
Whitemarsh Metabase
Data Modeler: Operational Data Model

Users Guide

December 2007

Whitemarsh Information Systems Corporation
2008 Althea Lane

Bowie, Maryland 20716
 Tele: 301-249-1142

Email: Whitemarsh@wiscorp.com
Web: www.wiscorp.com

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

ii

Table of Contents

1 Introduction . 1

2 Software Installation . 2

3 Database Design . 2

4 Reference Data . 5

5 Operation . 6

6 Process Model . 8
6.1 Reference Data . 10

6.1.1 Database . 10
6.1.2 DBMS (Database Management System) . 10

6.2 Fact Data . 27
6.2.1 DBMS Schema DBMS tables . 27

6.2.1.1 DBMS schema . 27
6.2.1.2 DBMS tables . 28
6.2.1.3 Import Tables . 32

6.2.2 DBMS columns . 38
6.2.2.1 DBMS Columns . 38
6.2.2.2 Maintain DBMS Column Value Domains . 42
6.2.2.3 Data Hierarchies . 44

6.2.3 Keys . 45
6.2.3.1 Primary . 45

6.2.3.1.1 Primary Key Definition . 45
6.2.3.1.2 Allocation of DBMS columns to the Primary Key 48

6.2.3.2 Foreign . 49
6.2.3.3 Candidate . 54

6.2.3.3.1 Candidate Key Definition . 54
6.2.3.3.2 Allocation of DBMS columns to the Candidate Key 56

6.2.3.3 Secondary . 57
6.2.3.3.1 Secondary Key Definition . 57
6.2.3.3.2 Allocation of DBMS columns to the Secondary Key 59

6.2.4 Reverse Engineering . 60
6.2.4.1 Reassign DBMS Columns to Column . 60
6.2.4.2 Reassign DBMS Columns to SQL Data Types . 62
6.2.4.3 Reassign DBMS Column to DBMS Table . 63
6.2.4.5 Reassign DBMS Tables to DBMS Schema . 65
6.2.4.5 Reassign DBMS Tables to DBMS Table . 65
6.2.4.7 Promote Operational Data Model to Implemented Data Model 67

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

iii

6.2.4.8 Promote Operational Data Model Table to Implemented Data Model 68
6.2.4.9 Remove DBMS Table DBMS Column to Column Assignments 69

6.2.5 SQL DDL . 70
6.2.5.1 SQL DDL Export . 70
6.2.5.2 Import . 75

6.2 Reports . 80

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

iv

List of Figures

Figure 1. Operational data model meta model design. 2
Figure 2. Login screen. 7
Figure 3. Database list. 12
Figure 4. Database update screen. 13
Figure 5. Data Architecture Class selection for a database. 14
Figure 6. Database Management Systems (DBMS) list. 15
Figure 7. DBMS update screen. 16
Figure 8. DBMS Data Types list. 17
Figure 9. DBMS Data Type update screen. 18
Figure 10. DBMS Data Type Pictures list. 19
Figure 11. DBMS Data Type update screen. 20
Figure 12. Data Architecture Classes list. 21
Figure 13. Data Architecture Classes update screen. 22
Figure 14. Database “Nature” list. 23
Figure 15. Database Nature update screen. 24
Figure 16. Database Production Status list. 25
Figure 17. Database Production Status update screen. 26
Figure 18. List of Operational Data Model Schemas. 27
Figure 19. Operational Data Model Schema update window. 27
Figure 20. List of DBMS Tables. 30
Figure 21. DBMS Table update screen. 31
Figure 22. Importing a Schema Table set into an Operational Data Model Schema. 32
Figure 23. Importing a Data Model Tree. 34
Figure 24. Data Model Tree. 35
Figure 25. Importing a single Table. 36
Figure 26. Importing a single column. 37
Figure 27. List of DBMS Columns. 39
Figure 28. DBMS Column update screen. 40
Figure 29. Error message received when updating a Foreign Key Column. 41
Figure 30. Assigning a value domain to a DBMS Column. 43
Figure 31. DBMS Column based data hierarchies. 44
Figure 32. List of Primary Keys. 46
Figure 33. Primary Key update screen. 47
Figure 34. Assigning DBMS Columns to a Primary Key. 48
Figure 35. Adding or updating a Foreign Key. 49
Figure 36. Foreign Key addition or update screen. 50
Figure 37. List of DBMS Tables for source for a Primary Key. 51
Figure 38. List of Tables for Target of Foreign Key. 52
Figure 39. Adding the Foreign Key present tense action phrase. 53
Figure 40. Candidate Key list. 54
Figure 41. Candidate Key update screen. 55

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

v

Figure 42. Candidate Key Column assignment. 56
Figure 43. List of Secondary Keys. 57
Figure 44. Secondary Key update screen. 58
Figure 45. Assigning a DBMS Column to a Secondary Key. 59
Figure 46. Reassigning a DBMS Column to a Column. 61
Figure 47. Re-assigning a DBMS Column Data Type to a different Data Type. 62
Figure 48. Re-assigning a DBMS Column to a different DBMS Table. 63
Figure 49. Synchronize DBMS Column local definitions. 64
Figure 50. Re-assign DBMS Tables to a different DBMS Schema. 65
Figure 51. Re-assigning a subDBMS Table to a different DBMS Table. 66
Figure 52. Promote Operational Data Model to Implemented Data Model. 67
Figure 53. Promote DBMS Table to a Implemented Data Model Schema. 68
Figure 54. Remove DBMS Table DBMS Column to Column assignments. 69
Figure 55. SQL DDL export screen. 71
Figure 56. Message from Schema based SQL DDL generation. 71
Figure 57. Selecting output file for SQL DDL generation. 73
Figure 58. Generated SQL DDL output file listing. 74
Figure 59. SQL DDL Import screen. 76
Figure 60. Selecting a SQL DDL import file. 77
Figure 61. Example of a SQL DDL import file. 78
Figure 62. Log File display of the SQL load process. 79

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

1

1 Introduction

The operational data model (ODM) component of the data modeler module is designed to
capture specifications of DBMS specific. Truly these are physical database designs. The key
characteristic of an operational data model is that its collection of DBMS tables, DBMS
columns, and DBMS relationships within a single database design targeted towards a specific
DBMS, hardware, and operating system environment..

There is therefore a hierarchical relationship between the Implemented, Operational, and
Operational data models.

DBMS column semantics are inherited exclusively from its foreign key related column
from within a table of an implemented data model.

If an organization already has operational databases (usually only about 100% of the
time), then, there is a SQL DDL import facility that can cause the creation of operational data
models from SQL DDL streams that are generated from DBMSs or from CASE tools, like
Erwin. Operational data models can also be promoted to an the implemented data model. Thus, if
there are multiple operational data models that have grown up over time within a single
functional area, for example, human resources, then the “biggest” can be selected for promotion
from operational to implemented. That promoted implemented data model should be transformed
to a third normal form design so that it is more of a “logical” design. Then the other imported
HR data models can be mapped to the single promoted implemented data model.

The document, Data Modeler Architecture and Concept of Operations, which can be
downloaded from the Whitemarsh website, www.wiscorp.com is an essential prerequisite
reading for the correct use of this data modeler component. It presents the “business problem”
being addressed. This user guide only briefly presents how to accomplish the solution.

Presumed Knowledge

This user guide, and all the other metabase user guides presume that the reader has read and is
completely familiar with the following documents: Metabase Common Processes, and Metabase
Bill of Materials and Single File Recursion (BOM/SFR Guide). These two documents serve as
metabase teaching guides for processes that commonly occur throughout the metabase system.

F7 invokes automatic spell checking on all text fields like names and descriptions.

Metabase Example

The metabase example, Movies, is a complete example of a business which is available from the
Whitemarsh website. The Movies Rental Corporation was modeled after the largest movies
rental corporation in the United States. As such, the example has national, regional, and retail
outlets. There are two data models, one for an original data capture, store based system, and
another which is a data warehouse for rented movies.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

2

Data Element &
Meta Category

Value

Meta Category
Value

Column

Table

Database

Data
Element

Business
Domain

Column & Meta
Category Value

Schema

DBMS DBMS Schema

DBMS Column

DBMS
Table

Value Domain

Copyright 2001, Whitemarsh Information Systems Corporation,
All Rights Reserved

3/8/2002

DBMS
Data
Type

DBMS
Table

Primary
Key

DBMS Table
Primary Key &
DBMS Column

DBMS Table
Foreign Key &

Column

DBMS Table
Foreign Key

Meta
Category

Value Type

SQL Data
Type

Operational Data Model

Meta Category
Value Type

Classification

Database
Architecture Class

DBMS Table
CandidateKey &
DBMS Column

DBMS Table
Candidate

Key

DBMS Table
Secondary

Key

DBMS Table
Secondary Key &
DBMS Column

Figure 1. Operational data model meta model design.

2 Software Installation

Metabase installation is explained in the Metabase Administrators Guide.

3 Database Design

The operational data model module depicted in Figure 1.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

3

The operational data model has the following DBMS tables:

! Database
! Database Architecture Class
! Database Nature
! Database Production Status
! DBMS
! DBMS Column
! DBMS Schema
! DBMS Table
! DBMS Table Candidate Key
! DBMS Table Candidate Key & DBMS Column
! DBMS Table Foreign Key
! DBMS Table Foreign Key and DBMS Column
! DBMS Table Primary Key
! DBMS Table Primary Key & DBMS Column
! DBMS Table Secondary Key
! DBMS Table Secondary Key & DBMS Column
! DBMS Data Type
! DBMS Data Type Picture

Explicit in this database design are the following:

! A database is named collection of DBMS tables within the structure of a DBMS
schema. A well designed database presents a unified set of policy evidenced
through the rows of data within a specific subject area.

! Database Architecture Class is a characterization of a database. That is, original
data collection, transaction data staging area (TDSA), subject area database, data
warehouse (wholesale or retail), or reference data. An explanation of these
database architecture classes is presented in a paper named, Data Architectures,
that is on the Whitemarsh website.

! Database Nature is a general classification of the business type and use of the
database. Value examples would include operational, control, management.

! Database Production Status is a classification of the status of the database.
Commonly employed values are development, test and production.

! DBMS a software system that defines, creates, accesses and maintains databases.

! DBMS columns are the manifestation of the semantics of a column within a
DBMS table of a DBMS schema. Not all the DBMS columns of a DBMS table
must map to attributes from a single table.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

4

! A DBMS data type is a DBMS vendor’s classification of the values represented
by a column of a row of data. The data types common represented are character,
integer, binary, and the like. Each DBMS data type imposes a set of rules
regarding allowable values and allowed operations on the values. For example
adding an integer value to a date value, but disallowing the adding of two dates.

! DBMS Data Type Picture is the picture clause associated with a data type so that
a complete DDL script can be produced for the Clarion for Windows application
development environment.

! A DBMS table is intended to be a well defined expression of one policy within a
DBMS schema. Ideally, the collection of all the DBMS tables within a DBMS
schema area should define a coherent collection policy. A DBMS table may
contains DBMS columns that map to columns from multiple tables. This enables
operational databases to be non-third-normal form while the implemented data
model is. Additionally the DBMS table can have formally defined subtypes.

! DBMS table candidate keys represent a collection of DBMS columns within an
DBMS table that when their values are collectively employed would result in the
retrieval or update of a single row of data for that DBMS table. There may be
multiple candidate keys within an DBMS table. DBMS columns of candidate
keys are not allowed to overlap each other or the DBMS table’s primary key.

! DBMS table candidate key & DBMS columns are the relationship between an
DBMS table candidate key and the DBMS columns that comprise the key. The
DBMS columns exist within a implemented sequence. Candidate key DBMS
columns are not allowed to include any DBMS columns within the DBMS table’s
primary key.

! DBMS table foreign keys represent a related DBMS table’s primary key. The
name of the foreign key should match closely the relationship that the key is to
represent. The DBMS columns of the foreign key should be able to be deleted
entirely from the DBMS table without any loss of policy. The DBMS columns of
the foreign key are not allowed to overlap the DBMS columns of the DBMS
table’s primary key. In addition to the foreign key’s DBMS columns there are
additional rules governing inserts, updates, and deletes.

! DBMS table foreign key & DBMS columns are the relationship between an
DBMS table foreign key and the DBMS columns that comprise the key. The
DBMS columns exist within a implemented sequence. Foreign key DBMS
columns are not allowed to include any DBMS columns within the DBMS table’s
primary key.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

5

! DBMS table primary keys represent a collection of DBMS columns within an
DBMS table that when their values are collectively employed would result in the
retrieval or update of a single row of data for that DBMS table if that DBMS table
had actually been a DBMS table. There can only be one primary key within an
DBMS table. DBMS columns of primary key are not allowed to overlap each
other or the DBMS table’s candidate key.

! DBMS table primary key & DBMS column are the relationship between an
DBMS table primary key and the DBMS columns that comprise the key. The
DBMS columns exist within a implemented sequence. Primary key DBMS
columns are not allowed to include any DBMS columns within the DBMS table’s
primary key.

! DBMS table Secondary Key represents a collection of DBMS columns within an
DBMS table that when their values are collectively employed would result in the
retrieval or update of one or more rows of data for that DBMS. There can be
multiple secondary keys within an DBMS table. DBMS columns of secondary
key are allowed to overlap each other or the DBMS table’s secondary key.

! DBMS table Secondary Key & DBMS column are the relationship between an
DBMS table secondary key and the DBMS columns that comprise the key. The
DBMS columns exist within a implemented sequence. Secondary key DBMS
columns are not allowed to include any DBMS columns within the DBMS table’s
secondary key.

! DBMS schemas represent a database structure of DBMS tables and relationships
within the enterprise. Operational data models data models are cast within the
domain of a DBMS schema. The set of all DBMS tables within a DBMS schema
is not required to be taken from a single set of entities within a subject area.

4 Reference Data

The reference data in the operational data model consists of the SQL Data Type. Readers are
encouraged to thoroughly review and understand the Data Modeler Architecture and Concept of
Operations book that is available from the Whitemarsh website, www.wiscorp.com.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

6

5 Operation

Once the application is installed it is ready to use. Just invoke the software from the metabase
program. The application is a traditional windows application. Metabase reports are
accomplished through any ODBC class report writer such as Crystal Reports.

5.1 Log In Process

Figure 2 shows the log-in screen that appears immediately after the application is started.
Entered is your user name and your password. These are created by the Metabase Administrator
through the metabase administration module. Please contact your metabase administrator to set
up your user name and password. Once a user name and password is established, all the user’s
information can be changed by the user through a restricted use version of the administrator
software. Once the send button is pressed the specific metabase database instances that can be
accessed by the user is presented. The metabase is such that users are allowed to use specific
metabase instances and specific metabase modules.

In this particular example, the user, once they sent their user name and password are
shown the metabase database that they can access, that is, Movies. Highlight the choice and
press the Select button. Once that is done then the metabase name, Movies, is shown as the data
set that is being accessed.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

7

Figure 2. Login screen.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

8

6 Process Model

The operational data modeler process consists of three classes of processes:

! Reference Data
! Fact Data Entry
! Reports

The top level menu for operational data model contains the following top level items:

! DBMS schemas & DBMS tables
! DBMS columns
! Keys
! Reference Data

Each menu item contains as appropriate, nested subordinate menu items. The complete menu is
provided in the table that follows. When a actual process is activated, its existing list is
presented. To add, change or delete an item on the browse list, the Insert, Change, or Delete
button is pressed. The form that is then presented supports the entry of all the data that is needed.

 -- DBMS Schemas Tables
 -- DBMS Schema
 -- DBMS Table
 -- Data Model Tree

 -- Import and Export
 -- Export To Clarion TXD

 -- Import From Implemented Data Model
 -- Import Schema Table Set
 -- Import Table Tree from Schema
 -- Import Single Table from Schema
 -- Import Columns from Schema

 -- SQL DDL
 -- Import
 -- Export

 -- DBMS Columns
 -- DBMS Columns
 -- DBMS Column Value Domains
 -- Data Hierarchies

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

9

 -- Keys
 -- DBMS Table Primary Key
 -- DBMS Table Primary Key Columns
 -- DBMS Table Foreign Key
 -- DBMS Table Candidate Key
 -- DBMS Table Candidate Key Columns
 -- DBMS Table Secondary Key
 -- DBMS Table Secondary Key Columns

 -- ReEngineering
 -- Reassign DBMS Columns to Columns
 -- Reassign DBMS Column to DBMS Data Types
 -- Reassign DBMS Columns to DBMS Tables
 -- Synchronize Column Local Definitions
 -- Reassign DBMS Tables to DBMS Schemas
 -- Reassign DBMS Tables to DBMS Tables
 -- Promote Operational Data Model to Implemented Data Model
 -- Promote Operational Data Model Table To Implemented Data Model
 -- Remove DBMS Table DBMS Column Column Assignments

 -- Reference Data

 -- Database Information
 -- Data Architecture Class
 -- Nature
 -- Production Status

 -- DBMS Information
 -- DBMSs
 -- DBMS Data Types
 -- DBMS Data Type Pictures

Menu for Operational Data Model

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

10

6.1 Reference Data

There are six types of reference data in the operational data model. These are:

! Database
! DBMS
! DBMS Data Type
! DBMS Data Type Picture
! Database Architecture Class
! Nature
! Production Status

6.1.1 Database

Figure 3 presents a list of databases. The information related to a database is its overall quantity
of columns (fields), quantity of rows, size in megabytes, and it’s status in terms of database
architecture class, production status and nature. The complete description of a database is of
course represented through its semantics, that is it’s schema and then all the related tables,
columns, and relationships. Databases may be implemented through one or more DBMSs. Figure
4 presents the update screen for adding or modifying a database. Entering the specific database
architecture class, production status and nature involves entering a zero, then tabbing through. A
selects screen then appears. Figure 5 illustrates the select screen for Database Architecture
Classes. The select screens for Database Nature and Production Status are the similar.

6.1.2 DBMS (Database Management System)

Databases and DBMSs are very different things. A database is a collection of rows of data across
a set of tables within a schema. In contrast, a DBMS is commercial vendor’s product that
manages a database. For example, Oracle, Sybase, or IBM’s DB/2. Figure 6 presents a set of
DBMSs. Figure 7 presents an update screen for DBMS.

6.1.3 DBMS Data Types

Figure 8 presents the list of DBMS data types. First highlight the specific DBMS then the
appropriate data type within the DBMS. To then insert, change or delete a SQL data type press
the appropriate button. Figure 9 presents the DBMS data type update screen.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

11

6.1.4 DBMS Data Type Pictures

Figure 10 presents the list of DBMS Data Type pictures. First highlight the specific Data Type
Picture, and then the various data types within the different DBMS data types are shown. To then
insert, change or delete a DBMS Data Type Picture press the appropriate button. Figure 11
presents the DBMS Data Type Picture update screen.

6.1.5 Database Architecture Class

Figure 12 presents the list of Database Architecture Classes. To then insert, change or delete a
Database Architecture Class press the appropriate button. Figure13 presents the Database
Architecture Class update screen.

6.1.6 [Database] Nature

Figure 14 presents the list of Database Natures. To then insert, change or delete a Database
Nature press the appropriate button. Figure 15 presents the Database Nature update screen.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

12

6.1.6 [Database] Production Status

Figure 16 presents the list of DBMS data types. First highlight the specific DBMS then the
appropriate data type within the DBMS. To then insert, change or delete a SQL data type press
the appropriate button. Figure 17 presents the DBMS data type update screen.

Figure 3. Database list.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

13

Figure 4. Database update screen.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

14

Figure 5. Data Architecture Class selection for a database.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

15

Figure 6. Database Management Systems (DBMS) list.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

16

Figure 7. DBMS update screen.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

17

Figure 8. DBMS Data Types list.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

18

Figure 9. DBMS Data Type update screen.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

19

Figure 10. DBMS Data Type Pictures list.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

20

Figure 11. DBMS Data Type update screen.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

21

Figure 12. Data Architecture Classes list.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

22

Figure 13. Data Architecture Classes update screen.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

23

Figure 14. Database “Nature” list.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

24

Figure 15. Database Nature update screen.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

25

Figure 16. Database Production Status list.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

26

Figure 17. Database Production Status update screen.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

27

6.2 Fact Data

The fact data consists of:

! DBMS schema Tables
! DBMS columns
! Keys
! Re-Engineering
! Reference Data

The reference data items are addressed in Section 6.1.

6.2.1 DBMS Schema DBMS tables

The DBMS Schemas and DBMS Tables processes enable the entry and update of the main
components of a operational data model. It consists of the following:

! DBMS schema
! DBMS table
! Import Tables
! Reverse Engineering
! SQL DDL

6.2.1.1 DBMS schema

DBMS schemas with respect to the operational data model are expressions of enterprise policy
within a defined database. Figure 18 presents a list of DBMS schema. This list shows an
“unknown” DBMS schema. This is necessary so that when one or more DBMS DBMS tables,
DBMS DBMS columns and the like are promoted to be an operational model set of DBMS
tables and DBMS columns, there is a valid foreign key identifier for the newly created DBMS
table, albeit “unknown.” Once these are created then the reverse engineering process of changing
the DBMS schema for a DBMS table can be accomplished.

If a entirely new DBMS schema is to be entered, press Insert. A screen like Figure 19 is
presented. The DBMS schema’s name, abbreviations, and description can then be entered.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

28

6.2.1.2 DBMS tables

An DBMS table is a self contained aspect of policy within a DBMS schema. The DBMS
columns within the DBMS table provide for the values that instantiate the policy. A collection of
DBMS tables within the same DBMS schema area provide a comprehensive view of the DBMS
schema’s policy.

Figure 20 presents a list of DBMS tables. Within the DBMS, there are DBMS tables.
Within the highlighted address DBMS table are a collection of DBMS columns.

This screen contains buttons for the DBMS schema, DBMS tables, and DBMS columns.
For the DBMS Schema browse, the buttons are:

Figure 18. List of Operational Data Model Schemas.

Figure 19. Operational Data Model Schema update window.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

29

! Select Abbreviation Business Domain
! Auto Abbreviate all columns in all tables
! Replace blanks with underscores

The first button enables the selection of the business domain from within which the
abbreviations are chosen. If no abbreviation exists, then “****” is substituted for the “not found”
abbreviation. The second button then triggers the process of abbreviating all columns in all
tables for that schema. The third button replaces any blanks with underscores in the event that a
column’s name remains that has blanks.

For the DBMS Table browse, the buttons are:

! Delete All Tables.... DBMS Schema
! Select Abbreviation Business Domain
! Auto Abbreviate all columns in all tables

The first button causes all tables, columns, and keys to be deleted for a Selected DBMS schema.
If there are DBMS columns associated with a View then the association between those View
Columns and the DBMS columns is deleted as well.

The second button enables the choice of the domain for creating abbreviations for the
specifically selected table, and the third button triggers the process of making the abbreviations.

For the DBMS Column browse, the two buttons are:

! Select Abbreviation Business Domain
! Abbreviate selected column

To add a new DBMS table, highlight the containing DBMS schema and then press the
Insert button. A screen like Figure 21 is displayed. A DBMS table can be created underneath the
“unknown” DBMS schema and then re-assigned later. The DBMS table’s name, abbreviations,
and description can be added or changed. The DBMS columns associated with an DBMS table
are addressed in Section 6.2.2.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

30

Figure 20. List of DBMS Tables.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

31

Figure 21, the DBMS Table update screen is where you make the local definition and the
contextual definition. Just make a simple phrase for the local definition. When the AutoDef
button is pressed then all the contextual parts of the DBMS Table’s definition are gathered and
employed in a more comprehensive description of the DBMS Table.

Figure 21. DBMS Table update screen.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

32

6.2.1.3 Import Tables

The process of importing tables from the implemented data model to make operational data
model tables is presented in four scenarios:

! Import Schema Table Set
! Import Table Tree
! Import Single Table
! Import Columns from an Entity

6.2.1.3.1 Import Schema Table Set

The import subject entity set is depicted in Figure 22. First highlight the schema. The tables
within that schema are then displayed. Then select a target DBMS Schema. If the target DBMS
Schema is not present, then create it through the Insert button. Finally, press the Import button.
What will be imported with be JUST the tables within that schema. In this case, just the movie
and movie copy would be imported. All keys, primary, candidate, and foreign are imported as
well.

The last step that is taken is that all newly created DBMS Columns are “pointed back” to
the columns.

6.2.1.3.2 Import Table Tree

The process of importing a table tree from an Implemented Data Model is depicted in Figure 23.
First highlight the Schema, then the Table that is at the top of a hierarchy. To ensure that you
have an apex table, highlight what seems to be the apex table and then press the button, Ancestor
and Descendent tree. Then press the Display Tree. The bottom left window displays the built
tree. The table that is black is the table that is the root table of the displayed tree. Descendent
tables are in blue, ancestor tables are in red, and subtyped tables are in cyan. If all the displayed
tables are in blue then the one you picked is an apex table. You can however import a tree which
has both ancestors and decedents.

You can also more fully display all the tables, columns and keys across the tables of the
tree by pressing the Display Data Model Tree button. The data model tree is presented in Figure
24.

When a target DBMS schema is able to be selected, highlight the target DBMS schema
and the press the Import button. If the target DBMS schema is not present, then create it through
the Insert button. Finally, press the Import Tree button. Built will be all the operational data
model DBMS tables, DBMS columns, and DBMS relationships. All the mapping between the
newly created operational data model and the implemented data model will be created as well.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

33

The only tables and columns that will be imported are those in a direct ancestor-descendent
relationship of the displayed tree root node. Skipped are foreign keys and columns of foreign
keys that are not in a direct line with the root table.

If multiple specified data model trees are imported into the operational data model
through this process, they are obviously unconnected. Sorry, but there’s no magic. Additional
foreign key relationships will have to be built between as primary key of one newly created
DBMS table from one operational data model tree and another of the newly created table of a
different data model tree. With this technique you can create an operational data model set of
DBMS tables from more than one Implemented Data Model Schema’s set of tables.

Figure 22. Importing a Schema Table set into an Operational Data Model Schema.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

34

Figure 23. Importing a Data Model Tree.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

35

Figure 24. Data Model Tree.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

36

6.2.1.3.3 Import Single Table

The screen for importing a single table from an Implemented Data Model is depicted in Figure
25. First highlight the schema, then the table that is at the top of a hierarchy. Now, on the right
side of the window, highlight the target DBMS schema. If none are shown then create one.

When a target DBMS schema is able to be selected, highlight the target DBMS schema
and the press the Import button. Built will be the operational data model DBMS table, DBMS
columns, and DBMS relationships. All the mapping between the newly created operational data
model and the implemented data model will be created as well.

The table that is imported into the operational data model through this process is
obviously unconnected. Sorry, but there’s no magic. Additional foreign key relationships will
have to be built between the created DBMS table and existing DBMS tables

Figure 25. Importing a single Table.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

37

6.2.1.3.4 Import Columns from a Table

The screen for importing one or more columns from an Implemented Data Model is depicted in
Figure 26. First highlight the schema, then the table. Then tag one or more columns. On the
right side, select the DBMS schema and then tag ONE DBMS table. It is the DBMS table into
which the columns will be imported. All the mapping between the newly created DBMS
columns and the implemented data model table columns will be created as well.

Figure 26. Importing a single column.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

38

6.2.2 DBMS columns

DBMS columns are the value based characteristics of an DBMS table. Included in the definition
of DBMS columns are:

! DBMS columns
! DBMS column value domains
! Data Hierarchies

6.2.2.1 DBMS Columns

Creation or maintenance of DBMS columns starts with a list of DBMS columns. Figure 27
shows the list of DBMS columns for highlighted subject and DBMS table. If an DBMS column
is to be changed then press the Change button. Figure 28 is then presented. New DBMS columns
can also be created through Figure 27 by pressing the Insert button. An operational data model
DBMS column is not the use of a data element within a DBMS table as an Implemented Data
Model column is within a table. Rather it’s entirely new and independent. If you want an
Implemented Data Model column to be the template then use the Import Column process in an
earlier section. Alternatively you can create the new DBMS column, and then through the
ReEngineering feature, assign the Operational Data Model DBMS Table DBMS column to an
Implemented Data Model Table Column. Either way works. Finally, you can leave the newly
created DBMS column independent.

If the DBMS column is not within a foreign key then all the meta DBMS columns of the
DBMS column can be changed. If, however, the DBMS column is part of foreign key Figure 29
is displayed with the message that the only meta DBMS column that can be changed is its
description.

Figure 28 also shows the UnAbbrev process. In the event that an SQL data definition
language stream is imported, the physical names, that is abbreviated may be what is imported.
For example, Empl_Hr_Dt. Under this update process, once the Business Domain has been
chosen via the Select Abbreviation Business Domain button, the UnAbbrev button can be
pressed. If there has been a good quantity of abbreviations established on various business
domains, then the physical name can be automatically translated to a logical name. If there are
multiple logical names for a given physical abbreviation, a screen presents itself and an
appropriate logical name can be chosen for a given word. In this example, the full name
becomes, Employee Hire Date.

Finally, enter the Local Definition phrase. Keep it just a phrase without a capital letter at
the start and no period or comma at the end. For a complete contextual definition, then press the
AutoDef button.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

39

Figure 27. List of DBMS Columns.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

40

Figure 28. DBMS Column update screen.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

41

Figure 29. Error message received when updating a Foreign Key Column.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

42

6.2.2.2 Maintain DBMS Column Value Domains

DBMS Column value domains exist within the context of column value domains which in turn
exist within the context of data element value domains, data element concept domains and then
value domains. Figure 30 presents the screen for viewing and then maintaining DBMS column
value domains. To see the specific value domain for a DBMS column, highlight the DBMS
schema, DBMS table, and then DBMS column. The related column, attribute and data element
for the DBMS column is then displayed along with any value domains that are allowed to be
assigned. If there already are DBMS column value domains associated with the DBMS column’s
column, attribute or data element they are shown.

To assign a value domain, highlight it and press the Select button. If the selected value
domain is within the value domain of one already assigned to the DBMS column’s column and
data element the assignment is accepted. If the selected value domain is a superset of an already
assigned value domain the assignment is rejected. If the DBMS column does not have an
assigned column the assignment is rejected. While this seems counterintuitive, it is because of
the lack of context that an assignment cannot then be validated. Value domains are within the
context of Conceptual Value Domains. Data Element Concepts are within the context of
Conceptual Value Domains (as well as Concepts). A Data Element is the contextual deployment
of a Data Element Concept and a Value Domain. Without these contexts, the assignment cannot
be validated; hence the assignment is rejected.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

43

Figure 30. Assigning a value domain to a DBMS Column.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

44

6.2.2.3 Data Hierarchies

A key value in the entire set of data modeler modules is the presentation of data hierarchies. For
the operational data model, any highlighted DBMS column has only one parent column,
attribute, data element and data element domain. Hence, in Figure 31, they are shown above the
traditional browse.

As a browse progresses from one DBMS column to the next the respective attribute, data
element and data element domain changes as well as the related set of operational data model
DBMS DBMS columns.

Figure 31. DBMS Column based data hierarchies.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

45

6.2.3 Keys

Entities are accessed through the use of keys. The keys included in the operational data model
include:

! Primary
! Foreign
! Candidate
! Secondary

6.2.3.1 Primary

Included in the definition of a complete primary key is:

! Primary key definition
! Allocation of DBMS columns to the primary key

6.2.3.1.1 Primary Key Definition

A primary key of an DBMS table is a set of one or more DBMS columns that represent values
that when employed result in only one selected row. Figure 32 shows the current set of primary
keys. There can, of course, only be one primary key for each DBMS table. To see the DBMS
columns assigned to a particular primary key, highlight the appropriate subject, and then DBMS
table. To add a primary key if there is none for an DBMS table press Insert.

If a primary key is already defined then an error message is displayed. If the primary key
has already been used as the basis of relationships with other DBMS tables (that then has the
primary key manifest as a foreign key) then a severe warning message is given before the delete
operation is permitted to continue. If a delete operation is tried and if the primary key DBMS
column is employed as a DBMS column in the operational data model the operation fails.

If the Insert or change action succeeds, the Figure 33 is displayed. On an Insert, the name
is automatically constructed as the concatenation of the DBMS table name and the string,
“Primary Key.” The name can be changed. In addition to the name a description can be added or
changed.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

46

Figure 32. List of Primary Keys.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

47

Figure 33. Primary Key update screen.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

48

6.2.3.1.2 Allocation of DBMS columns to the Primary Key

A primary key is a collection of DBMS columns. The order of the DBMS columns within the
primary key imply the order of the values used to select rows of data given that the DBMS table
is in fact a DBMS table. Figure 34 presents a list of the primary keys and the current set of
DBMS columns assigned to each. To assign an DBMS column to a primary key, highlight the
subject then the DBMS table, then tag the appropriate DBMS table primary key. Then, from the
DBMS table’s shown DBMS columns, tag the one or more DBMS columns that comprise the
primary key. Finally, press the Build button. The DBMS columns that then comprise the primary
key are shown in the bottom window. Once the DBMS columns are assigned, the Up|Down
buttons can be used to change the sequence of the DBMS columns within the primary key.

Figure 34. Assigning DBMS Columns to a Primary Key.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

49

6.2.3.2 Foreign

Foreign keys are primary keys from another DBMS table. Hence this key is a foreign key. There
are only two critical pieces of information necessary to create a foreign key are the specific
primary key of the source DBMS table, and the target DBMS table. Once these two pieces of
information are provided then the rest is automatic. That is, the foreign key’s name, and DBMS
columns that comprise it.

Figure 35 presents the current list of foreign keys. To enter a new foreign key, highlight
the subject, and then the DBMS table that is to contain the foreign key. The current list of
foreign keys within that DBMS table are listed. To then create a new foreign key, press Insert.
To change an existing foreign key press Change, and to delete an existing foreign key press
Delete. The foreign key update screen is presented in Figure 36.

Figure 35. Adding or updating a Foreign Key.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

50

Figure 36. Foreign Key addition or update screen.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

51

Figure 36 presents the form for entering a new foreign key. The first step is the enter the
value for DBMS table Pkey Id. If valued with a zero and then the Tab key is pressed, a list like
the one in Figure 37 is presented. Highlight the appropriate subject and then the appropriate
primary key, which also shows the source DBMS table name. Then press Select.

If the DBMS table that was to contain the foreign key had been previously highlighted
before the Insert button was pressed then the DBMS table’s Id and name appears as the second
data entry item. If a zero appears, then press Tab to cause a list of possible target entities. Figure
38 shows that list. Highlight the appropriate DBMS table and press Select.

Figure 37. List of DBMS Tables for source for a Primary Key.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

52

Figure 38. List of Tables for Target of Foreign Key.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

53

Then, the third step is to enter a singular present tense action phrase. This phrase, for
example, have, is employed to construct the foreign key’s name. Figure 39 illustrates the entry of
the singular present tense action phrase. Immediately below the phrase, Have, is the constructed
foreign key name, Customer must have order header. Customer is the source DBMS table.
Order header is the target DBMS table, and “have” is the action phrase. The word must results
from the default or selected Referential Actions, No Action. A complete set of the meanings of
the Referential actions is contained in the Data Modeler Architecture book from the Whitemarsh
website.

Figure 39. Adding the Foreign Key present tense action phrase.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

54

6.2.3.3 Candidate

Included in the definition of a complete candidate key is:

! Candidate key definition
! Allocation of DBMS columns to the candidate key

6.2.3.3.1 Candidate Key Definition

A candidate key of an DBMS table is a set of one or more DBMS columns that represent values
that when employed result in only one selected row. Figure 40 shows the current set of candidate

Figure 40. Candidate Key list.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

55

keys. There can be multiple candidate keys for each DBMS table. To see the DBMS columns
assigned to a particular candidate key, highlight the appropriate subject, and then DBMS table.

To add a candidate for an DBMS table press Insert. If the Insert or change action
succeeds, the Figure 41 is presented. On an Insert, the name is automatically constructed as the
concatenation of the DBMS table name and the string, “Candidate Key.” The name can be
changed. In addition to the name a description can be added or changed.

Figure 41. Candidate Key update screen.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

56

6.2.3.3.2 Allocation of DBMS columns to the Candidate Key

A candidate key is a collection of DBMS columns. The order of the DBMS columns within the
candidate key imply the order of the values used to select rows of data given that the DBMS
table is in fact a DBMS table. Figure 39 presents a list of the candidate keys and the current set
of DBMS columns assigned to each. To assign an DBMS column to a candidate key, highlight
the subject then the DBMS table, then tag the appropriate DBMS table candidate key. Then,
from the DBMS table’s shown DBMS columns, tag the one or more DBMS columns that
comprise the candidate key. Finally, press the Build button. The DBMS columns that then
comprise the candidate key are shown in the bottom window. Once the DBMS columns are
assigned, the Up|Down buttons can be used to change the sequence of the DBMS columns within
the candidate key.

Figure 42. Candidate Key Column assignment.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

57

6.2.3.3 Secondary

Included in the definition of a complete secondary key is:

! Secondary key definition
! Allocation of DBMS columns to the secondary key

6.2.3.3.1 Secondary Key Definition

A secondary key of an DBMS table is a set of one or more DBMS columns that represent values
that when employed result in one or more selected rows. Figure 43 shows the current set of

Figure 43. List of Secondary Keys.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

58

secondary keys. There can be multiple secondary keys for each DBMS table. To see the DBMS
columns assigned to a particular secondary key, highlight the appropriate subject, and then
DBMS table.

To add a secondary for an DBMS table press Insert. If the Insert or change action
succeeds, the Figure 44 is presented. On an Insert, the name is automatically constructed as the
concatenation of the DBMS table name and the string, “Secondary Key.” The name can be
changed. In addition to the name a description can be added or changed.

Figure 44. Secondary Key update screen.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

59

6.2.3.3.2 Allocation of DBMS columns to the Secondary Key

A secondary key is a collection of DBMS columns. The order of the DBMS columns within the
secondary key imply the order of the values used to select rows of data given that the DBMS
table is in fact a DBMS table. Figure 45 presents a list of the secondary keys and the current set
of DBMS columns assigned to each. To assign an DBMS column to a secondary key, highlight
the subject then the DBMS table, then tag the appropriate DBMS table secondary key. Then,
from the DBMS table’s shown DBMS columns, tag the one or more DBMS columns that
comprise the secondary key. Finally, press the Build button. The DBMS columns that then
comprise the secondary key are shown in the bottom window. Once the DBMS columns are
assigned, the Up|Down buttons can be used to change the sequence of the DBMS columns within
the secondary key.

Figure 45. Assigning a DBMS Column to a Secondary Key.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

60

6.2.4 Reverse Engineering

Reverse engineering is the process of recasting an already created collection of operational data
model components. Included are:

! Reassign DBMS column to column
! Reassign DBMS column to DBMS data type
! Reassign DBMS column to DBMS table
! Synchronize DBMS Column Local Definitions
! Reassign DBMS tables to DBMS schema
! Reassign DBMS table to DBMS Table
! Promote operational data model to implemented data model
! Promote operational data model table to an implemented data model
! Remove DBMS Table DBMS Column to Column assignments

6.2.4.1 Reassign DBMS Columns to Column

Figure 46 presents the screen through which DBMS columns are re-assigned different SQL data
types. Tag one or more DBMS columns in the left window. Then Tag one SQL data type in the
right window and then press the Re-Assign button. Once the re-assignment process is compete
the reallocated DBMS columns appears in the left window.

A reason for reassigning a DBMS column to a column include, for example, importing a
legacy database design and then mapping it to a canonical database design at the Implemented
Data Model level. Or, to have created a canonical data model design at the Implemented Data
Model level and to make several, but different Operational Data Model Designs.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

61

Figure 46. Reassigning a DBMS Column to a Column.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

62

6.2.4.2 Reassign DBMS Columns to SQL Data Types

Figure 47 presents the screen through which DBMS columns are re-assigned different SQL data
types. Tag one or more DBMS columns in the left window. Then Tag one SQL data type in the
right window and then press the Re-Assign button. Once the re-assignment process is compete
the reallocated DBMS columns appears in the left window.

When a implemented data model is imported as an operational data model or when an
operational data model is promoted to be an operational data model then in both cases the default
assigned SQL data type is “unknown.” Because of that, this process is required. Data types are
unknown in the implemented data model as that is an unnecessary detail for that level of data
model. Data types are not definitively known from the operational data model because the
assigned DBMS column’s data type might be specific to a specific DBMS.

Figure 47. Re-assigning a DBMS Column Data Type to a different Data Type.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

63

6.2.4.3 Reassign DBMS Column to DBMS Table

DBMS tables can be sub-typed. Essentially that means that the complete set of DBMS columns
can be spread across a DBMS table family. A DBMS table family is a root DBMS table and one
or more sub-tables or their sub-tables. During the process of creating DBMS columns within a
DBMS table it might be discovered that the DBMS column really belongs in a different DBMS
table. This type of reassignment supports moving a column from one DBMS table within a
DBMS table family to another DBMS table.

Figure 48 illustrates the process of reassigning one or more DBMS columns from one
DBMS table to another DBMS table within the same family. Highlight the schema and then the
DBMS table. Then tag one or more DBMS columns that are to be moved. Then tag the DBMS
table to which the DBMS columns are to be moved. Press the reassigning button. The DBMS
columns are then moved.

Figure 48. Re-assigning a DBMS Column to a different DBMS Table.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

64

6.2.4.4 Synchronize DBMS Columns to Local Definitions

DBMS Columns have local definitions. Some DBMS columns within different DBMS tables and
DBMS Schemas are to have essentially the same local definition. For example, in several of the
DBMS tables within this movies demo database has a Movie Name attribute. For sure, in all
cases the local definition would be, “the name of the movie.” If this local definition is different
across the DBMS columns of the different DBMS tables and DBMS Schemas, users will wonder
why the difference exists. What’s the hidden meaning because of the difference? Figure 49
provides the ability to synchronize local definitions across DBMS columns. On the left side,
select a DBMS Schema, DBMS table, and then tag the DBMS column that is to be source of the
local definitions. On the right side of Figure 49, select as many different DBMS columns as may
be appropriate. Do this by selecting the DBMS Schemas, DBMS tables, and DBMS columns.
Different DBMS columns from the different DBMS tables, and DBMS schemas can be selected
and tagged. Once selected and tagged, press the Synchronize Definition button. Note: the only
definition that is synchronized is the local definition. The contextual definition will have to be
re-generated.

Figure 49. Synchronize DBMS Column local definitions.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

65

6.2.4.5 Reassign DBMS Tables to DBMS Schema

Figure 50 displays the process for re-assigning DBMS tables to different DBMS schemas. The
process starts with highlighting the DBMS table that is to be re-assigned. Tag one or more
DBMS tables that are to be re-assigned. Then highlight and tag the new DBMS schema. Once
the DBMS tables and a DBMS schema is tagged, press the Re-Assign button. The underlying
process then re-assigns the DBMS table from the current DBMS schema to the new DBMS
schema. Once all the tagged DBMS tables are reassigned the windows are redisplayed with the
newly assigned DBMS schemas.

6.2.4.5 Reassign DBMS Tables to DBMS Table

Figure 50. Re-assign DBMS Tables to a different DBMS Schema.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

66

As stated above, DBMS tables can have sub-typed DBMS tables. This is shown in Figure 51. A
DBMS table might be pushed too far down in the DBMS table family. In this case the
reassignment allows the “parent” of an sub-typed DBMS table to be changed. To accomplish
this, tag one or more DBMS tables in the left window and then the new parent in the right
window. Then press the Re-assign button. If a re-assign message is appropriate on either the left
or right window it will be displayed. These messages are designed to prevent inappropriate re-
assignments. For example, making a different root DBMS table.

Figure 51. Re-assigning a subDBMS Table to a different DBMS Table.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

67

6.2.4.7 Promote Operational Data Model to Implemented Data Model

Figure 52 presents the screen for promoting an operational data model to be a implemented data
model. When an operational data model is promoted, its collected set of DBMS tables, DBMS
columns, DBMS column value domains, and primary, foreign and candidate keys are all created
anew within the implemented data model. Once the new implemented data model components
are created, the operational data model DBMS column value domains are deleted. That is
because they are automatically inherited by the operational data model and would therefore be
redundant.

The promotion process is simple. Highlight the operational data model DBMS schema
then press the Promotion button. The process accomplishes what is described above and then the
newly promoted tables and columns appear underneath the highlighted schema.

Figure 52. Promote Operational Data Model to Implemented Data Model.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

68

6.2.4.8 Promote Operational Data Model Table to Implemented Data
Model

Figure 53 presents the screen for promoting an operational data model table to be a implemented
data model. When an operational data model table is promoted, the DBMS table, DBMS
columns, DBMS column value domains, and primary, and candidate keys are all created anew
within the implemented data model. Once the new implemented data model components are
created, the operational data model DBMS column value domains are deleted. That is because
they are automatically inherited by the operational data model and would therefore be redundant.

The promotion process is simple. Highlight the operational data model DBMS schema
and then the DBMS Table. Then press the Promotion button. The process accomplishes what is
described above and then the newly promoted table and columns appear underneath the
highlighted schema.

Figure 53. Promote DBMS Table to a Implemented Data Model Schema.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

69

6.2.4.9 Remove DBMS Table DBMS Column to Column Assignments

Figure 54 displays the window for removing the column assignments for a DBMS column.
Select the schema and table. Then press the “Press” button to remove the assignments. When
complete, all the DBMS Column assignments will be shown as “unknown.

Figure 54. Remove DBMS Table DBMS Column to Column assignments.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

70

6.2.5 SQL DDL

Once an operational data model has been completely entered, that is, its its DBMS tables, DBMS
columns and relationships, it can be displayed either graphically within the specified data
modeler, or through an ER modeler such as DeZine (www.datanamic.com). To diagram within
DeZiner, the data model must imported. DeZiner, like many tools has an SQL DDL import
facility. Therefore, the metabase has an SQL DDL export facility. Additionally, another data
modeling tool may have been used to create what is seen as an operational data model. Thus, the
metabase has an SQL DDL import facility.

6.2.5.1 SQL DDL Export

Figure 55 presents the first screen in this process. The top browse shows the DBMS schemas.
The second browse shows an alphabetical listing of the DBMS tables within that DBMS schema.
Obviously the root DBMS table is not always the first. If the root DBMS table is highlighted and
then the button Display Operational Data Model is pressed, then a screen like that of Figure 55 is
presented.

The process that is invoked starts with the highlighted DBMS table and traces through all
its foreign keys to then “know” all related DBMS tables. The hierarchy that is displayed in
Figure 56 is all the descendants of the DBMS table and all the direct ancestors (no uncles or
aunts). When an ancestor DBMS table is displayed it’s color is red. Descendent DBMS tables
are blue and the originally highlighted DBMS table’s color is black.

As each DBMS table in Figure 56 is highlighted, the surrounding browses then display
the DBMS table’s primary key and DBMS columns, foreign keys and DBMS columns, and
DBMS columns. If the Print Tree button is pressed a hierarchy tree is sent to the default printer.
If the Print Tree Detail button is pressed the data model tree is printed along with an additional
level of detail.

Figure 55 also has a set of buttons at the bottom. The first button, Select Output File for
Generated DDL, causes a Select File display as presented in Figure 57. A default file name is
presented that can be accepted or changed. The default directory is the current working directory.

Once the output file is selected, two buttons are then available for selection. The first is
Generate DBMS schema Based Data Model button. If selected, Figure 58 is displayed and all the
DBMS tables within the DBMS schema area are accessed and then linguistically expressed using
SQL. The value of this DDL file is that it can then be imported by another software package.

The Generate DBMS table Based Data Model button only generates SQL DDL for all
DBMS tables that are descendants and direct ancestors of the highlighted DBMS table.

There are three sets of options for generating the SQL DDL. These are:

! Name Choice: Full, User Set, or Abbreviation
! Case Choice: All Lower Case, all upper case, or camel case
! SQL DDL Subtype choice: One, each, or SQL 1999

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

71

The first two sets of options are obvious and need not be explained. The third choice regards
representing subtyped DBMS tables: One, Each, and SQL:1999. The one option causes all the
DBMS columns from the contained subtyped DBMS tables to appear within the root DBMS
table. The Each option causes each subtyped DBMS table to be expressed as a separate SQL
table with its primary key the same as the root table’s and the foreign key column reference to
also be the same as it’s primary key. This ensures a 1:1
relationship.

To display the SQL DDL file, press the button, View Generation Result. Another Select
File window is presented. Highlight the file from within the working directory and then press the
Open button. SQL DDL as presented in Figure 59 is displayed.

Figure 55. SQL DDL export screen.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

72

Figure 56. Message from Schema based SQL DDL generation.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

73

Figure 57. Selecting output file for SQL DDL generation.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

74

Figure 58. Generated SQL DDL output file listing.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

75

6.2.5.2 Import

SQL DDL streams can be imported directly into the Operational Data Model. Figure 59 presents
the first screen of this process. Fundamentally, the process is to first create a DBMS schema,
then identify the SQL DDL text file, press the View SQL file if desired, and finally, press the
Import SQL File button. The process will scan the SQL DDL file to determine if there are any
errors. If there are errors then the entire loading process is aborted. If there are no errors then the
SQL DDL is loaded. Created are DBMS tables, DBMS columns, data types, primary and foreign
keys.

Figure 59 presents the first screen. If the DBMS schema does not already exist then press
the Insert button. The update Schema screen is presented. Once the DBMS schema is created,
then highlight the just created DBMS schema and proceed.

If for whatever reason the DBMS schema is to be deleted, then press the Delete button.
The DBMS schema and all associated DBMS tables, DBMS columns and keys will be removed.
The delete process will of course not start if any DBMS column of the loaded DBMS schema
participates in a view as a View Column.

Figure 60 presents the screen that appears when the Select SQL file button is pressed.
Once the file is found and fills the File Name data entry box then press the Open button. At that
point the file is selected. To ensure that the correct file has been selected, the View SQL file
button can be pressed. The SQL DDL that has been selected is then presented in a text screen
window like the one in Figure 61.

Not all forms of SQL DDL can be imported. At this time, all Primary and Foreign Keys
must be in the Alter Table format.

Then the Import SQL File button can be pressed. The stream of SQL DDL is scanned for
errors. If none are found the import process commences. If any errors are found they are reported
and the import process stops at the point of the error. A log file can be created of the importing
process. Figure 62 presents a screen of the log file lines.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

76

Figure 59. SQL DDL Import screen.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

77

Figure 60. Selecting a SQL DDL import file.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

78

Figure 61. Example of a SQL DDL import file.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

79

Figure 62. Log File display of the SQL load process.

Whitemarsh Metabase--Data Modeler: Operational Data Modeler Users Guide

Copyright 2007, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

80

6.2 Reports

Reports are accomplished through access to a particular metabase database instance through
commercial report writers such as Crystal Reports. Whitemarsh provides about 100 such report
templates for Crystal Report access from the Whitemarsh website.

