value in a member

Data model (general) A definition of what kinds of data belong to a particular
universe of discourse, including the operations on those kinds
of data

JSON data model The (implicit10) data model associated with JSON

SQL/JSON data
model

The data model created for operating on JSON data within the
SQL language

1.1.7 Use cases for JSON support in SQL

Even if all readers of the present proposal were in complete agreement about the abstract necessity of
supporting JSON data in the SQL environment, we must still identify the particular use cases that such support
must satisfy. Our work convinces us that there are three primary use cases:

9 [RFC4627] states that objects contain unordered sequences of name-value pairs, while arrays contain ordered sequences of values.
10 [JSON] does not specify a data model; instead, it specifies a syntax for representation of data. A data model (actually, several
possible data models) can be inferred from the syntax specification, hence “implicit data model.”

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 13 of 51

• JSON data ingestion and storage

• JSON data generation from relational data

• Querying JSON as persistent semi-structured data model instances

The following sections discuss these use cases in greater detail.

1.1.7.1 JSON data ingestion and storage

The question posed by this use case is “How can we acquire JSON data using SQL?” For example, great
quantities of JSON data already exist in many enterprises and are stored in something like HDFS [HDFS]. It
might be possible to treat such “external” stores as though they were a kind of “external table” (e.g., an SQL
view mapped appropriately to HDFS), in which case the JSON data could be queried just as though it were in
an SQL table.

There are a number of technical issues to be addressed with such an approach, such as the fact that JSON data is
nowhere near as structured as SQL table data. The present proposal avoids those technical issues entirely by not
pursuing this approach.

Instead, the present proposal focuses on ingesting JSON data as character strings that are then stored in ordinary
SQL columns of some string type. When such data is retrieved from those columns for use in JSON-based
functions, it is transformed (parsed) into instances of an internal SQL/JSON data model that is never directly
exposed to the application author.

1.1.7.2 JSON data generation from relational data

This use case asks “How can we (declaratively) generate JSON data instances from relational tables for data
export?” Applications that are based on JSON data not only want to store and retrieve such data upon demand,
but they typically want their queries against such data to provide results in the same form — JSON. Although it
is trivial to provide procedural mechanisms by which applications can laboriously (and with many likely errors)
construct JSON data, SQL’s declarative nature suggests that JSON objects and arrays should be generated
instead of potentially lengthy character strings that represent such objects and arrays. (Readers are cautioned not
to misinterpret this use case as requiring provision of a “bulk JSON data export” facility.)

The present proposal addresses this use case by providing several functions that transform the data stored in
SQL tables into instances of the internal SQL/JSON data model that can , if needed, be serialized back into
character string form.

1.1.7.3 Querying JSON as persistent semi-structured data model instances

With this use case, we explore how we can query JSON data that is stored directly in SQL tables. As will be
seen later in the present proposal, we do not propose directly mapping entire SQL tables into single (or,
necessarily, multiple) JSON objects or arrays, although we do provide support for such mappings when needed
by applications. Instead, we are proposing to store JSON data within an opaque data type (specifically an SQL
string or Large Object) that can be manipulated through the functional interface specified in the present
proposal.

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 14 of 51

1.1.8 “Non-Use cases” and other “non-goals”

1.1.8.1 Direct access to external JSON data

All access to JSON data in the present proposal requires that the JSON data first be imported into the SQL
environment. This extends to the various built-in functions specified in the present proposal, none of which
have parameters that reference external JSON data. Applications are required to access external JSON data
themselves, then insert those data into SQL strings (character or binary, as appropriate) and INSERT (or
UPDATE) rows in SQL tables containing those strings.

Although the present proposal does not propose facilities to directly query JSON data that is not within the SQL
environment, implementations will undoubtedly provide such facilities as extensions.

1.1.8.2 Generation of JSON results containing only atomic values

In the present proposal, all JSON atomic values exposed outside of JSON instances are automatically (by
default) cast to corresponding SQL scalar values. Of course, SQL’s <cast expression>s can be used to
cause those atomic values to be cast to SQL scalar values of different (that is, non-default) types. We believe
that ambiguities will necessarily arise if, for example, we attempt to store JSON atomic values directly in SQL
columns. Of course, some future proposal might reconsider this question if solutions are found to that problem.

1.1.8.3 Updating JSON data

The present proposal does not specify any mechanism for modifying JSON data, even if stored in an SQL
column. While it may be desirable to support such a mechanism, that is beyond the scope of the present
proposal and may be addressed in some future proposal. Readers should note, however, that the use of SQL
UPDATE statements to completely replace the value of a column in a row is still appropriate, even if that
column holds JSON data.

1.1.8.4 Specification of the details of the JSON query language

The syntax and semantics of the query/path language used to locate specific JSON data is not specified in the
present proposal, but is specified in an accompanying proposal [SQLJSON2].

1.1.9 What features are needed to address those use cases?

Now that we have a better understanding of the use cases that we need to address in order to provide useful and
robust support for JSON data in the SQL language, we may explore the specific language features needed to
satisfy those use cases.

We express those features using the following notions:

• SQL query expressions must have access to JSON data according to its structure (e.g., using the names
of key-value pairs in JSON objects, positions in JSON arrays, etc.).

• SQL queries must be able to generate JSON data directly for return to invokers of those queries.

• SQL tables must be able to store JSON data persistently.

In the next sections, we explore each of these “macro-features” in turn.

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 15 of 51

1.1.9.1 Storing JSON data in an SQL table

The ability to store data — arbitrary data — in SQL tables is not in question. Any data can be massaged into
some form that can be stored in plain old, traditional SQL tables…maybe not efficiently, but stored nonetheless.
The requirement here is to store JSON data without massaging it into another form, which is an operation that
can be both costly and irreversible. What is required is the ability to store JSON data, as JSON, in SQL tables,
and that requirement can be met in either of two ways. First, we could modify the SQL language to support the
JSON data model by making JSON objects and arrays first-class objects in the same way that tables are; this is
very undesirable, of course, because it would require substantial modifications to the entire SQL language.
Alternatively, we can store JSON data “natively” (more about that shortly) in existing SQL objects —
specifically, columns in rows of tables. Readers will recall that the same question was raised by the decision to
support XML data within the SQL environment.

The approach taken by the present proposal is to store JSON data into character string columns or binary
string columns that are defined within ordinary SQL tables. That permits those JSON data to participate in
SQL queries (and, importantly, SQL transactions) in the same manner as the data stored in other columns of the
same tables. By choosing to use columns whose declared types are string types, we avoid the standardization
(and implementation) overhead11 of creating a new built-in SQL data type without losing any significant
advantages of a built-in type.

Applications, however, are not expected to provide detailed code to manipulate JSON data in those strings
directly in the form of character string operations. The present proposal provides a number of built-in SQL
functions that access (query) JSON data stored in such columns. These functions are described in section 1.2.3
below.

1.1.9.2 Generating JSON in an SQL query

As discussed above, JSON text is one of two kinds of values: JSON objects and JSON arrays. The present
proposal provides built-in functions that generate JSON objects and JSON arrays as the results of SQL queries
(in the most general sense), whether the source of the data queried is JSON data or ordinary SQL data. These
functions are also described in section 1.2.3 below.

1.1.9.3 Querying JSON data in SQL tables using SQL

The mechanisms for storing JSON data in the SQL environment and for generating JSON data out of the SQL
environment are perhaps obvious and relatively noncontroversial. However, querying JSON data using the SQL
language, whether that data is stored in SQL columns of SQL tables as described in section 1.1.9.1 above, raises
an important — and interesting — question: How should those queries be expressed?

SQL queries are expressed using SQL’s <query expression>s. Query expressions, in turn, comprise
query specifications, which comprise table expressions, WHERE clauses, and so forth. Each component of a
query expression ingests and produces an SQL (virtual) table, because the SQL model has only tables as first-
class objects.

JSON’s first class “objects” are JSON objects and JSON arrays. What is needed is a language that
“understands” the JSON data model and can declaratively express queries against data represented in that
model. Readers will recall that the same problem arose when the inclusion of XML into the SQL environment

11 See Section 1.2.1 for more information about this decision.

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 16 of 51

was proposed; the solution in that case was to use the best-known and standardized language designed for
querying XML — XQuery (see [XQuery]).

There is not currently an obvious analog to XQuery that applies to JSON. That is, there is not a well-known,
standardized, and universally accepted language that queries data represented in the JSON data model. Instead,
there are several languages that enjoy varying degrees of support in the JSON community, none of which have
been adopted by a recognized standardization body. Naturally, their merits and disadvantages lie largely in the
mind of each individual observer, and none are universally accepted as “the solution” to this particular problem.
The present paper does not specify any query language. Instead, an accompanying proposal [SQLJOSN2]
specifies a JSON query language (the SQL/JSON path language) that is best suited for the use cases outlined in
Section 1.1.7 above.

1.2 Architecture and design

1.2.1 Lightweight

The present proposal deliberately takes a “lightweight” approach to specifying support for JSON in the context
of the SQL language. The primary reason for taking this approach is to improve the chances of its rapid
adoption into the SQL standard, as well as the rapid adoption by SQL implementers.

There are four specific facets (each discussed separately below) to the present proposal that represents decisions
made in alignment with the lightweight approach:

— First, the present proposal does not provide a new data type for JSON data; this is the opposite of the
approach taken for XML data in the SQL standard [XMLCD]. This is a key decision, made with the
knowledge that defining new data types in the SQL standard have extensive (and expensive)
ramifications to both the standard and its implementations.

— The present proposal makes the decision that JSON is JSON, whether it is represented in its character
representation or some binary representation. See section 1.2.3 below for discussion of this point.

— All operations on JSON data (including conversion, creation, storing, and querying) are done through
various standard-defined functions specified in the present proposal. Other functions might be proposed
in the future as need becomes apparent.

— A standard JSON query language is implied by the present proposal and defined in accompanying
proposal [SQLJSON2]), which takes the approach of requiring only a rather minimal language. The
language can be extended, or other languages permitted, if and when the need becomes apparent.

1.2.2 No native JSON data type in SQL

The present proposal treats JSON as a sort of pseudo-type based on character strings (and binary strings). The
primary reason for this decision is the costs associated with adding new data types to the SQL standard and,
perhaps more importantly, to implementations of the standard.

When [XMLCD] was first being developed, the opposite decision — to create a new data type for XML data —
was made. That choice was made palatable within the SQL standard by eschewing the definition of host
language bindings for the new type in both module language and in embedded SQL. In fact, the grammar used
in embedded SQL explicitly uses syntax such as:

SQL TYPE IS XML ... AS VARCHAR
SQL TYPE IS XML ... AS BLOB

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 17 of 51

SQL TYPE IS XML ... AS CLOB

(It’s also worth noting that the XML data type incorporates modifiers that make a given site of XML type be
specifically an XML document, XML content, or an XQuery Data Model [XDM] sequence, and that the values
of XML type in that site are either untyped, any XML type, or only a particular XML Schema [XSD] type.)

The present proposal takes the position that the XML type in SQL is not a “real” data type, but a sort of
synonym (or alias) for VARCHAR, BLOB, or CLOB. Instead of proposing the same for JSON data, partly
because no corresponding modifiers are relevant, the present proposal avoids the pretense that JSON is
inherently a new type of data in SQL and simply allows the application author to explicitly use CHARACTER,
CHARACTER VARYING, CHARACTER LARGE OBJECT, NATIONAL CHARACTER VARYING,
NATIONAL CHARACTER LARGE OBJECT, BINARY, BINARY VARYING, or BINARY LARGE
OBJECT as she chooses.

This decision to not create an SQL type specifically to store JSON data implies that application authors must
take responsibility for tracking which sites of string types store JSON and which do not. Those that store JSON
data must be identified to the various functions provided for handling JSON data by marking them with AS
JSON clauses.

1.2.3 JSON is JSON

As discussed in section 1.1.3 above, the present proposal takes the position that all JSON data, whether
represented in its character string form or in some binary string form, is nothing other than JSON data. (That is,
we do not discuss JSON data as distinguished from Avro data or BSON data12. All operations on JSON data in
its character string form are equally applicable — with the identical semantics — if applied to JSON data in one
of its binary forms.) Consequently, very little in the present proposal acknowledges the fact that multiple
representations of JSON may exist.

The primary evidence of support for both plain-text representations of JSON and various binary representations
is found in rules that cause a character string representation of JSON to be produced (by default) by a query
when the JSON input to the query has a character string representation, and correspondingly for input with a
binary string representation. In each case, the query author is free to use implementation-defined syntax (if any)
that over-rides the default and produces some binary representation of JSON when the source JSON data is
provided in its plain-text representation, and vice-versa. Plain-text representations of JSON are provided in both
character data types (CHARACTER VARYING, CHARACTER LARGE OBJECT, NATIONAL
CHARACTER VARYING, NATIONAL CHARACTER LARGE OBJECT) and binary data types (BINARY
VARYING, BINARY LARGE OBJECT). Binary representations would likely be provided only in binary data
types.

1.2.4 Handle JSON using built-in functions

In [XMLCD], operations on XML data are generally performed using a set of built-in functions specified
explicitly for that purpose. The present proposal takes exactly the same approach. We refer to the functions
specified in the present proposal as “the SQL/JSON functions” for convenience.

We partition the SQL/JSON functions into two groups: constructor functions and query functions. Constructor
functions use ordinary SQL aggregates on values of SQL types and produce JSON values. Query functions

12 The reader is reminded that the present proposal does not specify any binary representations of JSON.

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 18 of 51

evaluate SQL/JSON path language expressions against JSON values, producing values of SQL types.
Constructor functions may also be called “publishing functions” as [XMLCD] calls its analogous functions.

The four query functions (JSON_VALUE, JSON_TABLE, JSON_EXISTS, and JSON_QUERY) are similar in
two respects: their second arguments are “path” expressions used to locate values within the JSON texts passed
as the value of their first arguments; and they return SQL values. The four constructor functions
(JSON_OBJECT, JSON_OBJECTAGG, JSON_ARRAY, and JSON_ARRAYAGG) return JSON values
(objects or arrays).

To illustrate the use of the SQL/JSON constructor functions, we will use the following two ordinary SQL tables
and one additional table that incorporates a single column of JSON data:

CREATE TABLE DEPTS (
 dept_no INTEGER,
 dept_name CHARACTER VARYING(30))

CREATE TABLE JOBS (
 job_seq INTEGER,
 job_attrib CHARACTER(5),
 job_attval CHARACTER VARYING(64))

CREATE TABLE employees (
 emp_id INTEGER,
 department INTEGER,
 json_emp CHARACTER VARYING (5000))

1.2.4.1 JSON_OBJECT

SQL applications working with JSON data will often need to construct new JSON objects, either for use within
the applications themselves, for storage in the SQL database, or to return to the application program itself. The
present proposal specifies a built-in function, JSON_OBJECT, that constructs JSON objects from explicit
name/value pairs; the names in those name/value pairs must be SQL identifiers, while the values may be
specified as SQL literals or as any other SQL expressions — including subqueries.

JSON_OBJECT is somewhat analogous to XMLELEMENT in [XMLCD]. It is typically used in <select
list>s.

The following example illustrates the usage of JSON_OBJECT:

SELECT
 JSON_OBJECT('deptno' : d.deptno,
 'deptname' : d.deptname)
FROM depts AS d

This query returns one row for each department recorded in the DEPTS table; that row contains a single
column, which contains a serialization of a JSON object having the department number and name. Visually, the
returned JSON object in the only column of the first row of the table would look something like this:

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 19 of 51

(unnamed) [VARCHAR(id13)]

{ "deptno" : 314,
 "deptname" : "Engineering" }

1.2.4.2 JSON_OBJECTAGG

Often, it is inappropriate or even impossible to construct a JSON object by explicitly specifying the names of
the contained name/value pairs (e.g., because the names are not known a priori). Instead, an application
developer may wish to construct a JSON object as an aggregation of information in an SQL table. Presuming
that the SQL table actually contains a column with JSON names and another column with corresponding values,
the built-in function JSON_OBJECTAGG (“object aggregate”) performs this function.

The following example will create a JSON object containing a sequence of name/value pairs in which the name
is a department name and the value is the department number:

SELECT JSON_OBJECTAGG (dept_name, dept_no)
FROM depts

The result of this query is a table containing a single row of one column, which contains a serialization of a
JSON object. That object would look something like this:

{ "Engineering" : 314, "Architecture" : 113, "Accounting" : 12,
 "Sales" : 7, "Executives" : 13 }

The reader of the present proposal will observe that this is actually a kind of pivot of the DEPTS table.

The JSON_OBJECTAGG function can also be used in grouped queries to good effect. Consider the JOBS table
with the following contents:

JOB_SEQ JOB_ATTRIB JOB_ATTVAL

101 Leader 155566

101 Duration 00:30:00

101 Description Design the new tables for the web site

234 Duration 01:00:00

234 Description Load the tables with existing data

492 Leader 129596

17 Description Design the look-and-feel of the web site

The SQL query:

13 “id” represents an implementation-defined length.

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 20 of 51

SELECT j.job_seq,
 JSON_OBJECTAGG(j.job_attrib, j.job_attval RETURNING VARCHAR(80))
 AS attributes
FROM jobs j
GROUP BY j.job_seq

will produce a table containing four rows, each containing two columns. The first column of the table contains
the job sequence numbers, while the second column contains a serialization of a JSON object that is a pivot of
the information in all of the rows associated with the corresponding job sequence number. The result will look
something like this:

JOB_SEQ ATTRIBUTES [VARCHAR(id13)]

101 { "Leader" : "155566", "Duration" : "00:30:00", "Description" : " Design the new tables for the
web site " }

234 { "Duration" : "01:00:00", "Description" : "Load the tables with existing data" }

492 { "Leader" : "129596" }

17 { "Description" : " Design the look-and-feel of the web site" }

1.2.4.3 JSON_ARRAY

Just as an application developer might wish to construct a JSON object from an explicit list of data, she might
wish to construct a JSON array from a similar list of data. The proposed built-in function JSON_ARRAY
provides that capability. Its syntax and semantics are very much like those of JSON_OBJECT, excepting (of
course) that the result is a JSON array instead of a JSON object.

JSON_ARRAY constructs a JSON array, each element of which is taken from the rows selected in the
containing SQL query.

Unlike JSON_OBJECT, JSON_ARRAY has two variants: One variant produces its result from an explicit list
of values, not name/value pairs; the values are SQL values (literals or computed values, including subqueries);
the second variant produces its results from an SQL query expression invoked within the function.

The following query illustrates the use of JSON_ARRAY:

SELECT
 JSON_ARRAY('deptno', d.deptno, 'deptname', d.deptname)
FROM depts AS d

This query returns one row for each department recorded in the DEPTS table; that row contains a single
column, which contains a serialization of a JSON array having the department number and name, as well as
another object with the identifier and name of the employee whose name comes first in alphabetical order.
Visually, the returned JSON object in the only column of the first row of the table would look something like
this:

["deptno", 314, "deptname", "Engineering"]

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 21 of 51

1.2.4.4 JSON_ARRAYAGG

Just as an SQL application might need to construct a JSON object as an aggregation of SQL data, so might it
need to construct a JSON array as an aggregate. This function’s design was based on XMLAGG in [XMLCD].

For example:

SELECT JSON_ARRAYAGG(j.job_attval RETURNING CLOB(8K))
 AS attributes
FROM jobs j

The result of this query is a table of one row and one column, which would look something like this:

ATTRIBUTES

["155566", "00:30:00", "Design the new tables for the web site",
"01:00:00", "Load the tables with existing data", "129596", "Design the
look-and-feel of the web site"]

JSON_ARRAYAGG supports an optional ORDER BY clause that allows the results of the query to be ordered
before the selected data is extracted to be placed in the resulting JSON array.

1.2.5 Additional SQL syntax enhancements

In addition to the built-in functions discussed in section 1.2.4 above, there are a few enhancements to SQL
syntax that are required for meaningful JSON support. These include syntax for a predicate to test the validity
of JSON data instances, as well as syntax to specify that input arguments or results are to be JSON values
instead of ordinary SQL values.

1.2.5.1 JSON input clause

Whenever JSON data is being passed as an argument into a function, the application author must specify that
the value of the argument is, in fact, JSON data. The syntax used to specify that fact is:

<JSON input clause> ::=
 FORMAT <JSON input representation>

<JSON input representation> ::=
 JSON
 | <implementation-defined JSON representation option>

The <implementation-defined JSON representation option> might, for example, specify some binary
representation of JSON, such as Avro or BSON.

1.2.5.2 JSON output clause

Whenever JSON data is returned as the result of a function, the application author will normally wish to control
the form in which that JSON data is returned. The syntax used to specify that form is:

<JSON output clause> ::=
 RETURNING <data type> [FORMAT <JSON output representation>]

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 22 of 51

<JSON output representation> ::=
 JSON [ENCODING { UTF8 | UTF16 | UTF32 }]
 | <implementation-defined JSON representation option>

1.2.5.3 IS JSON predicate

Applications will frequently want to ensure that the data they expect to consume as JSON data is, indeed, JSON
data. The IS JSON predicate determines whether the value of a specified string does or does not conform to the
structural rules for JSON. The syntax of the IS JSON predicate is:

<JSON predicate> ::=
 <string value expression>
 [FORMAT <JSON input representation>]
 IS [NOT] JSON
 [<JSON predicate uniqueness constraint>]

<JSON predicate uniqueness constraint> ::=
 WITH UNIQUE [KEYS]
 | WITHOUT UNIQUE [KEYS]

1.2.6 Handling of JSON nulls and SQL nulls

SQL (correctly) distinguishes between data such as zero-length strings and the special pseudo-value known as
“the null value”. The semantics of those two things are quite different and those differences affect a great many
SQL operations. The differences are an important part of the semantics of the SQL language.

The present proposal, by adding support for JSON data in the context of SQL, adds yet another related
difference: the JSON null. In JSON, null is an actual value, represented by a JSON literal (“null”). We must
be able to distinguish JSON nulls from SQL null values and that distinction will be an important part of the
semantics of JSON handling in the SQL context.

To illustrate the situation, consider the JSON object stored in a column of an SQL table:

{ "a" : null, "b" : "null", "c" : "" }

JSON_VALUE, evaluated against that JSON object, returning the result as an SQL scalar value, would return,
for each respective name/value pair, the following: the SQL null value, the SQL scalar value “'null'”, and
the SQL scalar value “''”; if JSON_VALUE were used to retrieve the value associated with the name “d”, it
would return the SQL null value. Note that, when retrieving the value of the first name/value pair, the JSON
value “null” is automatically transformed into an SQL null value.

The JSON constructor functions have to deal with situations in which the SQL data that is being queried are
SQL null values. The present proposal supplies optional syntax to allow the application author to select whether
SQL null values are included in the JSON object or JSON array being constructed, or whether object members
or array elements whose (bound) values are SQL null values are omitted from the JSON object or JSON array
being constructed.

1.2.7 Conformance to JSON constructor functions

There are three conformance features defined for the JSON constructor functions:

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 23 of 51

• Tx11 — Basic SQL/JSON constructor functions (everything in the present proposal except the two
items covered by the other two features)

• Tx12 — SQL/JSON: JSON_OBJECTAGG

• Tx13 — SQL/JSON: JSON_ARRAYAGG with ORDER BY

2. Proposal
Unless otherwise specified, all changes proposed in this section of the present paper are to [FoundationCD].

2.1 Changes to Clause 2, “Normative references”

2.1.1 Changes to Subclause 2.2, “Other international standards”

2.1.1.1 INSERT the following normative references in the appropriate places

[ECMAscript] ISO/IEC 16262:2011, Information technology -- Programming languages, their environments
and system software interfaces -- ECMAScript language specification; also available as ECMAScript Language
Specification, http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf

[RFC4627] RFC 4627, The application/json Media Type for JavaScript Object Notation (JSON), D. Crockford,
July 2006; http://tools.ietf.org/html/rfc4627

[Unicode] The Unicode Standard, http://unicode.org

2.2 Changes to Clause 3, “Definitions, notations, and conventions”

2.2.1 Changes to Subclause 3.1.6, “Definitions provided in Part 2”

2.2.1.1 INSERT the following definitions in the appropriate places

3.1.6.x Data model (general)

definition of what kinds of data belong to a particular universe of discourse, including the operations on
those kinds of data

3.1.6.x JSON array

structure represented by a “[“, zero or more elements separated by “,”, and “]”

3.1.6.x JSON Boolean

JSON literal “true” or JSON literal “false”

3.1.6.x JSON element

JSON text fragment that is a JSON value in a JSON array

3.1.6.x JSON data model

(implicit) data model associated with JSON

3.1.6.x JSON member

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 24 of 51

JSON string followed by a colon followed by a JSON value in a JSON object

NOTE nnn — A member is also known as a “name-value pair”; the name is sometimes called a “key”
and the second value is sometimes called a “bound value”

3.1.6.x JSON null

JSON literal “null”; a JSON null is distinct from an SQL null value and from an SQL/JSON null

3.1.6.x JSON number

Unicode character string comprising an integer part, optionally followed by a fractional part and/or an
exponent part

3.1.6.x JSON object

structure represented by a “{“, zero or more members separated by “,”, and “}”

3.1.6.x JSON string

Unicode character string; some characters must be “escaped” by preceding them with a reverse solidus
(“\”), while any or all characters can be represented in “Unicode notation” comprising the string “\u”
followed by four hexadecimal digits or two such strings representing the UTF-16 surrogate pairs
representing characters not on the Basic Multilingual Plane (strings are surrounded by double-quote
characters, which are not part of the value of the strings)

NOTE nnn — This definition applies only to JSON tokens in JSON text.

3.1.6.x JSON text

sequence of JSON tokens, which must be encoded in Unicode [Unicode] (UTF-8 by default);
insignificant white space may be used anywhere in JSON text except within strings (where all white
space is significant), numbers, and literals

NOTE nnn — JSON text is a single JSON object or JSON array

3.1.6.x JSON text fragment

substring of a JSON text that conforms to any BNF non-terminal in [RFC4627]

3.1.6.x JSON token

one of six structural characters (“{”, “}”, “[“, “]”, “:”, “,”), JSON strings, JSON numbers, and JSON
literals

3.1.6.x JSON value

JSON object, JSON array, JSON number, JSON string, or one of three JSON literals

3.1.6.x SQL/JSON data model

data model created for operating on JSON data within the SQL language

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 25 of 51

2.3 Changes to Clause 4, “Concepts”

2.3.1 INSERT a new Subclause:

4.x JSON data handling in SQL

4.x.1 Introduction

JSON (an acronym for “JavaScript Object Notation”) is both a notation (that is, a syntax) for representing data
and a[n implied] data model. JSON is not an object-oriented data model in the classic sense; that is, it does not
define sets of classes and methods, type inheritance, or data abstraction. Instead, JSON “objects” are simple
data structures, including arrays. Some sources say that JSON is a serialization of structured data. Its initial
intended use was as a data transfer syntax. The syntax of JSON is specified very concisely in [JDIF]. However,
for reasons related to nomenclature, this International Standard uses terminology and concepts from
[RFC4627].

The first-class components of the JSON data model are objects and arrays. A JSON object is zero or more
name-value pairs and is enclosed in curly braces — {…}. A JSON array is an ordered sequence of zero or more
values and is enclosed in square brackets — […].

In a JSON object, the name-value pairs are separated by commas, and the names are separated from the values
by colons. The names are always strings and are enclosed in (double) quotation marks. In a JSON array, the
values are also separated by commas. The values in both JSON objects and JSON arrays may be JSON strings,
JSON numbers, JSON Booleans (represented by the JSON literals true and false), JSON nulls (represented
by the JSON literal null), JSON objects, or JSON arrays. JSON arrays and JSON objects are fully nestable.
That is, any JSON value is permitted to be an “atomic” value (a string, number, or literal), a JSON object, or a
JSON array.

JSON is sometimes used to represent associative arrays — arrays whose elements are addressed by content, not
by position. An associative array can be represented in JSON as a JSON object whose members are name-value
pairs; the name is used as the “index” into the “array” — that is, to locate the appropriate member in the JSON
object — and the value is used as the content of the appropriate member.

Part of JSON’s design is that it is inherently schema-less. Any JSON object can be modified by adding new
name-value pairs, even with names that were never considered when the object was initially created or
designed. Similarly, any JSON array can be modified by changing the number of values in the array. One
consequence of JSON’s schema-less nature is that it is not possible to determine the validity of JSON data,
except by application programs. However, a JSON processing system can determine by direct inspection
whether or not a given bit of JSON data is well-formed (that is, whether it obeys the syntax defined in [JDIF]).

NOTE nnn — In the context of SQL, JSON objects and JSON arrays cannot be modified in situ. Instead, new
JSON objects or JSON arrays are constructed that may strongly resemble an existing JSON object or JSON
array and then used to replace the existing JSON object or JSON array.

NOTE xxx — For all SQL/JSON functions, JSON data that acts either as an argument or as the result is
represented as character strings or binary strings.

4.x.2 Implied JSON data model

The implied JSON data model comprises JSON text and certain kinds of values represented as JSON text
fragments.

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 26 of 51

 NOTE nnn — While [JDIF] specifies only the syntax used by JSON to represent data, other documents (e.g.,
[RFC4627]) imply a data model derived from that syntax. That implied data model is insufficiently complete or
precise to form the basis for standardization of JSON use in an SQL environment. Consequently, this
International Standard specifies an SQL/JSON data model.

The components of the implied JSON data model are:

— A JSON text is a character string or binary string that conforms to the definition of “JSON-text” in
[RFC4627].

— A JSON text fragment is a substring of a JSON text that conforms to any BNF non-terminal in [RFC4627].

— A JSON literal is a JSON text fragment that is any of the key words true, false , or null.

— A JSON member is a JSON text fragment that conforms to the definition of member in [RFC4627] section
2.2 “Objects”. If M is a JSON member, then M matches the BNF member = string name-
separator value ; the key of M is the JSON fragment matching string in this production, and the
bound value of M is the JSON fragment matching value in this production.

— A JSON object is a JSON text fragment that conforms to the definition of object in [RFC4627] section 2.2
“Objects”.

— A JSON array is a JSON text fragment that conforms to the definition of array in [RFC4627] section 2.3
“Arrays”.

— A JSON number is a JSON text fragment that conforms to the definition of number in [RFC4627] section
2.4 “Numbers”.

— A JSON string is a JSON text fragment that conforms to the definition of string in [RFC4627] section 2.5
“Strings”.

— The value of a JSON string is the Unicode character string enclosed in the delimiting <double quote>s of a
JSON string.

NOTE nnn — Within JSON strings, certain characters are represented using an “escaped notation” that
comprises a <reverse solidus> followed by the desired character. For example, a <double quote> in a JSON
string is represented by the sequence <reverse solidus><double quote> (\"). (The complete list of Unicode
characters that can be represented in a JSON string only by such an escape sequence is: ", \, /, backspace,
form feed, line feed, carriage return, and tab; in addition arbitrary Unicode characters can be included by
using “\u” followed by four hexadecimal digits.) The value of a JSON string is determined after replacing
all such escaped sequences with their equivalent Unicode values.

NOTE nnn — The implied JSON data model is specified in terms of the Unicode character strings that
contain JSON text. The facilities specified in this International Standard do not utilize the implied JSON
data model except when parsing JSON text into the SQL/JSON data model or when serializing values of the
SQL/JSON data model into JSON text.

— A JSON value is a JSON object, JSON array, JSON number, JSON string, or one of three JSON literals.

4.x.3 SQL/JSON data model

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 27 of 51

The SQL/JSON data model comprises SQL/JSON items and SQL/JSON sequences. The components of the
SQL/JSON data model are:

— An SQL/JSON item is defined recursively as any of the following:

• An SQL/JSON scalar, defined as a non-null value of any of the following predefined (SQL) types:
character string with character set Unicode, numeric, Boolean, or datetime.

• An SQL/JSON null, defined as a value that is distinct from any value of any SQL type.

NOTE nnn — An SQL/JSON null is distinct from the null value of any SQL type.

• An SQL/JSON array, defined as an ordered list of zero or more SQL/JSON items, called the SQL/JSON
elements of the SQL/JSON array.

• An SQL/JSON object, defined as an unordered collection of zero or more SQL/JSON members, where
an SQL/JSON member is a pair whose first value is a character string with character set Unicode and
whose second value is an SQL/JSON item. The first value of an SQL/JSON member is called the key
and the second value is called the bound value.

NOTE nnn — [RFC 4627] section 2.2 “Objects” says “The names within an object SHOULD be
unique”. Thus non-unique keys are permitted but not advised. The user may use the WITH UNIQUE
KEYS clause in the <JSON predicate> to check for uniqueness if desired.

— An SQL/JSON sequence is an ordered list of zero or more SQL/JSON items.

The maximum number of SQL/JSON elements in an SQL/JSON array is implementation-defined.

The maximum number of SQL/JSON members in an SQL/JSON object is implementation-defined.

The maximum length of the key in an SQL/JSON member is implementation-defined.

If the declared type of an SQL/JSON element or of the key of an SQL/JSON member is a string type, the
maximum length is implementation-defined.

NOTE nnn — There is no SQL <data type> whose value space is SQL/JSON items, or SQL/JSON sequences.

Two SQL/JSON items are comparable if one of them is the SQL/JSON null, or if both are in one of these types:
character string, numeric, Boolean, DATE, TIME, TIMESTAMP.

Two SQL/JSON items SJI1 and SJI2 are said to be equivalent, defined recursively as follows:

— If SJI1 and SJI2 are non-null values of a predefined type, then SJI1 and SJI2 are equivalent if they are equal.

— If SJI1 and SJI2 are the SQL/JSON null, then SJI1 and SJI2 are equivalent.

— If SJI1 and SJI2 are SQL/JSON arrays, then SJI1 and SJI2 are equivalent if they are of the same length N,
and corresponding elements of SJI1 and SJI2 are equivalent.

NOTE nnn — “Corresponding elements” in two arrays are elements that have the same index position in
both arrays.

— If SJI1 and SJI2 are SQL/JSON objects, then SJI1 and SJI2 are equivalent if they have the same number of
members, and there exists a bijection B from SJI1 to SJI2 mapping each SQL/JSON member M of SJI1 to

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 28 of 51

an SQL/JSON member B(M) of SJI2 such that the key and bound value of M are equivalent to the key and
bound value of B(M), respectively, for all members M of SJI1.

4.x.4 SQL/JSON functions

All manipulation (e.g., retrieval, creation, testing) of SQL/JSON items is performed through a number of
SQL/JSON functions.

There are 11 such functions, categorized as SQL/JSON retrieval functions and SQL/JSON construction
functions. The SQL/JSON retrieval functions are characterized by operating on JSON data and returning an
SQL value (possibly a Boolean value) or a JSON value. The SQL/JSON construction functions return JSON
data created from operations on SQL data or other JSON data.

The SQL/JSON retrieval functions are:

— <JSON value function>: extracts an SQL value of a predefined type from a JSON text.

— <JSON query>: extracts a JSON text from a JSON text.

— <JSON table>: converts a JSON text to an SQL table.

— <JSON predicate>: tests whether a string value is or is not properly formed JSON text.

— <JSON exists predicate>: tests whether an SQL/JSON path expression returns any SQL/JSON items.

The SQL/JSON construction functions are:

— <JSON object constructor>: generates a string that is a serialization of an SQL/JSON object.

— <JSON array constructor>: generates a string that is a serialization of an SQL/JSON array.

— <JSON object aggregate constructor>: generates, from an aggregation of SQL data, a string that is a
serialization of an SQL/JSON object.

— <JSON array aggregate constructor>: generates, from an aggregation of SQL data, a string that is a
serialization of an SQL/JSON array.

A JSON-returning function is an SQL/JSON construction function or JSON_QUERY.

4.x.5 OTHER POSSIBLE SECTIONS???

Draft whatever additional text is required.

2.3.2 Changes to Subcluase 4.16.4, “Aggregate functions”

2.3.2.1 REPLACE the fourth paragraph (“Every other aggregate function…”) with:
Every other aggregate function may be classified as a unary group aggregate function, a binary group
aggregate functions, an inverse distribution, or a hypothetical set function, or a JSON aggregate function.

2.3.2.2 APPEND after the last paragraph (“The hypothetical set functions…”):
The JSON aggregate functions transform information in rows of SQL tables into JSON objects
(JSON_OBJECTAGG) and JSON arrays (JSON_ARRAYAGG).

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 29 of 51

2.4 Changes to Clause 5, “Lexical elements”

2.4.1 Changes to Subclause 5.2, “<token> and <separator>”

2.4.1.1 INSERT the following new <reserved word>s in the appropriate locations:
— JSON_ARRAY

— JSON_ARRAYAGG

— JSON_OBJECT

— JSON_OBJECTAGG

2.4.1.2 INSERT the following new <non-reserved word>s in the appropriate locations:
— ENCODING

— FORMAT

— JSON

— RETURNING

— UTF16

— UTF32

— UTF8

2.5 Changes to Clause 6, “Scalar expressions”

2.5.1 Modify Subclause 6.31, “<string value function>”

2.5.1.1 INSERT the following new alternative to the production for <string value function>:

 | <JSON value constructor>

2.5.1.2 MODIFY Syntax Rule 1), “The declared type of…”

09 The declared type of <string value function> is the declared type of the immediately contained <character
value function>, or <binary value function>, or <JSON value constructor>.

2.5.1.3 MODIFY General Rule 1), “The result of…”

The result of <string value function> is the result of the immediately contained <character value function>, or
<binary value function>, or <JSON value constructor>.

2.5.2 INSERT a new Subclause

6.x <JSON value constructor>

Function

Generate a JSON text fragment.

Format

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 30 of 51

<JSON value constructor> ::=
 <JSON object constructor>
 | <JSON array constructor>

<JSON object constructor> ::=
 JSON_OBJECT <left paren>
 [<JSON name and value> [{ <comma> <JSON name and value> }...]
 [<JSON object null clause>]]
 [<JSON output clause>]
 <right paren>

<JSON name and value> ::=
 <JSON name> <colon> <JSON value expression>

<JSON name> ::=
 <character value expression>

<JSON object null clause> ::=
 NULL ON NULL
 | ABSENT ON NULL

<JSON array constructor> ::=
 <JSON array constructor by enumeration>
 | <JSON array constructor by query>

<JSON array constructor by enumeration> ::=
 JSON_ARRAY <left paren>
 [<JSON value expression> [{ <comma> <JSON value expression> }...]
 [<JSON array null clause>]]
 [<JSON output clause>]
 <right paren>

<JSON array null clause> ::=
 NULL ON NULL
 | ABSENT ON NULL

<JSON array constructor by query> ::=
 JSON_ARRAY <left paren>
 <query expression> [<JSON input clause>]
 [<JSON array null clause>]
 [<JSON output clause>]
 <right paren>

Syntax Rules
1) The declared type of a <JSON value constructor> is the declared type of its immediately contained <JSON

object constructor> or <JSON array constructor>.

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 31 of 51

2) If <JSON output clause> is not specified, then RETURNING ST FORMAT JSON is implicit, where ST is
an implementation-defined string type.

3) Let JVCFDT be the <data type> immediately contained in the explicit or implicit <JSON output clause>
JOC and let JVCFFO be the explicit or implicit <JSON output representation> of JOC.

4) The Syntax Rules of Subclause 9.x "Serializing an SQL/JSON item" are applied with JVCFFO as the
FORMAT OPTION and JVCFDT as the TARGET TYPE.

5) If <JSON object constructor> is specified, then:

a) If <JSON object null clause> is not specified, then NULL ON NULL is implicit.

b) The declared type of <JSON object constructor> is JVCFDT.

6) If <JSON array constructor> is specified, then:

a) If <JSON array null clause> is not specified, then ABSENT ON NULL is implicit.

b) The declared type of <JSON array constructor> is JVCFDT.

c) If <JSON array constructor by query> is specified, then the <query expression> QE shall be of degree 1
(one).

Access Rules

None.

General Rules
1) The value of a <JSON value constructor> is the value of its immediately contained <JSON object

constructor> or <JSON array constructor>.

2) If <JSON object constructor> JOC is specified, then:

a) If the length of the value of any <JSON name> simply contained in JOC exceeds its implementation-
defined maximum length, then an exception condition is raised: data exception — string data, right
truncation.

b) If any <JSON value expression> simply contained in JOC contains a <string value expression> SVE and
the length of the value of SVE exceeds its implementation-defined maximum length, then an exception
condition is raised: data exception — string data, right truncation.

c) Let NNV be the number of <JSON name and value>s immediately contained in JOC.

d) Case:

i) If NNV = 0, then let CJO be a JSON object with no members.

ii) Otherwise:

1) For each i, 1 (one) ≤ i ≤ NNV :

A) Let JNVi be the i-th <JSON name and value> immediately contained in JOC.

B) Let JNi be the <JSON name> immediately contained in JNVi.

C) Let VJNi be the value of JNi.

D) If VJNi is the null value, then an exception condition is raised: data exception — null value
not allowed.

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 32 of 51

E) Let JVEi be the <JSON value expression> immediately contained in JNVi and let VJVEi be
the value of JVEi.

F) Case:

I) If VJVEi is a null value, then let JBVi be the SQL/JSON null.

II) If JVEi specifies, explicitly or implicitly, <JSON input clause> JFO, then the General
Rules of Subclause 9.x "Parsing a JSON text" are applied, with JVEi as the JSON TEXT,
JFO as the FORMAT OPTION, and an implementation-defined <JSON predicate
uniqueness constraint> as the UNIQUENESS CONSTRAINT. Let ST be the STATUS and
let SJI be the SQL/JSON ITEM that are returned by that Subclause.

Case:

1) If ST is an exception condition, then the exception condition ST is raised.

2) Otherwise, let JBVi be SJI.
III) Otherwise,

Case:

1) If the declared type of VJVEi is a character string type, a numeric type, or a Boolean
type, then let JBVi be VJVEi.

2) Otherwise, let JBVi be the result of

CAST (VJVEi AS SDT)

where SDT is an implementation-defined character string type with character set
Unicode.

G) Let Mi be the SQL/JSON member whose key is VJNi and whose bound value is JBVi.

2) If, for any i, 1 (one) ≤ i ≤ NNV, and any j, i < j ≤ NNV, VJNi = VJNj, then an exception condition
is raised: data exception — duplicate JSON object key value.

3) Case:

A) If the implicit or explicit <JSON object null clause> specifies NULL ON NULL, then

Case:

I) If NNV is greater than the implementation-defined maximum number of members in a
JSON object, then an exception condition is raised: data exception — too many JSON
object members.

II) Otherwise, let CJO be a JSON object whose members are Mi, 1 (one) ≤ i ≤ NNV.

B) Otherwise,

Case:

I) If the number of Mi, 1 (one) ≤ i ≤ NNV, whose bound values are not the SQL/JSON null
is greater than the implementation-defined maximum number of members in a JSON

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 33 of 51

object, then an exception condition is raised: data exception — too many JSON object
members.

II) Otherwise, let CJO be a JSON object whose members are Mi, 1 (one) ≤ i ≤ NNV, whose
bound values are not the SQL/JSON null.

NOTE nnn — There is no implied order of the members of the constructed JSON object.

e) Let JVCF be CJO.

3) If <JSON array constructor by enumeration> JAC is specified, then:

a) If any <JSON value expression> simply contained in <JSON array constructor by enumeration>
contains a <string value expression> SVE and the length of the value of SVE exceeds its
implementation-defined maximum length, then an exception condition is raised: data exception —
string data, right truncation.

b) Let NJVE be the number of <JSON value expression>s immediately contained in JAC.

c) Case:

i) If NJVE is 0 (zero), then let CJA be a JSON array with no elements.

ii) Otherwise:

1) For each i, 1 (one) ≤ i ≤ NJVE:

A) Let JVEi be the i-th <JSON value expression> immediately contained in JAC and let VJVEi
be the value of JVEi.

B) Case:

III) If VJVEi is a null value, then let JEi be the SQL/JSON null.

IV) If JVEi specifies, explicitly or implicitly, <JSON input clause> JFO, then the General
Rules of Subclause 9.x "Parsing a JSON text" are applied, with JVEi as the JSON TEXT,
JFO as the FORMAT OPTION, and an implementation-defined <JSON predicate
uniqueness constraint> as the UNIQUENESS CONSTRAINT. Let ST be the STATUS and
let SJI be the SQL/JSON ITEM that are returned by that Subclause.

Case:

1) If ST is an exception condition, then the exception condition ST is raised.

2) Otherwise, let JEi be SJI.
V) Otherwise,

Case:

1) If the declared type of VJVEi is a character string type, a numeric type, or a Boolean
type, then let JEi be VJVEi.

2) Otherwise, let JEi be the result of

CAST (VJVEi AS SDT)

where SDT is an implementation-defined character string type with character set
Unicode.

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 34 of 51

4) Case:

A) If the implicit or explicit <JSON array null clause> specifies NULL ON NULL, then

Case:

I) If NJVE is greater than the implementation-defined maximum number of elements in a
JSON array, then an exception condition is raised: data exception — too many JSON
array elements.

II) Otherwise, let CJA be a JSON array whose elements are, in order, JEi, 1 (one) ≤ i ≤
NJVE.

B) Otherwise,

Case:

I) If the number of JEi, 1 (one) ≤ i ≤ NJVE, that are not the SQL/JSON null is greater than
the implementation-defined maximum number of elements in a JSON array, then an
exception condition is raised: data exception — too many JSON array elements.

II) Otherwise, let CJA be a JSON array whose elements are, in order, JEi, 1 (one) ≤ i ≤
NJVE, that are not the SQL/JSON null.

NOTE nnn — The elements of constructed JSON arrays are ordered and array element indices
starts with 0 (zero).

d) Let JVCF be CJA.

4) If <JSON array constructor by query> JACQ is specified, then:

a) QE is evaluated, producing a table T. Let N be the number of rows in T.

b) Case:

i) If N is 0 (zero), then let CJAQ be a JSON array with no elements.

ii) Otherwise:

1) For each i, 1 (one) ≤ i ≤ N:

A) Let JVEi be the i-th row of T and let VJVEi be the value of the column of JVEi.

B) Case:

III) If VJVEi is a null value, then let JEi be the SQL/JSON null.

IV) If JACQ contains a <JSON input clause> JFO, then the General Rules of Subclause
9.x "Parsing a JSON text" are applied, with VJVEi as the JSON TEXT, JFO as the
FORMAT OPTION, and an implementation-defined <JSON predicate uniqueness
constraint> as the UNIQUENESS CONSTRAINT. Let ST be the STATUS and let SJI be
the SQL/JSON ITEM that are returned by that Subclause.

Case:

1) If ST is an exception condition, then the exception condition ST is raised.

2) Otherwise, let JEi be SJI.

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 35 of 51

V) Otherwise,

Case:

1) If the declared type of VJVEi is a character string type, a numeric type, or a Boolean
type, then let JEi be VJVEi.

2) Otherwise, let JEi be the result of

CAST (VJVEi AS SDT)

where SDT is an implementation-defined character string type with character set
Unicode.

5) Case:

A) If the implicit or explicit <JSON array null clause> specifies NULL ON NULL, then

Case:

I) If N is greater than the implementation-defined maximum number of elements in a JSON
array, then an exception condition is raised: data exception — too many JSON array
elements.

II) Otherwise, let CJAQ be a JSON array whose elements are, in order, JEi, 1 (one) ≤ i ≤ N.

B) Otherwise,

Case:

I) If the number of JEi, 1 (one) ≤ i ≤ N, that are not the SQL/JSON null is greater than the
implementation-defined maximum number of elements in a JSON array, then an
exception condition is raised: data exception — too many JSON array elements.

II) Otherwise, let CJAQ be a JSON array whose elements are, in order, JEi, 1 (one) ≤ i ≤ N,
that are not the SQL/JSON null.

NOTE nnn — The elements of constructed JSON arrays are ordered and array element indices starts
with 0 (zero).

c) Let JVCF be CJAQ.

5) The General Rules of Subclause 9.x "Serializing an SQL/JSON item" are applied with JVCF as the
SQL/JSON ITEM, JVCFFO as the FORMAT OPTION, and JVCFDT as the TARGET TYPE. Let ST be the
STATUS and let CJV be the JSON TEXT that are returned by that Subclause.

Case:

a) If ST is an exception condition, then the exception condition ST is raised.

b) Otherwise, the result of <JSON value constructor> is CJV.

Conformance Rules
1) Without Feature Tx11, conforming SQL language shall not contain <JSON value constructor>.

2) Without Feature Tx11, conforming SQL language shall not contain <JSON object constructor>.

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 36 of 51

3) Without Feature Tx11, conforming SQL language shall not contain <JSON array constructor>.

2.6 Changes to Clause 9, “Additional common rules”

2.6.1 INSERT a new Subclause

9.x Parsing JSON text

Subclause Signature

“Parsing a JSON text” [General Rules] (
 Parameter: "JSON TEXT",
 Parameter: "FORMAT OPTION",
 Parameter: "UNIQUENESS CONSTRAINT"
) Returns: "SQL/JSON ITEM", "STATUS"

Function

Convert a JSON text to an SQL/JSON item.

Syntax Rules

None.

Access Rules

None.

General Rules
1) Let JV be the JSON TEXT, let FO be the FORMAT OPTION, and let UC be the UNIQUENESS

CONSTRAINT in an application of this Subclause. The result of the application of this Subclause is SJI,
returned as SQL/JSON ITEM, and ST, returned as STATUS.

2) Let ST be the condition: successful completion.

3) Case:

a) If FO is JSON, then:

i) Case:

1) If JV is a character string, then let ENC be the Unicode encoding of JV.

2) Otherwise, let ENC be the encoding determined by Section 3 “Encoding” in [JSON].

ii) JV is parsed according to the grammar of Section 2 “JSON grammar” in [JSON], using the encoding
ENC.

iii) Case:

1) If JV is not a JSON text, then let ST be the exception condition: data exception — invalid JSON
text.

2) If UC is WITH UNIQUE KEYS and JV contains a JSON object that has two JSON members
whose keys are equivalent Unicode character strings, then let ST be the exception condition: data
exception — non-unique keys in a JSON object.

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 37 of 51

3) Otherwise:

A) The function F transforming a JSON text fragment J to an SQL/JSON item is defined
recursively according to the grammar of Section 2 “JSON grammar” in [JSON], as follows:

I) If J is the JSON literal false, then F(J) is the truth value False.

II) If J is the JSON literal true, then F(J) is the truth value True.

III) If J is the JSON literal null, then F(J) is the SQL/JSON null value.

IV) If J is a JSON number, then F(J) is the value of the <signed numeric literal> whose
characters are identical J.

V) If J is a JSON string, then F(J) is an SQL character string whose character set is Unicode
and whose characters are the ones enclosed by quotation marks in J after replacing any
escape sequences by their unescaped equivalents.

VI) If J is a JSON array, then F(J) is the SQL/JSON array whose elements are obtained by
applying the transform F to each element of J in turn.

VII) If J is a JSON member K:V , then F(J) is the SQL/JSON member whose key is
F(K) and whose bound value is F(V).

VIII) If J is a JSON object, then:

1) Let M1, . . ., Mm be the members of J, enumerated in an implementation-dependent
order. For all i, 1 (one) ≤ i ≤ m, let Ki be the key and let Vi be the bound value of Mi.
Let SJMi be the SQL/JSON member whose key is F(Ki) and whose bound value is
F(Vi).

2) It is implementation-dependent whether members with redundant duplicate
keys are removed. If the implementation-dependent choice is to delete members
with redundant duplicate keys, then for all i, 1 (one) ≤ i ≤ m, and all j, 1 (one) ≤ j
≤ m, i ≠ j, if Ki = Kj, an implementation-dependent choice of Mi or Mj is removed
from the list of members of J.

3) F(J) is the SQL/JSON object whose members are SJM1, . . ., SJMm.
B) Let SJI be F(JV)

b) Otherwise, let SJI be the SQL/JSON object or SQL/JSON array obtained using implementation-
defined rules for parsing JV according to format FO and uniqueness constraint UC. If there is an error
during this conversion, let ST be an implementation-defined exception condition.

4) SJI is the SQL/JSON ITEM and ST is the STATUS that is the result of the application of this Subclause.

Conformance Rules

None.

2.6.2 INSERT a new Subclause

9.y Serializing an SQL/JSON item

Subclause Signature

"Serializing an SQL/JSON item" [Syntax Rules] (

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 38 of 51

 Parameter: "FORMAT OPTION",
 Parameter: "TARGET TYPE"
)
"Serializing an SQL/JSON item" [General Rules] (
 Parameter: "SQL/JSON ITEM",
 Parameter: "FORMAT OPTION",
 Parameter: "TARGET TYPE"
) Returns: "JSON TEXT", "STATUS"

Function

Serialize an SQL/JSON item as a JSON text.

Syntax Rules
1) Let FO be the FORMAT OPTION and let TT be the TARGET TYPE in an application of this Subclause.

2) Case:

a) If FO contains JSON, then TT shall be either a character string type or a binary string type. If TT is a
character string type, then the character set of TT shall be a Universal Character Set.

b) Otherwise, TT shall be an implementation-defined data type appropriate to the format identified by FO.

Access Rules

None.

General Rules
1) Let SJI be the SQL/JSON ITEM, let FO be the FORMAT OPTION and let TT be the TARGET TYPE in an

application of this Subclause. The result of this Subclause is a JSON text JV of type TT returned as JSON
TEXT, and a completion condition ST returned as STATUS.

2) Case:

a) If FO contains JSON then:

i) Case:

1) If TT is a character string type, then let ENC be the Unicode encoding of TT.

2) If TT is a binary string type, then let ENC be UTF8, UTF16, or UTF32, as specified in the
<JSON output representation> contained in FO.

ii) Let JV be an implementation-dependent value of type TT and encoding ENC such that these two
conditions hold:

1) JV is a JSON text.

NOTE nnn — It follows that it is an error if SJI is not an SQL/JSON array or SQL/JSON object.

2) When applying the General Rules of Subclause 9.x, “Parsing a JSON text” with JV as the JSON
TEXT, FO as the FORMAT OPTION, and WITHOUT UNIQUE KEYS as the UNIQUENESS
CONSTRAINT, the returned STATUS is successful completion and the returned SQL/JSON ITEM
is an SQL/JSON item that is equivalent to SJI.

If there is no such JV, then let ST be the exception condition: data exception — invalid JSON text.

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 39 of 51

iii) If JV is longer than the length or maximum length of TT, then an exception condition is raised: data
exception — string data, right truncation.

b) Otherwise, let JV be an implementation-defined value such that, when applying the General Rules of
Subclause 9.x, “Parsing a JSON text” with JV as the JSON TEXT, FO as the FORMAT OPTION, and an
implementation-defined <JSON predicate uniqueness constraint> as the UNIQUENESS
CONSTRAINT, the returned STATUS is successful completion and the returned SQL/JSON ITEM is an
SQL/JSON item that is equivalent to SJI according to an implementation-defined definition of this
equivalence. If there is no such JV, then let ST be the exception condition: data exception — invalid
JSON text.

2) JV is the JSON TEXT and ST is the STATUS that are the result of the application of this Subclause.

Conformance Rules

None.

2.7 Changes to Clause 10, “Additional common elements”

2.7.1 Changes to Subclause 10.9, “<aggregate function>”

2.7.1.1 In the Format, INSERT a new alternative in the production for <aggregate function>

 | <JSON aggregate function> [<filter clause>]

2.7.1.2 INSERT a new Conformace Rule

n) Without Feature Txx1, conforming SQL language shall not contain <JSON aggregate function>.

2.7.2 INSERT a new Subclause

10.x <JSON aggregate function>

Function

Generate a JSON object or a JSON array from an aggregation of SQL data.

Format

<JSON aggregate function> ::=
 <JSON object aggregate constructor>
 | <JSON array aggregate constructor>

<JSON object aggregate constructor> ::=
 JSON_OBJECTAGG <left paren>
 <JSON name> <comma> <JSON value expression>
 [<JSON object aggregate null clause>]
 [<JSON output clause>]
 <right paren>

<JSON object aggregate null clause> ::=
 NULL ON NULL

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 40 of 51

 | ABSENT ON NULL

<JSON array aggregate constructor> ::=
 JSON_ARRAYAGG <left paren>
 <JSON value expression>
 [<JSON array aggregate order by clause>]
 [<JSON array aggregate null clause>]]
 [<JSON output clause>]
 <right paren>

<JSON array aggregate order by clause> ::=
 ORDER BY <sort specification list>

<JSON array aggregate null clause> ::=
 NULL ON NULL
 | ABSENT ON NULL

Syntax Rules
1) If <JSON output clause> is not specified, then RETURNING ST FORMAT JSON is implicit, where ST is

an implementation-defined string type.

2) Let JACFDT be the <data type> immediately contained in the explicit or implicit <JSON output clause>
JOC and let JACFFO be the explicit or implicit <JSON output representation> of JOC.

3) The Syntax Rules of Subclause 9.x, "Serializing an SQL/JSON item", are applied with JACFFO as the
FORMAT OPTION and JACFDT as the TARGET TYPE.

4) If <JSON object aggregate constructor> is specified, then:

a) If <JSON object aggregate null clause> is not specified, then ABSENT ON NULL is implicit.

b) The declared type of <JSON object aggregate constructor> is JACFDT.

5) If <JSON array aggregate constructor> is specified, then:

a) If <JSON array aggregate null clause> is not specified, then NULL ON NULL is implicit.

b) The declared type of <JSON array aggregate constructor> is JACFDT.

Access Rules

None.

General Rules

1) Let AF be the <JSON aggregate function>.

2) Let T be the argument source of AF, as defined in the General Rules of Subclause 10.9, “<aggregate
function>”.

3) Case:

a) If <filter clause> is specified, then the <search condition> is effectively evaluated for each row of T. Let
T1 be the collection of rows of T for which the result of the <search condition> is True.

b) Otherwise, let T1 be T.

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 41 of 51

4) If <JSON object aggregate constructor> is specified, then:

a) Let TN be the cardinality of T1.

b) Case:

i) If TN is 0 (zero), then the result of the <JSON object aggregate constructor> is the null value and no
further General Rules of this Subclause are evaluated.

ii) Otherwise:

1) Let JVE be the <JSON value expression>.
2) For each i, 1 (one) ≤ i ≤ TN, let Ri be the i-th row of T1:

A) Let VJNi be the value of <JSON name> evaluated for Ri.

B) If VJNi is the null value, then an exception condition is raised: data exception — null value
not allowed.

C) Let VJVEi be the value of JVE evaluated for Ri.

D) Case:

I) If VJVEi is a null value, then let JBVi be the SQL/JSON null.

II) If JVE specifies, explicitly or implicitly, <JSON input clause> JFO, then the General
Rules of Subclause 9.x "Parsing a JSON text" are applied, with JVEi as the JSON TEXT,
JFO as the FORMAT OPTION, and an implementation-defined <JSON predicate
uniqueness constraint> as the UNIQUENESS CONSTRAINT. Let ST be the STATUS and
let SJI be the SQL/JSON ITEM that are returned by that Subclause.

Case:

1) If ST is an exception condition, then the exception condition ST is raised.

2) Otherwise, let JBVi be SJI.
III) Otherwise,

Case:

1) If the declared type of VJVEi is a character string type, a numeric type, or a Boolean
type, then let JBVi be VJVEi.

2) Otherwise, let JBVi be the result of

CAST (VJVEi AS SDT)

where SDT is an implementation-defined character string type with character set
Unicode.

E) Let Mi be the SQL/JSON member whose key is VJNi and whose bound value is JBVi.

3) If, for any i, 1 (one) ≤ i ≤ TN, and any j, i < j ≤ TN, VJNi = VJNj, then an exception condition is
raised: data exception — duplicate JSON object key value.

4) Case:

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 42 of 51

A) If the implicit or explicit <JSON object null clause> specifies NULL ON NULL, then

Case:

I) If TN is greater than the implementation-defined maximum number of members in a
JSON object, then an exception condition is raised: data exception — too many JSON
object members.

II) Otherwise, let CJO be a JSON object whose members are Mi, 1 (one) ≤ i ≤ TN.

B) Otherwise,

Case:

I) If the number of Mi, 1 (one) ≤ i ≤ TN, whose bound values are not the SQL/JSON null is
greater than the implementation-defined maximum number of members in a JSON object,
then an exception condition is raised: data exception — too many JSON object members.

II) Otherwise, let CJO be a JSON object whose members are Mi, 1 (one) ≤ i ≤ TN, whose
bound values are not the SQL/JSON null.

NOTE nnn — There is no implied order of the members of the constructed JSON object.

c) Let JACF be CJOA.

5) If <JSON array aggregate constructor> is specified, then:

a) If <sort specification list> is specified, then let K be the number of <sort key>s; otherwise, let K be 0
(zero).

b) Let TXA be the table of K+1 columns obtained by applying the <value expression> immediately
contained in the <JSON value expression> JVE simply contained in the <JSON array aggregate
constructor> to each row of T1 to obtain the first column of TXA, and, for all i, 1 (one) ≤ i ≤ K, applying
the <value expression> simply contained in the i-th <sort key> to each row of T1 to obtain the (i+1)-th
column of TXA.

c) Let TXA be ordered according to the values of the <sort key>s found in the second through (K+1)-th
columns of TXA. If K is 0 (zero), then the ordering of TXA is implementation-dependent.

d) Let NTXA be the number of rows in TXA.

e) Let Ri, 1 (one) ≤ i ≤ NTXA, be the rows of TXA according to the ordering of TXA.

f) Case:

i) If NTXA is 0 (zero), then the result of the <JSON array aggregate constructor> is the null value and
no further General Rules of this Subclause are evaluated.

ii) Otherwise:

1) For each i, 1 (one) ≤ i ≤ NTXA:

A) Let VJVEi be the value of the first column of Ri.

B) Case:

III) If VJVEi is a null value, then let JEi be the SQL/JSON null.

IV) If JVE specifies, explicitly or implicitly, <JSON input clause> JFO, then the General
Rules of Subclause 9.x "Parsing a JSON text" are applied, with VJVEi as the JSON TEXT,

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 43 of 51

JFO as the FORMAT OPTION, and an implementation-defined <JSON predicate
uniqueness constraint> as the UNIQUENESS CONSTRAINT. Let ST be the STATUS and
let SJI be the SQL/JSON ITEM that are returned by that Subclause.

Case:

1) If ST is an exception condition, then the exception condition ST is raised.

2) Otherwise, let JEi be SJI.
V) Otherwise,

Case:

1) If the declared type of VJVEi is a character string type, a numeric type, or a Boolean
type, then let JEi be VJVEi.

2) Otherwise, let JEi be the result of

CAST (VJVEi AS SDT)

where SDT is an implementation-defined character string type with character set
Unicode.

d) Case:

i) If the <JSON array null clause> specifies NULL ON NULL, then

Case:

1) If NJVE is greater than the implementation-defined maximum number of elements in a JSON
array, then an exception condition is raised: data exception — too many JSON array elements.

2) Otherwise, let CJA be a JSON array whose elements are, in order, JEi, 1 (one) ≤ i ≤ NTXA.

ii) Otherwise,

Case:

1) If the number of JEi, 1 (one) ≤ i ≤ NJVE, that are not the SQL/JSON null is greater than the
implementation-defined maximum number of elements in a JSON array, then an exception
condition is raised: data exception — too many JSON array elements.

2) Otherwise, let CJA be a JSON array whose elements are, in order, JEi, 1 (one) ≤ i ≤ NTXA, that
are not the SQL/JSON null.

NOTE nnn — The elements of constructed JSON arrays are ordered and array element indices starts
with 0 (zero).

c) Let JACF be CJAA.

6) The General Rules of Subclause 9.x "Serializing an SQL/JSON item" are applied with JACF as the
SQL/JSON ITEM, JACFFO as the FORMAT OPTION, and JACFDT as the TARGET TYPE. Let ST be the
STATUS and let CJV be the JSON TEXT that are returned by that Subclause.

Case:

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 44 of 51

a) If ST is an exception condition, then the exception condition ST is raised.

b) Otherwise, CJV is the result of <JSON aggregate function>.

Conformance Rules

1) Without Feature Tx11, conforming SQL language shall not contain <JSON array aggregate constructor>.

2) Without Feature Tx12, conforming SQL language shall not contain <JSON object aggregate constructor>.

3) Without Feature Tx13, conforming SQL language shall not contain <JSON array aggregate constructor>
that specifies a <JSON array aggregate order by clause>.

2.7.3 INSERT a new Subclause

10.x <JSON value expression>

Function

Specify a value to be used as input by an SQL/JSON function.

Format

<JSON value expression> ::=
 <value expression> [<JSON input clause>]

<JSON input clause> ::=
 FORMAT <JSON input representation>

<JSON input representation> ::=
 JSON
 | <implementation-defined JSON representation option>

Syntax Rules
1) FORMAT JSON specifies the data format specified in [RFC4627].

2) FORMAT <implementation-defined JSON representation option> specifies an implementation-defined
data format.

NOTE nnn: For example, BSON or AVRO; see Bibliography. An <implementation-defined JSON
representation option> implies an ability to parse a string into the SQL/JSON data model, and an ability to
serialize an SQL/JSON array or SQL/JSON object to a string, similar to the capabilities of Subclause 9.x,
“Parsing a JSON text”, and Subclause 9.y, “Serializing an SQL/JSON item”, respectively.

3) The declared type DT of the <value expression> VE simply contained in <JSON value expression> JVE
either shall be a character string type, a binary string type, a numeric type, a datetime type, or Boolean, or
shall be a <data type> the values of which can be cast to a character string type according to the Syntax
Rules of Subclause 6.13, “<cast specification>”.

4) If VE is a JSON-returning function JRF, and <JSON input clause> is not specified, then

Case:

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 45 of 51

a) If the explicit or implicit <JSON output clause> simply contained in JRF contains FORMAT JSON,
then the implicit <JSON input clause> of JVE is FORMAT JSON.

b) Otherwise, the implicit <JSON input clause> of JVE is FORMAT <implementation-defined JSON
representation option>.

5) If an explicit or implicit <JSON input clause> is specified, then DT shall be a string type.

6) If DT is a binary string type, then an explicit or implicit <JSON input clause> shall be specified.

Access Rules

None.

General Rules

None.

Conformance Rules

None.

2.7.4 INSERT a new Subclause

10.x <JSON output clause>

Function

Specify the data type, format, and encoding of the JSON text created by a JSON-returning function.

Format

<JSON output clause> ::=
 RETURNING <data type> [FORMAT <JSON output representation>]

<JSON output representation> ::=
 JSON [ENCODING { UTF8 | UTF16 | UTF32 }]
 | <implementation-defined JSON representation option>

Syntax Rules
1) If FORMAT is not specified, then FORMAT JSON is implicit.

2) If FORMAT JSON is specified or implicit, then the <data type> DT shall identify a string type ST.

Case:

a) If DT identifies a character string type, then DT shall have a Universal Character Set, ENCODING shall
not be specified, and an implicit choice of UTF8, UTF16, or UTF32 is determined by the character
encoding form of DT (i.e., the keywords UTF8, UTF16, and UTF32 denote the UTF8, UTF16, and
UTF32 character encoding forms, respectively).

b) If DT is a binary string type and ENCODING is not specified, then it is implementation-defined whether
UTF8, UTF16, or UTF32 is specified.

3) FORMAT JSON specifies the data format specified in [RFC4627].

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 46 of 51

4) FORMAT <implementation-defined JSON format> specifies an implementation-defined data format.

NOTE nnn: For example, BSON or AVRO; see Bibliography. An <implementation-defined JSON format>
implies an ability to parse a string into the SQL/JSON data model, and an ability to serialize an SQL/JSON
array or SQL/JSON object to a string, similar to the capabilities of Subclause 9.x, “Parsing a JSON text”,
and Subclause 9.y, “Serializing an SQL/JSON item”, respectively.

Access Rules

None.

General Rules

None.

Conformance Rules

None.

2.8 Changes to Clause 13, “SQL-client modules”

2.8.1 Changes to Subclause 13.3, “<externally-invoked procedure>”

2.8.1.1 ADD the following lines to the Ada package SQLSTATE_CODES defined in Syntax Rule
10)e):

DATA_EXCEPTION_DUPLICATE_JSON_OBJECT_KEY_VALUE:
 constant SQLSTATE_TYPE := "22---";
DATA_EXCEPTION_INVALID_ARGUMENT_FOR_SQL_JSON_DATETIME_FUNCTION:
 constant SQLSTATE_TYPE := "22---";
DATA_EXCEPTION_INVALID_JSON_TEXT:
 constant SQLSTATE_TYPE := "22---";
DATA_EXCEPTION_INVALID_SQL_JSON_SUBSCRIPT:
 constant SQLSTATE_TYPE := "22---";
DATA_EXCEPTION_MORE_THAN_ONE_SQL_JSON_ITEM:
 constant SQLSTATE_TYPE := "22---";
DATA_EXCEPTION_NON-NUMERIC_SQL_JSON_ITEM:
 constant SQLSTATE_TYPE := "22---";
DATA_EXCEPTION_NON-UNIQUE_KEYS_IN_A_JSON_OBJECT:
 constant SQLSTATE_TYPE := "22---";
DATA_EXCEPTION_SINGLETON_SQL_JSON_ITEM_REQUIRED:
 constant SQLSTATE_TYPE := "22---";
DATA_EXCEPTION_SQL_JSON_ARRAY_NOT_FOUND:
 constant SQLSTATE_TYPE := "22---";
DATA_EXCEPTION_SQL_JSON_MEMBER_NOT_FOUND:
 constant SQLSTATE_TYPE := "22---";
DATA_EXCEPTION_NO_SQL_JSON_ITEM:
 constant SQLSTATE_TYPE := "22---";
DATA_EXCEPTION_SQL_JSON_NUMBER_NOT_FOUND:
 constant SQLSTATE_TYPE := "22---";
DATA_EXCEPTION_SQL_JSON_OBJECT_NOT_FOUND:

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 47 of 51

 constant SQLSTATE_TYPE := "22---";
DATA_EXCEPTION_TOO_MANY_JSON_ARRAY_ELEMENTS:
 constant SQLSTATE_TYPE := "22---";
DATA_EXCEPTION_TOO_MANY_JSON_OBJECT_MEMBERS:
 constant SQLSTATE_TYPE := "22---";

2.9 Changes to Clause 24, “Status codes”

2.9.1 Changes to Subclause 24.1, “SQLSTATE”

2.9.1.1 ADD the following entries to Table 33, “SQLSTATE class and subclass values”

Category Condition Class Subcondition Subclass

X data exception 22 duplicate JSON object key value

 invalid argument for SQL/JSON datetime function

 invalid JSON text

 invalid SQL/JSON subscript

 more than one SQL/JSON item

 no SQL/JSON item

 non-numeric SQL/JSON item

 non-unique keys in a JSON object

 singleton SQL/JSON item required

 SQL/JSON array not found

 SQL/JSON member not found

 SQL/JSON number not found

 SQL/JSON object not found

 too many JSON array elements

 too many JSON object members

2.10 Changes to Clause 25, “Conformance”
TO BE SUPPLIED IF NEEDED

2.11 Changes to Annex A, “SQL conformance summary”
THE CONTENTS OF THIS ANNEX ARE PRODUCED AUTOMATICALLY

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 48 of 51

2.12 Changes to Annex B, “Implementation-defined elements”

2.12.1 INSERT the following list elements

n) Subclause 4.x.3 SQL/JSON data model

a) The maximum number of SQL/JSON members in an SQL/JSON object is implementation-defined.

b) The maximum length of the key in an SQL/JSON member is implementation-defined.

c) If the declared type of an SQL/JSON element or of the key of an SQL/JSON member is a string
type, the maximum length is implementation-defined.

d) If the declared type of an SQL/JSON element or of the key of an SQL/JSON member is a string
type, the maximum length is implementation-defined.

n) Subclause 6.x <JSON value constructor>

a) If <JSON output clause> is not specified, then an implementation-defined string type is implicit.

b) If the length of the value of any <JSON name> exceeds its implementation-defined maximum
length, then an exception condition is raised: data exception — string data, right truncation.

c) If any <JSON value expression> contains a <string value expression> SVE and the length of the
value of SVE exceeds its implementation-defined maximum length, then an exception condition is
raised: data exception — string data, right truncation.

d) An implementation-defined <JSON predicate uniqueness constraint> is used when serializing JSON
text.

e) If the explicit or implicit data type specified for the output of JSON text is not a character string
type, a numeric type, or a Boolean type, then the generated JSON text is cast to an implementation-
defined string type.

f) If a JSON object is constructed that has more members than the implementation-defined maximum
number of members in a JSON object, then an exception condition is raised: data exception — too
many JSON object members.

g) If a JSON array is constructed that has more elements than the implementation-defined maximum
number of elements in a JSON array, then an exception condition is raised: data exception — too
many JSON array elements.

n) 9.x Parsing JSON text

h) If JSON text is contained in a string the format of which is an implementation-defined format, the
rules for parsing that JSON text are implementation-defined.

i) If an error occurs during parsing JSON text contained in a string the format of which is an
implementation-defined format, an implementation-defined exception condition is raised.

n) 9.x Parsing JSON text

j) When serializing JSON items to JSON text, if the target data type is not a string type, the target type
shall be an implementation-defined data type appropriate to the format identified by the specified or
implicit format.

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 49 of 51

k) The actual value of the target type of serialization that is JSON text is implementation-dependent,
but must be parseable as JSON text.

10.x <JSON aggregate function>

l) If <JSON output clause> is not specified, then an implementation-defined string type is implicit.

m) An implementation-defined <JSON predicate uniqueness constraint> is used when serializing JSON
text.

n) If the explicit or implicit data type specified for the output of JSON text is not a character string
type, a numeric type, or a Boolean type, then the generated JSON text is cast to an implementation-
defined string type.

o) If a JSON object is constructed that has more members than the implementation-defined maximum
number of members in a JSON object, then an exception condition is raised: data exception — too
many JSON object members.

p) If a JSON array is constructed that has more elements than the implementation-defined maximum
number of elements in a JSON array, then an exception condition is raised: data exception — too
many JSON array elements.

10.x <JSON value expression>
a) FORMAT <implementation-defined JSON format> specifies an implementation-defined data format.

10.x <JSON output clause>
a) FORMAT <implementation-defined JSON format> specifies an implementation-defined data format.

b) If the target data type is a binary string type and ENCODING is not specified, then it is implementation-
defined whether UTF8, UTF16, or UTF32 is specified.

2.13 Changes to Annex C, “Implementation-dependent elements”
n) 9.x Parsing JSON text

a) Whether JSON object members with redundant duplicate keys are included in an object is
implementation-dependent. If the implementation-dependent choice is to omit members with
redundant duplicate keys, then when a JSON object is constructed in which two or more
members have the same key value, an implementation-dependent member is selected for
retention and all other such members are removed.

n) 9.x Serializing an SQL/JSON item

a) The result of serializing an SQL/JSON item is implementation-dependent.

10.x <JSON aggregate function>

a) The elements of a JSON array constructed without a <JSON array aggregate order by clause> are in
an implementation-dependent order.

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 50 of 51

Changes to Annex E, “Incompatibilities with ISO/IEC 9075-2:2011”

2.13.1 In list element 1), INSERT the following <reserved word>s in proper alphabetic order:
— JSON_ARRAY

— JSON_ARRAYAGG

— JSON_OBJECT

— JSON_OBJECTAGG

2.14 Changes to Annex F, “SQL feature taxonomy”

Feature ID Feature Name

Tx11 Basic SQL/JSON constructor functions

Tx12 SQL/JSON: JSON_OBJECTAGG

Tx13 SQL/JSON: JSON_ARRAYAGG with ORDER BY

2.15 Changes to “Bibliography”

2.15.1 INSERT the following bibliography references in the appropriate places

[Avro] http://avro.apache.org/

[BSON] http://bsonspec.org/

[JDIF] The JSON Data Interchange Format, http://www.ecma-international.org/publications/files/ECMA-
ST/ECMA-404.pdf

[JSONintro] Introducing JSON; http://www.json.org/

3. Comments Resolved
The present proposal, if accepted, would partially resolve CD ballot comment sequence P02-USA-950.

4. Coverage
The author of the present proposal believes that it covers certain required areas of concern as reflected in the
following table:

For All Proposals
1 Concepts Y

DM32.2-2014-00024R1 = WG3:PEK-___ — SQL/JSON, Part 1

Page 51 of 51

2 Access Rules N/A

3 Conformance Rules, including the relevant Annexes Y

4 Lists of SQL-statements by category N/A

5 Table of identifiers used by diagnostics statements N/A

6 Collation coercibility determination for changes related to character strings N/A

7 Closing Possible Problems when a proposal resolves them N/A

8 Any new Possible Problems clearly identified N/A

9 Reserved and non-reserved keywords Y

10 SQLSTATE tables and Ada package Y

11 Information and Definition Schemas N/A

12 Implementation-defined and –dependent Annexes Y

13 Incompatibilities Annex N/A

14 Embedded SQL bindings and host language implications N/A

15 Dynamic SQL issues: including Dynamic descriptor areas N/A

16 CLI issues N/A

End of paper

	American National Standards Institute
	INCITS DM32.2
	ISO/IEC JTC 1/SC 32
	Database Languages
	1. Discussion
	1.1 Introduction
	1.1.1 Ballot Comment Addressed
	1.1.2 What is JSON?
	1.1.3 Representations of JSON data
	1.1.3.1 Avro [Avro]
	1.1.3.2 BSON [BSON]
	1.1.3.3 Other JSON serializations

	1.1.4 Schemas
	1.1.4.1 JSON schemata
	1.1.4.2 Validity
	1.1.4.3 Avro schemata
	1.1.4.4 BSON schemata

	1.1.5 Why does JSON matter in the context of SQL? What is JSON’s relationship to NoSQL?
	1.1.6 JSON terminology
	1.1.7 Use cases for JSON support in SQL
	1.1.7.1 JSON data ingestion and storage
	1.1.7.2 JSON data generation from relational data
	1.1.7.3 Querying JSON as persistent semi-structured data model instances

	1.1.8 “Non-Use cases” and other “non-goals”
	1.1.8.1 Direct access to external JSON data
	1.1.8.2 Generation of JSON results containing only atomic values
	1.1.8.3 Updating JSON data
	1.1.8.4 Specification of the details of the JSON query language

	1.1.9 What features are needed to address those use cases?
	1.1.9.1 Storing JSON data in an SQL table
	1.1.9.2 Generating JSON in an SQL query
	1.1.9.3 Querying JSON data in SQL tables using SQL

	1.2 Architecture and design
	1.2.1 Lightweight
	1.2.2 No native JSON data type in SQL
	1.2.3 JSON is JSON
	1.2.4 Handle JSON using built-in functions
	1.2.4.1 JSON_OBJECT
	1.2.4.2 JSON_OBJECTAGG
	1.2.4.3 JSON_ARRAY
	1.2.4.4 JSON_ARRAYAGG

	1.2.5 Additional SQL syntax enhancements
	1.2.5.1 JSON input clause
	1.2.5.2 JSON output clause
	1.2.5.3 IS JSON predicate

	1.2.6 Handling of JSON nulls and SQL nulls
	1.2.7 Conformance to JSON constructor functions

	Solution
	2. Proposal
	2.1 Changes to Clause 2, “Normative references”
	2.1.1 Changes to Subclause 2.2, “Other international standards”
	2.1.1.1 INSERT the following normative references in the appropriate places

	2.2 Changes to Clause 3, “Definitions, notations, and conventions”
	2.2.1 Changes to Subclause 3.1.6, “Definitions provided in Part 2”
	2.2.1.1 INSERT the following definitions in the appropriate places

	2.3 Changes to Clause 4, “Concepts”
	2.3.1 INSERT a new Subclause:
	2.3.2 Changes to Subcluase 4.16.4, “Aggregate functions”
	2.3.2.1 REPLACE the fourth paragraph (“Every other aggregate function…”) with:
	2.3.2.2 APPEND after the last paragraph (“The hypothetical set functions…”):

	2.4 Changes to Clause 5, “Lexical elements”
	2.4.1 Changes to Subclause 5.2, “<token> and <separator>”
	2.4.1.1 INSERT the following new <reserved word>s in the appropriate locations:
	2.4.1.2 INSERT the following new <non-reserved word>s in the appropriate locations:

	2.5 Changes to Clause 6, “Scalar expressions”
	2.5.1 Modify Subclause 6.31, “<string value function>”
	2.5.1.1 INSERT the following new alternative to the production for <string value function>:
	2.5.1.2 MODIFY Syntax Rule 1), “The declared type of…”
	2.5.1.3 MODIFY General Rule 1), “The result of…”

	2.5.2 INSERT a new Subclause

	2.6 Changes to Clause 9, “Additional common rules”
	2.6.1 INSERT a new Subclause
	2.6.2 INSERT a new Subclause

	2.7 Changes to Clause 10, “Additional common elements”
	2.7.1 Changes to Subclause 10.9, “<aggregate function>”
	2.7.1.1 In the Format, INSERT a new alternative in the production for <aggregate function>
	2.7.1.2 INSERT a new Conformace Rule

	2.7.2 INSERT a new Subclause
	2.7.3 INSERT a new Subclause
	2.7.4 INSERT a new Subclause

	2.8 Changes to Clause 13, “SQL-client modules”
	2.8.1 Changes to Subclause 13.3, “<externally-invoked procedure>”
	2.8.1.1 ADD the following lines to the Ada package SQLSTATE_CODES defined in Syntax Rule 10)e):

	2.9 Changes to Clause 24, “Status codes”
	2.9.1 Changes to Subclause 24.1, “SQLSTATE”
	2.9.1.1 ADD the following entries to Table 33, “SQLSTATE class and subclass values”

	2.10 Changes to Clause 25, “Conformance”
	2.11 Changes to Annex A, “SQL conformance summary”
	2.12 Changes to Annex B, “Implementation-defined elements”
	2.12.1 INSERT the following list elements

	2.13 Changes to Annex C, “Implementation-dependent elements”
	Changes to Annex E, “Incompatibilities with ISO/IEC 9075-2:2011”
	2.13.1 In list element 1), INSERT the following <reserved word>s in proper alphabetic order:

	2.14 Changes to Annex F, “SQL feature taxonomy”
	2.15 Changes to “Bibliography”
	2.15.1 INSERT the following bibliography references in the appropriate places

	3. Comments Resolved
	4. Coverage

