
Whitemarsh Metabase
Reverse and Forward Engineering

Users Guide

February 2006

Whitemarsh Information Systems Corporation
2008 Althea Lane

Bowie, Maryland 20716
 Tele: 301-249-1142

Email: mmgorman@wiscorp.com
Web: www.wiscorp.com

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

ii

Table of Contents

1.0 Introduction . 1
1.1 Reverse Engineering . 2
1.2 Forward Engineering . 3
1.3 Remainder of the Guide . 4
1.4 Presumed Knowledge . 7

2.0 Establishing the Metabase Work Environment . 8
2.1 Open Mimer Administrator . 8
2.2 Create the Movies Metabase . 10
2.3 Create the mbsysdb Database . 17
2.4 Final Steps . 18

2.4.1 Establishing a Metabase System Connection . 18
2.4.2 Loading the “Unknown” Values and then the Data Types values 21

3.0 Reverse Engineering . 24
3.1 Import a SQL database’s DDL into the Operational Data Model 24

3.1.1 Creating the SQL DDL Text File . 26
3.1.2 Creating DBMS Data Types . 26
3.1.3 Creating Data Architecture Classes . 27
3.1.4 Importing the SQL DDL . 30

3.2 Promote the Operational Data Model to Implemented Data model 37
3.3 Promote Implemented Data Model to Specified Data Model 40

4.0 Specified Data Model Re-Engineering . 44
4.1 Create Subjects . 46
4.2 Move Entities . 47
4.3 Create New Entities . 48
4.4 Factor Out Attributes . 48

4.4.1 Rename Attributes . 54
4.4.2 Re-assign Column Attributes . 56
4.4.3 Delete Attributes . 56

4.5 Re-engineering Keys . 58
4.5.1 Remove the Foreign Keys . 58
4.5.2 Remove the Primary Keys . 61
4.5.3 Delete Unnecessary Attributes . 62
4.5.4 Create New Primary Keys . 63
4.5.5 Create New Foreign Keys . 66

4.6 Maintain Attributes . 69

5.0 Data Element Creation . 70
5.1 Build Concepts . 77

5.1.1 Build Concepts . 78

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

iii

5.1.2 Build Concept Structure Types . 82
5.1.3 Build Concept Structures . 82

5.2 Build Conceptual Value Domains . 88
5.3 Build Data Element Concepts . 90

5.3.1 Data Element Concepts . 97
5.3.2 Data Element Concept Structure Type . 100
5.3.3 Data Element Concept Structures . 100

5.4 Build Value Domains . 101
5.4.1 Create Value Domain . 103
5.4.2 Create Value Domain Structure Type . 103
5.4.3 Create Value Domain Structure . 106

5.5 Build Data Elements . 107
5.6 Connect Specified Data Model Attributes to Data Elements 110
5.7 Synchronize Implemented Data Model Columns to Data Elements 110
5.8 Data Element Summary . 111

6.0 Forward Engineering . 113
6.1 Build an Implemented Data Model . 113

6.1.1 Create a schema . 114
6.1.2 Import Specified Data Model Entities . 116
6.1.3 Add, Delete, or Adjust Columns . 117
6.1.4 Adjust Column Data Types . 120
6.1.5 Create Primary and Foreign keys . 120
6.1.6 Summary . 120

6.2 Build an Operational Data Model . 121
6.3 Generate SQL DDL . 123
6.4 The Payoff . 126

Attachment 1 Movie Rentals SQL DDL . 131

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

iv

List of Figures

Figure 1. Metabase domain. 1
Figure 2. Reverse engineering process flow.. 2
Figure 3. Forward engineering process flow. 4
Figure 4. Movie Rental Store Original Data Capture Data Model. 5
Figure 5. Mimer Administrator Screen. 8
Figure 6. Mimer local database definition screen. 10
Figure 7. Allocation of drives and page quantities for Mimer database. 10
Figure 8. Mimer database password screen. 12
Figure 9. Activating the Mimer SQL utility, WSQL. 13
Figure 10. Entering the Create Databank Mimer command. 15
Figure 11. Executing a SQL statements file. 16
Figure 12. Execute the SQL DDL file. 17
Figure 13. DSN Select screen with Insert, Change, and Delete buttons. 19
Figure 14. Metabase connection to database update screen. 20
Figure 15. Admin module Unknown and Data Types data generator. 22
Figure 16. Data types hierarchy. 23
Figure 17. Operational data model diagram. 24
Figure 18. Data types insert screen. 27
Figure 19. Data Architecture Classes. 29
Figure 20. List of databases. 30
Figure 21. Database update screen. 31
Figure 22. Data architecture class selection. 32
Figure 23. Creating a DBMS Schema. 33
Figure 24. Activating the SQL DDL import process. 34
Figure 25. Importing SQL DDL screen. 35
Figure 26. SQL DDL log file view. 36
Figure 27. Implemented Data Model diagram. 38
Figure 28. Promotion of an Operational Data Model to an Implemented Data Model. 39
Figure 29. Reassigning “unknown” to DBMS Table Columns. 41
Figure 30. Promotion of Implemented Data Model to Specified Data Model. 42
Figure 31. Specified Data Model diagram. 43
Figure 32. Creating a new subject. 46
Figure 33. Reassigning entities to different subjects. 47
Figure 34. Creating a new entity. 49
Figure 35. Moving attributes from one entity to another. 53
Figure 36. Rename attributes. 55
Figure 37. Column attribute reassignments. 57
Figure 38. Foreign key delete screen. 59
Figure 39. Primary key delete. 61
Figure 40. Delete attributes. 62
Figure 41. Primary key creation. 64

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

v

Figure 42. Primary key attribute creation. 65
Figure 43. Foreign key add. 67
Figure 44. Foreign key add form. 68
Figure 45. Foreign key add: primary key select. 69
Figure 46 Logistics example about the power of data elements. 74
Figure 47. Data Element Data Model diagram. 76
Figure 48. Concept browse. 78
Figure 49. Concept update screen. 79
Figure 50. Concept structure type browse. 84
Figure 51. Concept structure type update form. 85
Figure 52. Concept structure explosion. 86
Figure 53. Concept structure implosion. 87
Figure 54. Concept structure insert. 88
Figure 55. Data element concept browse. 98
Figure 56. Data element concept update form. 99
Figure 57. Value domain browse. 104
Figure 58. Value domain update form. 105
Figure 59. Data element browse. 107
Figure 60. Data element form. 108
Figure 61. Attribute data element reassign screen. 111
Figure 62. Column data element reassignment screen. 112
Figure 63. Schema browse. 114
Figure 64. Schema update form. 115
Figure 65. Import single entity. 116
Figure 66. Reassign columns to tables. 118
Figure 67. Import attribute from specified data model. 119
Figure 68. Column data type re-assignment. 121
Figure 69. Generate SQL DDL. 124
Figure 70. Movie Sales data warehouse data model diagram. 125

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

vi

Tables

Table 1. Subjects and Entities. 45
Table 2. Subjects, Entities, and Attributes. 52
Table 3. Surrogate Key “Id” based attributes. 60
Table 4. Data element reuse within entities of the Movies metabase. 73
Table 5. Concepts related to the movies domain. 81
Table 6. Levels phrases . 82
Table 7. Concepts within Concept Structures . 83
Table 8. Conceptual Value Domains . 89
Table 9. Conceptual Value Domain Structures . 90
Table 10. Data Element Concepts created from Concepts and Conceptual Value Domains. . . . 93
Table 11. Concepts and related Data Element Concepts. 95
Table 12. Conceptual Value Domains and related Data Element Concepts. 97
Table 13. Data Element Concept Structures . 101
Table 14. Value domain . 103
Table 14. Value Domain Structures . 106
Table 15. Concepts, Data Element Concepts and Data Elements. 109
Table 16. Multiple use of concepts down through Implemented data model columns. 130

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

1

1.0 Introduction

The purpose of this Reverse and Forward Engineering Users Guide is to illustrate a specific use
of the Whitemarsh metabase. The Whitemarsh metabase is a combination metadata repository
and computer-aided-systems-engineering (CASE) environment. The overall domain of the
metabase is presented in Figure 1. A more detailed description of the metabase is provided in the
document, Metabase, which includes its rationale and relationship to the Knowledge Worker
Framework. This document can be retrieved from the Free Documents section of the Whitemarsh
website, www.wiscorp.com.

Figure 1. Metabase domain.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

2

This purpose of this guide is to describe how to take a database design from an existing database
application of the data architecture class, original data capture, and reverse engineer it into the
metabase to create re-usable metadata. The created metadata is then used to “manufacture”
another database of a different data architecture class, data warehouse. Because of the
architecture of the metabase, there is then a single set of metadata that supports both database
designs. In short, an accomplishment of the database concept: define once and use many times,
achieves enterprise-wide data semantics.

1.1 Reverse Engineering

This reverse engineering process, depicted in Figure 2, is extremely valuable when trying to
create either “intersection” or “union” data models across a set of data models from legacy
systems. Under the intersection scenario, each of the legacy data models is imported into the
metabase. Then, one by one, their common data structures within tables are “promoted” to the
Implemented Data Model layer. Once complete, the Implemented Data Model layer represents

Figure 2. Reverse engineering process flow..

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

3

the intersection data across all those legacy models. That intersection data model can then
imported back down into the Operational Data Model layer to make a new Operational Data
Model. Then, that model can be exported to SQL schema DDL to make the database design that
represents the database application that is the “intersection” of the legacy databases. The legacy
systems are then able to put and get data to the “intersection database” with the full confidence
that the mapping semantics have been pre-engineered.

Under the union scenario, the resulting Implemented Data Model becomes the design of a
“Subject Area” database. It is broader than all the feeding databases. Similar to the “intersection”
data model scenario, its design is imported back into a different Operational Data Model and
then it’s SQL schema DDL is used to make the database design of a “union” or subject area
database application. The legacy systems are then able to put and get data to the “union
database” with the full confidence that the mapping semantics have been pre-engineered.

There are thus three uses for this technique:

! Creating data semantics for enterprise-wide data management
! Creating “intersection data models” across a community of legacy systems that

desire to exchange data
! Creating “union data models” that represent a subject area database across a

community of systems that are contributing to a more expansive database

The overall process is started by importing the database design into the Operational Data Model
(ODM) layer by reading the database’s SQL DDL. This ODM design is promoted to an
Implemented Data Model layer, and then into the Specified Data Model layer. Within the SDM
layer, the set of entities are re-engineered into different and newly created subjects. Then the ISO
11179 Data Element layer including all the upper levels of metadata are created. The reverse
engineering ends here.

1.2 Forward Engineering

The Forward engineering process depicted in Figure 3 starts with a requirement to build a data
warehouse. The Implemented Data Model layer for this data warehouse is manufactured from
the entities within the subjects of the Specified Data Model. Once the Implemented Data Model
is built, it is tuned as necessary. It is then employed to create the Operational Data Model. At
that layer the SQL DDL is then produced.

The first data model is an original data capture data model. That is, an operational database that
is in third normal form. The second data model is a data warehouse with a “star schema”
architecture.

The time to accomplish this reverse and forward engineering effort was about 15 staff hours with
the reverse engineering part taking the first 12 hours.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

4

1.3 Remainder of the Guide

The process described in the rest of this user guide consists of individual steps. Each includes the
step’s name, goal, specific steps or actions, and then supplemental description. Overall, there are
the following major steps:

! Establishing the metabase work environment
! Reverse Engineering
! Forward Engineering

The case study for this example is an original data capture database for a movies rental store.
While the example is clearly trite, and while the “quality” of its design might provoke “violent”
arguments among data modelers, it is, what it is, a legacy schema of a production application.
And more importantly, it is sufficient to illustrate all the required techniques. The data model
diagram for this database is shown in Figure 4. The data definition language file for this example
is provided as Attachment 1.

Figure 3. Forward engineering process flow.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

5

The “story” of the data model is this. There are movies, customers, movie copies,
distributors, employees, and stores. There are also movie rental records and payments. One or
more stores are served by a distributor. A store may have multiple copies of a movie. Customers
may have more than one movie rental record. Customers may make more than one payment, and
a payment may relate to more than one movie rental record. Stores may have multiple
employees, and an employee may supervise another employee.

Figure 4. Movie Rental Store Original Data Capture Data Model.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

6

Section 2 of this guide are the steps necessary to establish a metabase data instance once the
metabase system has been installed. The metabase system getting started guide shows how to
install the metabase system.

Section 3 presents the steps whereby a data model represented in SQL DDL is imported into the
metabase and is then promoted up two levels so that the first major step of reverse engineering
can occur.

Section 4 presents the steps involved in re-engineering the Specified Data Model from a single
subject, multi-entity data model into a multi-subject, multi-entity set of data model templates
that, in turn, can be used in the construction process of new data models.

Section 5 presents the steps involved in creating ISO 11179 Data Elements that can be employed
as fact semantic templates for use in creating entity attributes or table columns.

Section 6 presents the step necessary to create a new database design from the reverse
engineering steps accomplished in Section 3, 4, and 5.

An often received and sometimes deserved criticism of “data” folks is that it takes too long to do
too little that is ultimately of marginal value. The process in this guide acknowledges this
criticism and supports the notion that creating a database design should not be a “start from
scratch” effort. Rather, through this guide, and especially the steps in Section 6, the process of
creating an entire database design can take from hours to days rather from weeks to months.
And, once a well engineered data model is constructed, sophisticated tools can be brought to
bear to generate software. The goal is to then turn the criticism into its inverse. That is, that
“data” folks can produce a lot in a sort time that is of significant value.

An often asked question is how many database projects are required to be done before there’s a
“positive” return on the investment from the approaches described in this guide? The answer is
simple: The first. Almost every database design has a number of columns across set of all tables
that are essentially the same. Having templates to design them will always make the work go
faster. Having the ability to create a running prototype from a database design will always make
you more productive. Having the ability to automatically generate attribute, column, or DBMS
column names will always make work go faster. Having the ability to standardize value domains
will greatly add quality. Experience over the past 30 years with these techniques has always
shown a positive ROI on every project in which the metabase techniques have been employed.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

7

1.4 Presumed Knowledge

This guide presumes that you have:

! Downloaded the DBMS Mimer and have it successfully installed

! Downloaded and successfully installed the Whitemarsh metabase system

! Stored the Movies SQL DDL file in a directory for ready access

! Downloaded and read the Data Modeler Architecture and Concept of Operations
Guide from the Whitemarsh website

! Down loaded the metabase user guides have acquainted yourself with the Data
Element, Specified, Implemented, and Operational Data Modeler’s functionality

This guide is not intended to teach the metabase system nor any of the metabase system modules.
Rather, this guide is intended to teach the use of the metabase system to accomplish reverse and
forward engineering.

This process, reverse and forward engineering is an essential step in building understanding-
based interoperable data-based environments. Such an environment, coupled with quality code
generators can greatly accelerate the creation and maintenance of information systems.

If you are using a demo version of the metabase system, and if you are using the SQL DBMS,
Mimer, then most of the steps in Section 2 are automatically performed during the Metabase’s
installation process. Actually the only steps that have to be performed are those that connect the
automatically installed metabase database instance to Mimer through the ODBC administrator.
These steps are described in Section 2.1.

If the Demo version of the metabase is used then an overlay screen is present on every screen
that states the metabase system’s status: Demo, and the quantity of days and date that the
metabase system will no longer become operational. At the end of the demo period the system
becomes inactive. However the SQL databases remain intact.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

8

2.0 Establishing the Metabase Work Environment

The steps required to establish the Movies metabase instance are:

! Open Mimer administrator
! Create Movies Metabase database instance
! Create the mbsysdb database instance
! Open the metabase system
! Open the Admin Module of the metabase system
! Set up access to the Movies Metabase metabase
! Run the “AutoData” and “Data Types” bulk loader

2.1 Open Mimer Administrator

Note: all the examples in this guide are accomplished through the SQL DBMS, Mimer. It can be
obtained from www.mimer.com. If another SQL DBMS is employed as the “engine” for the
metabase system, then while all the steps will essentially be the same, they would have to be
“tuned” for the particular DBMS.

This step presumes that you have accomplished the Metabase Quick Start manual steps: Steps
2.1 and 2.2 . If you have not done that then please do so and then restart this guide. Assuming
that you have accomplished these steps then open the Mimer Administrator. Do this by starting
the Mimer Administrator program, that is, execute the file, mimadmin.exe. This file should be
easily available through the “Start then Programs then Mimer SQL Engine 9.2 ” sequence.

Once the Mimer Administrator starts, a window like Figure 5 comes up. You will note in this
window that there is an overall Metabase program window that contains all the metabase module
executables and a number of other useful executables. This was made by creating a folder, for
example, Metabase, and then copying into that folder shortcuts to all the items. The Mimer
Administrator (mimadmin.exe) was just executed.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

9

This screen shows that there are already two metabase database instances known to ODBC and
to Mimer. They are: metabase and mbsysdb. The mbsysdb database is the metabase system’s
administrative database. It keeps track of users that are currently logged into one or more
metabase database instances. The other database, metabase, is the generic name for an instance
of a metabase database instance. There can be many other metabase database instances as will be
accomplished in the steps that follow.

Figure 5. Mimer Administrator Screen.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

10

2.2 Create the Movies Metabase

Starting with the Figure 5 screen, Press the Add button, and an overlay appears, as shown in
Figure 6, providing the ability to create a new local database definition. In this screen, add the
MoviesDatabase (note that there is NOT a space separating the two words). Then, identify what
is desired as the home directory. Choose the option to check all pages versus check just the index
pages. Finally, identify to Mimer the maximum quantity of concurrent users. Here, 10 was
selected. Finally, press the Apply button. Mimer will then ask if you wish to create “databanks.”
Click “yes.” Note also that the default system administrator user name is SYSADM. This cannot
be changed.

Figure 6. Mimer local database definition screen.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

11

Mimer then provides you the opportunity to put the Mimer database files onto separate disk
drives for performance and security reasons. Figure 7 presents the options. In this example,
choose what ever is appropriate. Once chosen, also indicate the quantity of pages associated with
each file. Each page is a 2K file. If you put the files on other drives, Mimer automatically makes
parallel named directories.

Figure 7. Allocation of drives and page quantities for Mimer database.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

12

Figure 8 is the password screen. Note that you have to enter the password twice. That’s because
of a requirement for a positive affirmation. If you forget or lose the password then you are
completely out of luck. Let that be restated. If you forget or lose your Mimer Admin
databank password then you are completely out of luck. A question in this regard was posed
to the developers of Mimer. The question was: “Is there some super-secret, highly-classified
password cracker for a Mimer database?” The answer is:

No, the password is stored in the Mimer data dictionary in a one-way enciphered
format. The algorithm is based on a paper by H. D. Knoble at Penn State

Figure 8. Mimer database password screen.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

13

University, and Mimer's implementation has even been approved by the Swedish
equivalent to FBI!

Consequently, I repeat for the last time, If you forget or lose the password then you are
completely out of luck.

Once the database is created Mimer asks if you want it “started.”

Now, execute the WSQL utility that is provided by Mimer from their website. The dialog in
Figure 9 merely requires that you enter the user name (SYSADM is the mandatory default name)
and password that was previously established. Enter that and proceed on. Then, as shown in
Figure 10, enter the Mimer command, “Create Databank MoviesMetabase;” then press the “!”
icon to execute the command. This causes Mimer to create a full MoviesMetabase with all the
schema information tables. It is “empty,” of course. Created but empty.

The next step is to execute the Movies SQL DDL file. Accomplish that by executing three
distinct SQL DDL files. This is shown in Figure 11. They are in the C:\Program
Files\Wiscorp\Metabase\DDL directory, given that this is where the metabase system was
installed. Once the file is located, as presented in Figure 12, press the “!” execute button. Note,
also please check the “Continue” radio button so that the command stream just executes through
to the end. When finished, there will be a metabase system administrator database.

The first SQL DDL file contains all the Create Table, and Primary and Unique Key statements.
The file, MB601_MimerSQL.SQL should be completely generic for all SQL DBMSs. The
second file, MB603_MimerSQL.SQL are the auto-incrementing primary key sequence
statements. Each SQL DBMS may have a different SQL DDL for this. Mimer’s is ISO/ANSI
SQL standard compliant. Hence that is why Whitemarsh uses Mimer. The third file,
MB604_MimerSQL.SQL, are all the foreign key statements. This file too should be generic
across all SQL DBMSs.

You can explore that just built MoviesMetabase with WSQL or any other suitable ODBC SQL
utility. It is devoid of data but it exists.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

14

Figure 9. Activating the Mimer SQL utility, WSQL.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

15

Figure 10. Entering the Create Databank Mimer command.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

16

Figure 11. Executing a SQL statements file.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

17

2.3 Create the mbsysdb Database

The metabase system administrator’s database is created the same way as the Movies Metabase.
It however only has one SQL DDL file, not three. See the Whitemarsh Metabase Getting Started
Guide for more information.

Figure 12. Execute the SQL DDL file.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

18

2.4 Final Steps

Once the Movies Metabase instance is created, there are two more steps before “real” work can
begin. These steps are:

! Establishing a metabase connection to the Movies Metabase
! Loading the “Unknown” values and then the Data Types values.

2.4.1 Establishing a Metabase System Connection

Figure 13 presents the screen for establishing a metabase system connection. To get this screen,
execute the metabase system module, mbAdmin.exe. This module will immediately present you
with a user name and password screen. You need to log into this module Accomplish this by
entering the administrator user name and password. By default, they are both “sysadm” and
“sysadm.” The administrator can change both. Additionally, by default, the metabase is provide
with two users. Michael M. Gorman, and Matthew G. Gorman. You can of course change those
names to the names of the metabase administrator. The Administrator module itself should be
secured from general use. The administrator names and passwords enable administrator
functionality.

To then know the list of metabase instances, press the DataSet button. Because you have logged
in as the administrator, a window of available metabase database instances that it “knows about”
is presented. If the Movies Metabase is not there, then just close the window. Then, press the
Dataset button. You will be presented with a similar screen as the first select window. If you are
using the Demo version of the metabase the Insert, Change, and Delete buttons are not visible. In
a production version the Insert, Change, Delete buttons are visible. Press the Insert button. You
are then presented with a screen like the one in Figure 14. In the data entry areas enter the
information about the Movies Metabase instance. That is, its name, description, the DSN Host
Name, User Name (SYSADM), and then the Password that you dare not have forgotten. At that
point, click OK and close the window. At that point, the new connection for the metabase is
available to be selected. Select it, and then close the window.

The user name and password that has just been entered is the one required by the SQL DBMS as
it creates and accesses a metabase database instance. All metabase modules access the SQL
DBMS through ODBC. Thus, all metabase modules must pass a user name and password to the
SQL DBMS. This screen is the one where that SQL DBMS user name and password is made
known to the metabase modules. This SQL DBMS user name and password is not the same user
names and passwords that metabase users employ to access the metabase system. The metabase
administrator user guide provides full documentation on this topic.

WARNING: Just because you have created and selected a metabase database instance does not
mean that it is valid. To determine the validity of the information that you have created, and
which, by the way, is now in the mbsysdb database, you must attempt to access that metabase

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

19

instance. A quick check is accomplished by pressing the Autodata button. If you receive an error
message to the effect that the data source name was not found then there is something wrong
with the DSN Host Name, the User Name, and/or the Password. When you get this type of error,
the mbAdmin program terminates. Re-start it so that you can fix what you have previously
entered by pressing the Dataset button and then the Change button and make your fixes.

Figure 13. DSN Select screen with Insert, Change, and Delete buttons.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

20

Figure 14. Metabase connection to database update screen.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

21

2.4.2 Loading the “Unknown” Values and then the Data Types values

The last step before starting “real” work is the creation of Unknown and Data Type values. The
metabase supports very strong referential integrity. Simply, that means no orphans. But if you
are doing reverse engineering and do not have all the upper layers to the make connections, what
do you do? The database answer is “Null.” While that’s a simple answer, every SQL language
based DBMS treats Null values just a bit differently. Consequently, the metabase system has
engineered a solution. It is that the null value is “Unknown.” That value is then pre-loaded into
almost all the metabase database tables as the very first (and also sometimes second) row. The
database key value for Unknown in the metabase is either “1" or “2.” If the metabase system had
chosen either DBMS generated value for High Values or Low Values, then if any DBMS had a
really different value for that, then there wouldn’t be interoperability among metabase database
instances. So, the solution chosen was simple, reliable, and predictable.

To generate these Unknown values, the metabase administrator module is executed. The DSN
for the specific “new” metabase database instance is chosen, and then the AutoData button is
pressed. Figure 15 presents the screen used to execute the Unknown value generator. Press the
Create Default/Unknown Data Records “build” button. After some time, a finished message will
appear.

The next step is to create the default SQL and DBMS data types. In the metabase there are three
levels to the data types: ISO 11179 Data Element level, Implemented Data Model level, and the
Operational Data Model level. Figure 16 illustrates the data types hierarchy. This hierarchy is
“seen” from the Oracle DBMS and its data types which are on the left column. These are
operative at the Operational Data Model level. Each of these data types is derived from an SQL
data type that exists at the Implemented data model level (the middle column). These are in turn
derived from the Value Domain Data Types from the ISO 11179 data element layer (the right
column). In Figure 16, the data types are sorted alphabetically so that the derivation is easily
seen from right to left.

There are a number of data type process buttons on this screen. These are all explained in the
Operational Data Module user guide.

Generating the data types is a two step process. First the data types loader file must be found. Do
that by pressing the Select Data Types file button. Use the Windows browse feature to find the
data types file. Most commonly, it will be in the C:\Program
Files\Wiscorp\Metabase\REFDATA directory. It is an ASCII file called DataTypesFile.txt. It
specifies the data type data for each level of the metabase (Data Element, Implemented and
Operational) and also whether the data type has precision and/or scale. The “type” of data types
is the second field, that is, VDT for value domain data type, SDT for SQL data type, and DDT
for DBMS data type. This file also contains the foreign key values (represented as the parent
data type name) back from the SQL Data Type to the Value Domain Data type, or from the
DBMS data type to the SQL Data type.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

22

Once the file is found, press the build button. After a bit a finished message will occur. At that
point, your Movies Metabase database instance is fully created and is ready for “real work.”

Figure 15. Admin module Unknown and Data Types data generator.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

23

Figure 16. Data types hierarchy.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

24

3.0 Reverse Engineering

The reverse engineering process through which metadata is created, from the Operational to the
Implemented to the Specified and finally to the Data Element models, consists of the following
major steps:

! Import a SQL database’s DDL into the Operational Data Model
! Promote the Operational data model schema to the Implemented Data model
! Promote the Implemented data model schema to the Specified Data Model
! Re-engineer the Specified Data Model
! Create Data Element Model metadata

3.1 Import a SQL database’s DDL into the Operational Data Model

The process of importing a SQL database schema into the metabase consists of:

! Creating the SQL DDL text file
! Creating the DBMS data types
! Creating data architecture classes
! Importing the SQL DDL

When the SQL DDL is imported it will be scanned and, if acceptable, will create data records for
the following Operational Data Model tables:

! DBMS Table
! DBMS Column
! DBMS Table Primary Key
! DBMS Table Primary Key Column
! DBMS Table Unique Key
! DBMS Table Unique Key Column
! DBMS Table Foreign Key
! DBMS Table Foreign Key Column
! DBMS Table Secondary Key
! DBMS Table Secondary Key Column

The data model diagram for the Operational Data Model is presented in Figure 17. Each “arrow”
represents a one-to-many relationship. The “story” of this data model is that for every database
there may be one or more DBMS schemas. A DBMS Schema is governed by a DBMS. A
database belongs to a database architecture class. For every DBMS schema there may be one or
more DBMS Tables. Every DBMS table has at most one primary key. Every DBMS table may
have one or more DBMS columns. Every DBMS column has a DBMS data type. Every DBMS
table may have one or more foreign keys that represent the relationship between the DBMS
table to which the foreign key belongs, and another DBMS table that is associated with the

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

25

foreign key’s related primary key. A DBMS table may have additional unique keys that are
called Candidate Keys. Finally a DBMS table may have one or more non-unique keys that are
called, Secondary Keys. Every key, that is, primary, foreign, candidate, or secondary has one or
more DBMS columns that constitute the values for the key. Additionally, those DBMS columns
exist in a specific sequence within the key.

Database

DBMS DBMS Schema

DBMS Column

DBMS Table

DBMS
Data
Type

DBMS Table Primary
Key

DBMS Table
Primary Key &
DBMS Column

DBMS Table
Foreign Key &

Column

DBMS Table
Foreign Key

Database
Architecture Class

DBMS Table
CandidateKey &
DBMS Column

DBMS Table
Candidate Key

DBMS Table
Secondary Key

DBMS Table
Secondary Key &
DBMS Column

Figure 17. Operational data model diagram.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

26

3.1.1 Creating the SQL DDL Text File

It must be stated at the outset that the metabase will not import every possible variation of SQL
DDL. There are too many variations on the theme. Focus has been on ISO/ANSI standard SQL
DDL. Thus, what the metabase will import are the fundamental SQL constructs dealing with

! Table
! Column
! Primary Keys in both contained table and Alter Table formats
! Unique Keys in both contained table and Alter Table formats
! Foreign Keys in Alter Table format.

Work is underway to import various default and check constraints.

3.1.2 Creating DBMS Data Types

The most common problem in importing SQL DDL is data types. It is a very good idea to
carefully review all the data types within a SQL DDL file and compare them to the DBMS Data
Types. If any data types in the SQL DDL file are missing from the DBMS Data Types, the SQL
DDL will not completely load. Error messages will be provided, and a log of all the actions is
able to be generated. What must then be done is the deletion of the partially loaded Operational
Data Model, fix the offending SQL DDL statements, and then re-process the SQL DDL file. This
process is too tedious to just iterate through, so it is highly suggested that an examination of the
SQL DDL file be performed to ensure that has all its column data types pre-exist in the DBMS
data types. Figure 16 presents the DBMS data types screen.

If a DBMS data type is missing, then press the Insert button. Figure 18 is presented. In this
particular screen, what is originally presented is the “Insert” screen. The first step is to pick the
SQL data type from which this DBMS data type is to be derived. That Select SQL Data Type
screen is shown. Pick the appropriate one and press Select. Then close that window. The next
steps are to provide the data type a name, enter a picture class (required for Clarion for Windows
and described elsewhere), and to indicate whether the data type can have a precision and a scale.
Finally, add a description for the data type. If the process of adding DBMS data types is
accomplished before loading the SQL DDL, then the schema almost always loads in the first
pass.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

27

3.1.3 Creating Data Architecture Classes

Databases can be seen generally belong to distinct data architecture classes, which are:

! Reference data
! Original data capture
! Transaction data staging area
! Subject area databases, and
! Data warehouses

The reference data architecture class represents data that form the critical characterization and
discrimination characteristics of data from within the entire set of business facts. Included, for
example are genders, city names, state names, all codes, and like. Ideally, all reference data
would be exactly the same across all the other four data architecture classes. Realistically,
however, different agencies and providers have different reference data value versions for the

Figure 18. Data types insert screen.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

28

same reference data and different data value versions across time. All reference data must be
managed centrally and then distributed in so far as it is possible to all databases of the other data
architecture classes.

The original data capture data architecture class represent the actual databases that reside
within organizations within an enterprise and may provide data to other database classes. These
database types are often called OLTP databases because they support on-line transaction
processing.

The transaction data staging area data architecture class represents the data extracts from the
original data capture databases that are then, if necessary, modified to the required semantics for
any of the other database architecture classes. Any interface between any database architecture
class may proceed through a transaction data staging area.

The subject area data architecture class represents the subject-based integrated databases of data
that, in turn, support some measure of analyses and reports, analysis results retention, and
supports the generation of other classes of databases, that is, data warehouses.

The data warehouse (wholesale and retail) data architecture represents the transformed and
likely redundant sets of data that serve special reports and analyses. The key set of differences
between wholesale data warehouses and retail data warehouse is one of volume, duration and
specialization. Data mart data warehouse designs are commonly created along the lines of "star
schemas" or "snow-flake schemas," and when compared to wholesale data warehouse have
smaller volumes, shorter durations, and are more specialized.

Each of these data architecture classes have distinct data modeling, data normalization, and data
update characteristics. These data architecture classes and their characteristics are described in
other Whitemarsh documents.

The process of creating a data architecture class involves selecting the Data Architecture class
item from the Reference Data menu item in the Operational Data Model metabase module. A list
of data architecture classes appears. To add one, press Insert. At that point, a screen like Figure
19 appears. Add the appropriate definition, press OK, close the menu, and move onto the next
step. In this case we are entering the data architecture class, Original Data Capture because that
is the class of the database that will be imported.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

29

Figure 19. Data Architecture Classes.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

30

3.1.4 Importing the SQL DDL

The process of importing the SQL DDL consists of creating the Operational Data Model
Database, and Schema. Then starting the import process once the SQL DDL file is selected and
the write to log option is selected.

The first step is to create the database. Figure 20 presents that screen that contains the current set
of databases. Within this screen there are three databases, Unknown, Movies Data Warehouse,
and Movies Original Data Capture.

Figure 20. List of databases.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

31

For the purposes of this example, presume that the Movies’ Original Data Capture is not there.
Press insert, and Figure 21 comes up. Enter the name, “Movies Original Data Capture.” At this
point the data architecture class is “Unknown.” To select a known data architecture class, enter a
“zero” in the Data Architecture Class Id field and press enter. At that point, a Data Architecture
selection screen appears as displayed in Figure 22. Select, for the purposes of this exercise,
Original Data Capture, press Select, and close the window. Then, press OK to close this window.
Choose the production status and nature of the database in the same way you chose the data
architecture class. That is, enter a zero, tab through, and pick from the selection screen.

Figure 21. Database update screen.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

32

Figure 22. Data architecture class selection.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

33

The next step is to create a schema for that database. A database may have more than one
schema across time. To do that, choose DBMS schema under the DBMS Schemas and Tables
menu item. Figure 23 then is shown. Select the database, Movies Original Data Capture, then
assuming there isn’t already a Movies Original Data Capture schema, press Insert. The update
screen overlay also shown in Figure 23 then is presented. Create the name and then press enter.
If perchance you have chosen the wrong database, that is, not Movies Original Data Capture,
then just go to the Id entry, type a zero and press tab. At that point a select screen will appear.
Select the “right” database and then press Select. You need then to select the specific DBMS that
is to govern this schema. This is employed for data type checking. Select the appropriate SQL
DBMS and press OK. Once complete with this screen, click OK. Your choices will appear on the
DBMS schemas screen. Close that screen.

Figure 23. Creating a DBMS Schema.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

34

Now, to actually do the SQL DDL importing, activate the SQL importing by following the menu
item selection shown in Figure 24. That brings up the screen in Figure 25. This screen shows that
the schema, Movies Original Data Capture exists. If it did not exist then you could created it
through the Insert button. Now, select the SQL DDL file with the button, SQL DDL on the right.
Browse till you find the file using the file selection dialog at the bottom of this figure. Once
found, highlight the file and press the Open button. The window automatically closes and the
name of the selected file appears across the middle of the window. Now, you can view the file
with the View button. Once you are satisfied, there’s one last step. Do you want to create a log of
all the actions? If so, then press the Log Import Y/N radio button yes. If you want the file
“cleared” before you start importing, press the clear button. Then press the Import button. The
importing process first constructs complete SQL statements eliminating all unnecessary short
lines, and the like. It then processes the file, one SQL statement at a time. As statements are
successfully processed, the metadata is built in the metabase. Once the process is finished, a
message appears.

Figure 24. Activating the SQL DDL import process.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

35

What will then have been accomplished is the creation of:

! DBMS Tables
! DBMS Columns
! DBMS Primary keys
! DBMS Unique Keys
! DBMS Foreign keys

If there is an error, you can view the log file to see what was successfully and what the statement
was that was being processed at the time of the failure. For example, if a foreign key creation
statement references a non-existing table and/or column then the load will fail. Figure 26 shows
the first several lines of the SQL DDL import of the Movies schema. The reason “DBMS” is
prefixed to all of the items above is because the items are associated with a specific DBMS and
thus, they are the tables associated with Oracle, or Sybase, etc.

Figure 25. Importing SQL DDL screen.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

36

You should view the imported model by checking the item within the Operational Data Model
module. There you can see what the tables and columns are, what the primary and foreign keys
are, and the various columns that belong to the primary and foreign keys. Once you are satisfied
that the data model has been successfully loaded, proceed to the next step.

Note, that during your review, you will see that the Implemented Data Model to which these
DBMS tables et al have been related is “Unknown.” That is because the Implemented Data
Model does not yet exist. This is an example of the strong referential integrity contained in the
metabase. Actually, all the DBMS columns are related to just one Implemented Data Model
column, Unknown, that is contained within the Unknown Table of the Unknown Schema.

Figure 26. SQL DDL log file view.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

37

3.2 Promote the Operational Data Model to Implemented Data model

Promoting the Operational Data Model to the Implemented Data Model simply makes a “copy”
of the Operational Data Model, that is, schema, tables, columns, and all keys (primary, foreign,
and unique, but not secondary) and creates a complete clone at the Implemented Data Model
layer.

The data model diagram of the Implemented Data Model is presented in Figure 27. Each “arrow”
represents a one-to-many relationship. The “story” of this data model is that for every schema
there may be one or more tables. Every table has at most one primary key. Every table may have
one or more columns. Every column is governed by a SQL data type. Every table may have one
or more foreign keys that represent the relationship between the table to which the foreign key
belongs, and another table associated with the foreign key’s related primary key. A table may
have additional unique keys that are represented as Candidate Keys. Every key, that is, primary,
foreign, or candidate has one or more columns that constitute the value basis for the
relationship, that is, the existence of rows of data in the table, Table Primary Key & Column, or
Table Foreign Key & Column, or finally, Table Candidate Key & Column. Additionally, those
columns exist in a specific sequence within that key-based relationship.

You have probably noticed that the text is almost exactly the same as in Section 3.1. Yes, that is
correct. So, a good question is what is the relationship between Implemented Data Model and
Operational Data Model. The answer is simple. For every Implemented Data Model there can be
one or more Operational Data Models, each with a different design but all mapped back to the
same Implemented Data Model. The basis of the relationship is not, however, Implemented Data
Model Schema to Operational Data Model Schema, nor Implemented Data Model Table to
Operational Data Model Table. That would mean that the Implemented Data Model is merely a
transformation to the Operational Data Model. Rather, the relationship is between Implemented
Data Model table column to Operational Data Model DBMS table column.

Changed, however, are the data types. The DBMS data types are changed to their corresponding
ANSI SQL data types. If a DBMS data type is an “unknown” SQL data type then, “unknown”
will also be shown at the Implemented Data Model layer. That is ultimately not good, so ensure
that there is a mapping among the data types from across the Operational, Implemented, and
Value Domain data type layers. Facilities within each of the operational, implemented, and data
element modules exist to ensure complete data type mapping.

The process of making an Implemented Data Model is straight forward: select it and then press
the promote button. A “percent done” display provides a general idea of the percent of tables that
have been promoted from the Operational Data Model to the Implemented Data Model.

Figure 28 presents the screen. It is found under the Re-Engineering menu item. Select the DBMS
then the Schema underneath the DBMS that is to be promoted. Then just press the Promote
button. The percent done will be displayed as it is building the Implemented Data Model’s

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

38

! Tables
! Columns
! Primary keys
! Unique Keys
! Foreign keys

Table Primary
Key

Column

Table

Table Primary
Key & Column

Table
Foreign Key

Table
Foreign Key
& Column

Schema

SQL Data
Type

Table
Candidate Key

Table
Candidate Key

& Column

Figure 27. Implemented Data Model diagram.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

39

The right side of this screen shows the completed result. This result will not be shown until the
promotion process is complete. Selecting the newly created Schema will then cause the tables
and columns for the highlighted table to be displayed.

To verify what was built, execute the Implemented Data Model and review the promoted data
model. When you review it you will see that it too has “upstream” unknown references to
attributes for the columns and for data elements for the columns.

If for some reason you do not wish the Implemented Data Model to remain in the metabase,
removing it is not just the press of a button. That is because of referential integrity. Once built,
the Implemented Data Model’s columns are now the “upstream” references to the Operational

Figure 28. Promotion of an Operational Data Model to an Implemented Data Model.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

40

Data Model’s DBMS columns. So, to delete an Implemented Data Model, you must make all the
upstream references “unknown.” Then the referential integrity “problem” will go away and you
can delete the Implemented Data Model.

To make the references “unknown,” go back to the Operational Data Model, and under the menu
item, Re-Engineering, select the menu item, Remove DBMS Table DBMS Column to Column
References. Figure 29 presents that window. Highlight the table, and press the button to remove
the references. On a table by table basis the references will be changed to “unknown.”
Thereafter, you can return to the Implemented Data Model module, select the Schema menu item
underneath the Schema and Tables menu item, select the schema and press the delete button. It
will give you a confirmation question to affirm. Once you say yes, the Implemented Data Model
schema and all associated tables, columns, and keys will be deleted from the database.
WARNING. This is NOT undoable. So, if done by mistake, just let it continue to the end, and
then repeat this promotion step.

3.3 Promote Implemented Data Model to Specified Data Model

This step is largely the same as the previous step. So, Figure 30 shows the promotion screen. Go
forth and promote. Once the promotion is complete you will be able to execute the Specified
Data Model and then see that there is a single new subject, Movies Original Data Capture and a
whole collection of entities and attributes corresponding to the Implemented Data Model’s tables
and columns. Figure 30 shows additional subject areas that are created during the next step.

There will not, however, be any data types. That is because the Specified Data Model is too
abstract to be bound by data types. Data types exist only at the Data Element Model,
Implemented Data Model and Operational Data Model levels. That’s OK, so don’t be concerned.
Proceed to the next step.

The data model diagram for the Specified Data Model is presented in Figure 31.The data model
diagram for the Operational Data Model is presented in Figure 17. Each “arrow” represents a
one-to-many relationship. The “story” of this data model is that for every subject there may be
one or more entities. Every entity has at most one primary key. Every entity may have one or
more attributes. Every entity may have one or more foreign keys that represent the relationship
between the entity to which the foreign key belongs, and another entity that is associated with
the foreign key’s related primary key. An entity may have additional unique keys that are
represented as Candidate Keys. Every key, that is, primary, foreign, or candidate has one or more
attributes that constitute the value basis for the relationship. Additionally, those attributes exist
in a specific sequence within that key-based relationship.

The relationship between the Specified Data Model and the Implemented Data Model is again
one-to-many. There is also this key difference: A Specified Data Model relationship may cross
subjects whereas in the Implemented or Operational Data Models, a primary-foreign key based
relationship must always be contained within a single schema.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

41

Figure 29. Reassigning “unknown” to DBMS Table Columns.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

42

Figure 30. Promotion of Implemented Data Model to Specified Data Model.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

43

AttributeEntity

Subject

Entity Primary
Key

Entity Primary
Key & Attribute

Entity Foreign
Key

Entity
Foreign Key
& Attribute

Entity
Candidate Key

Entity
Candidate Key

& Attribute

Figure 31. Specified Data Model diagram.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

44

4.0 Specified Data Model Re-Engineering

This next step is very significant. The Specified Data Model is transformed from a single subject
with a collection of entities and attributes to multiple subjects each with a set of entities and
attributes. Unique to the Specified Data Model there can be relationships (primary key to foreign
key) across subject areas. In short, it is transformed from a single data model of entities to a
collection of data model templates, each of which is composed of entities that can then, in turn,
be employed to construct data models within the Implemented Data Model.

The entities that were promoted to the Specified Data Model from the Implemented Data Model
were:

! Customer
! Distributor
! Employee
! Movie
! Movie Copy
! Movie Rental Record
! Payment
! Store

The first task is to figure out what each of these entities really represents. That is, what is the
business subject within which these entities naturally occur. The table that follows presents the
result of that analysis. In this example, the quantity of entities are few and so the perceived value
of having seven subjects for eleven entities doesn’t seem to be too high. As the examples become
more sizable and as the quantity of Implemented Data Models mapped to the evolved Specified
Data Model grows, the value of the templates similarly grow. Each use of a template represents
data standardization. The greater the use the greater the standardization.

Subject Entity

Business Transaction Movie Rental Record

Payment

Information Technology Information Technology Attributes

Location Location Address

Locator Telephone Number

Organization Distributor

Store

Person Customer

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Subject Entity

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

45

Employee

Product Movie

Movie Copy

Table 1. Subjects and Entities.

Three of the entities are brand new. That is, Location Address, Telephone Number, and
Information Technology Attributes. Location Address arose from an analysis number of the
existing entities. There was a set of common attributes which was factored out. The telephone
number attribute was similarly factored out of existing entities and put into the Locator entity.
Finally, because almost every entity had a surrogate key identifier it too was factored out and
placed into a new subject, Information Technology, to hold Information Technology Attributes.

Remember the task here is not to build a data model that is to exist within the context of a
database’s schema, but to build collections of data model templates that are in turn are used to
for build data models. Each template is bounded within a subject and consists of one or related
entities and their attributes. Further, every entity must be precise, that is, have a sufficient
quantity of attributes to have a “natural” primary key. In this example, surrogate keys have been
used as the basis for primary keys. Those are not sufficient for business entity modeling.

Look, for example, at the column Telephone Number in every one of the tables. Other than the
name, it’s the same. Now suppose the Telephone Number was a bit more complicated, say,
Country Code, Area Code, Exchange, Number, and Extension. To effect a standardization across
all the tables, a whole lot would have to either be remembered and/or copied into all the tables
across all the schemas of the entire enterprise in a very disciplined way. The Specified Data
Model, in contrast, is the “copy” process. Once designed, the data model template can be used
and re-used to accomplish data standardization.

Given that you’ve been reasonably convinced, then the steps that must be done are:

! Create the subjects
! Move entities from one subject to another
! Create new entities
! Factor out attributes from one entity to another
! Re-engineering primary and foreign keys
! Maintain attributes

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

46

4.1 Create Subjects

The process of creating a subject is relatively easy. Select the menu item, Subjects, under the
main menu item, Subjects and Entities. Figure 32 presents the Subject browse and then update
screen. Because subjects can be nested, either select a subject within which you wish to nest a
new subject, or select the string, “Hierarchy” and then press enter to create a new top level
subject. In this example, the new subject was Business Transaction. Create the name, its
abbreviations, and a descriptive definition of what a Business Transaction is. A subject may only
have one entity or it may have more than one. That all depends on the nature and complexity of
the subject. Create all the subjects that are the table above, that is, Business Transaction,
Information Technology, Location, Locator, Organization, Person, and Product.

Figure 32. Creating a new subject.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

47

4.2 Move Entities

The process of moving entities is a re-engineering step. So, under Re-Engineering, activate
Reassign Entities to Subjects. Figure 33 it then displayed. In this process, select the Subject in
the left Screen. Then “check” one or more entities. Then on the right screen, check the move-to
subject. Finally, press the button to move the entity from one subject to the next. Table 1 above
provides a list of where each of the entities are to be moved from the original subject, Movies
Original Data Capture.

Figure 33. Reassigning entities to different subjects.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

48

As each entity is moved so too are all the attributes, primary keys and candidate keys. Foreign
keys are different. In the Specified Data Model, foreign keys are allowed to span subjects. That
is because a subject is considered a “soft” container. Certainly, an entity in one subject may be
the parent of an entity in another subject. For example, an Organization may have an Address. In
contrast, tables in different schemas of the Implemented Data Model and the Operational Data
Model cannot have foreign keys that span either schemas or DBMSs schemas as these are
considered “hard” containers.

The ultimate goal of moving these entities is to empty the Movies Original Data Capture subject
area of all its entities. Once that is done, use the same screen that inserts subjects to then delete
the Movies Original Data Capture subject.

4.3 Create New Entities

Three of the subjects, Information Technology, Location, and Locator need entities. Table 1
shows what the entities are to be. To add a new entity, click the Entities menu item within
Subjects and Entities. Select the Subject, for example, Location, then if the Entity is not be
nested then select Hierarchy and press Insert. The screen is shown in Figure 34. Name the entity,
for example, Location Address, create the abbreviations, and then provide a definition. If the
entity is nested, then select the parent entity and press Insert. The new entity will then appear as
a child.

Similarly, create the new entities from Table 1 until all the entities are properly located within all
the subjects.

4.4 Factor Out Attributes

The three new entities do not have any attributes. Are there new attributes? No. They are
attributes factored out of existing entities. That does not mean that these are look-up table
attributes. Rather it means that these attributes properly belong in a different entity of a different
subject. Remember, this effort is not about building a data model, it’s about building data model
templates. You are specifying data model templates that are to be used in building the “real” data
models that exist in the Implemented and Operational Data Models.

From Table 2, you can see that the attributes for Location Address, and Telephone number come
from other entities. The address attributes within Location Address are the street address, city,
state, and zip code attributes. The attribute within Telephone Number are the various telephone
numbers from the other entities. Finally, the attribute, Information Technology
Identifier comes from all the “Id” attributes from the other entities. These “Id” attributes are
however not just straight “factoring” operations and will be dealt with in the Re-engineering
Keys step that follows.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

49

The attribute refactoring process is similar to the entity move process. Figure 35 presents the
screen. The process of moving an attribute consists of selecting from the left side of the screen,
the subject, then the entity, then check one or more attributes that are to be moved. On the right
side of the screen, select the target subject and then check the target entity.

WARNING: You cannot successfully move an attribute that is part of either a primary or a
foreign key. If you could, then the relationships between entities would also be changed. The
primary or foreign key attribute move requires actions from the Re-engineer Keys step.

In this example, choose an entity with an address, for example, Distributor, and then Tag
Distributor Street Address, Distributor State, Distributor City, and Distributor Zip Code. Then
select the subject, Location, and tag the Location Address. Finally press “Press” to re-assign

Figure 34. Creating a new entity.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

50

attributes. This will then “move” the address specific attributes from Distributor to Location
Address.

Now, if we then went to all the other entities with address and moved those to Location Address
then we would have multiple sets of address attributes in one entity. So, do not do that. Instead,
do these steps:

! Rename the address attributes to be more generic.

! Execute the Implemented Data Model module and “re-assign” all the address
columns in all the tables to this one set of address attributes in the Location
Address entity.

! Delete the address attributes from the remaining Specified Data Model Entities.

These three steps, detailed in Section 4.4.2, will then have established Location Address as the
data model template that was employed as the model for all the uses of Address in the
Implemented Data Model tables. Further, it will have removed these address attributes from the
various Specified Data Model entities, thus making them more “single purpose.”

Subject Entity Attribute

Business Transaction Movie_Rental_Record Customer_Number

Employee_Id

Movie_Copy_Number

Movie_Number

Movie_Rental_Record_Date

Movie_Rental_Record_Due_Date

Movie_Rental_Record_Overdue_Charge

Movie_Rental_Record_Rate

Movie_Rental_Record_Status

Payment_Transaction_Number

Rental_Record_Number

Payment Check_Bank_Number

Check_Number

Credit_Card_Number

Customer_Number

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Subject Entity Attribute

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

51

Employee_Id

Payment_Amount

Payment_Credit_Card_Expiration

Payment_Credit_Card_Type

Payment_Date

Payment_Status

Payment_Transaction_Number

Payment_Type

Information Technology Information Technology
Attributes

Information Technology Attributes Identifier

Location Location Address Location Address City

Location Address State

Location Address Street_Address

Location Address Zip_Code

Locator Telephone Number Telephone Number Phone_Number

Organization Distributor Distributor_Id

Distributor_Name

Store Distributor_Id

Store_Id

Store_Name

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Subject Entity Attribute

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

52

Person Customer Customer_Name

Customer_Number

Employee Employee_Hire_Date

Employee_Id

Employee_Name

Employee_Social_Security_#

Store_Id

Supervisor

Product Movie Description

Movie_Date

Movie_Director

Movie_Name

Movie_Number

Movie_Rental_Rate

Movie_Star

Rating

Movie_Copy General_Condition

Movie_Copy_Number

Table 2. Subjects, Entities, and Attributes.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

53

Figure 35. Moving attributes from one entity to another.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

54

4.4.1 Rename Attributes

The process of renaming attributes is illustrated in Figure 36. It is activated from the main menu
item, Attributes, then Maintenance then Maintain Attributes. Select the subject, then entity, then
the attribute that is to be changes (i.e., renamed) and press “Change.” For the purposes of this
example, select the “State” name.

The first thing to do is to clear the check mark on the “Freeze all names.” This was placed on all
similar update forms to ensure that names were not changed accidently. In this case it’s on
purpose, so clear the check mark.

Now, the question is what should the name be? Names in the Whitemarsh metabase are the result
of an automatic construction process. Generally, an attribute’s name consists of the following
parts:

< modifiers > <entity name > < common business name > < class words >

Where, modifiers and class words are assigned through the Attribute Meta Category Value
assignment menu item. To better understand this process consult the Specified Data Model user
guide and the Data Modeler Architecture and Concept of Operations book.

Now, clear whatever name is in the Common Business Name, the Name, and the User Set Name
entry boxes. Now enter just “State” in the Common business name. Press the “Reset” button. At
that point, because no modifiers and class words have been assigned, the name will appear as:
<entity name> <common business name>. Construct the abbreviations for that attribute name.

If you wish you can always change the name to Location State, or keep it as Location Address
State, and then just change the user set name to Location State. Finally, declare whether a null
value is allowed and then enter a description.

Now, do this attribute name change for all the remaining attributes within Location Address.
Upon completion the attributes should be similar to those in Table 2. Now, repeat this process
for Telephone Number.

The next step finishes the reassignment.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

55

Figure 36. Rename attributes.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

56

4.4.2 Re-assign Column Attributes

When the address attributes are moved to the Location Address entity, the references from, for
example, the Distributor table now point back to these moved attributes, even when renamed.
That is not the case with all the other address columns within the other tables. That must now be
fixed. The process, ReAssign Columns to Attributes from within the Implemented Data Model
module accomplishes the reassignment.

Execute the Implemented Data Modeler, select the Movies Original Data Capture data set, and
then select the Re-Assign Columns to Attributes underneath the Re-Engineering menu item.

Figure 37 is then presented. On the left side, the Implemented Data Model side, select schema,
table, and then tag one or more columns. On the right side, the Specified Data Model side, select
the subject, entity, and then tag the attribute. Then press “Press” to reassign the column to the
attribute.

In this example, proceed through the various Specified Data Model entities looking for address
type attributes. Reassign them to the appropriate Specified Data Model attribute. Once you are
complete, do the same for Telephone number. Once all the re-assignments are completed, then
the Specified Data Model attributes will be “free” to be deleted. By “free” it is meant that the
Specified Data Model attributes are now not referenced by any Implemented Data Model
column. Remember, the metabase has strong referential integrity. So, if you try to delete an
attribute and if that attribute is related to a column then the delete operation will fail. Hence we
had to “move” the relationship of the address columns to the Location Address entity’s
attributes.

When you are finished, close the window.

Do not reassign the “Id” columns from the Implemented Data Model to the attribute, Information
Technology Attributes Identifier within Specified Data Model’s entity, Information Technology
Attributes. The reason for not doing this reassignment is explained in Section 4.5, Re-
Engineering Keys, below.

4.4.3 Delete Attributes

The process of deleting an attribute is accomplished in the Maintain Attributes screen, Section
4.4.1. Instead of Change, press Delete. If the attribute is “unconnected” with a column or meta
category value then the deletion should occur.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

57

Figure 37. Column attribute reassignments.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

58

4.5 Re-engineering Keys

An examination of the “Id” columns in the tables show that all the “Id” columns have a data type
of INTEGER. That suggests that the integer number is just a numeric identifier that has no real
meaning, such as a customer’s name. In the Specified Data Model the primary keys should
always have primary keys based on natural attributes, not “surrogate keys.” A surrogate key,
according to a definition from Michelle A Poolet of the SQL Server Magazine, is “an artificially
produced value, most often a system-managed, incrementing counter whose values can range
from 1 to n, where n represents a table's maximum number of rows.” To resolve this situation the
following actions need to occur:

! Remove the foreign keys that are based on the surrogate primary keys
! Remove the primary keys that are surrogate keys
! Remove unnecessary attributes
! Create new primary keys that are based on natural attributes
! Create new foreign keys

.

4.5.1 Remove the Foreign Keys

The process of removing is relatively simple. Figure 38 shows the Foreign Key screen. Select
Entity Foreign Keys within the Keys menu item. Highlight the subject, then entity, and then
foreign key. Then, press the Delete. If none of the foreign key’s attributes are referenced by
columns, AND if none of the foreign key’s attributes are part of a primary key, then the foreign
key definition, the foreign key references to the entity’s attributes that constitute the foreign key,
and the attributes themselves will all be deleted.

If however, the foreign key has attributes that are referenced by columns then the delete request
will be rejected. Further, if the foreign key has attributes that are part of a primary key then the
delete request will be rejected

The practical consequence of the above is that because the “Id” columns (for example, Employee
Id or Customer Number) that are part of the Specified Data Model’s Primary Keys and by
inference part of the Foreign Keys, they must all be re-assigned to the attribute, Information
Technology Attributes Identifier within Specified Data Model’s entity, Information Technology
Attributes.

When this is done, then all the “Id” attributes will be “free” of their references to columns. And
because they are “free” the foreign keys will then be able to be deleted. The columns to be
reassigned are listed in Table 3. Accomplish the reassignment through the process described in
Section 4.4.2 Re-assign Column Attributes, above.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

59

NB: The scenario in this guide presumes that you have not moved ahead and build data elements
and or used Specified Data Model entities to be referenced by any other column. If you have
then the attribute will not be “truly” free. Unless and until the attribute is completely un-
referenced by any column can the foreign key be deleted. If you have moved ahead and the
foreign keys are not able to be deleted, you must go back and reset all the columns to an
“unknown” data element, and you must reset all “Id” columns to the attribute, Information
Technology Attributes Identifier.

Once the columns are re-assigned away from the “Id” attributes, delete the foreign keys.

Figure 38. Foreign key delete screen.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

60

Subject Entity Attribute

Business Transaction Movie_Rental_Record Customer_Number

Employee_Id

Movie_Copy_Number

Movie_Number

Payment_Transaction_Number

Rental_Record_Number

Customer_Number

Employee_Id

Payment_Transaction_Number

Organization Distributor Distributor_Id

Store Distributor_Id

Store_Id

Person Customer Customer_Number

Employee Employee_Id

Store_Id

Supervisor

Product Movie Movie_Number

Movie Copy Movie_Copy_Number

Table 3. Surrogate Key “Id” based attributes.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

61

4.5.2 Remove the Primary Keys

Once the foreign keys are deleted, then the primary keys supporting them can be deleted as well.
Figure 39 presents the Primary Key delete screen. Delete all the primary keys.

Figure 39. Primary key delete.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

62

4.5.3 Delete Unnecessary Attributes

The process of deleting unnecessary attributes is accomplished in the Maintain Attributes menu
items. It is shown in Figure 40. The attributes became unnecessary because they existed solely to
support the surrogate keys that are not appropriate for the Specified Data Model. Table 3 is a
guide to all those surrogate key attributes. The step after this one is to re-make the primary keys
based on “natural” business data.

Figure 40. Delete attributes.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

63

At the end of this step, proceed though the entities and make sure that all the attributes are truly
business based. Payment, for example, is an interesting entity in this regard. Check bank number,
and check number are business-based attributes because the values are from “outside” of IT. The
bank number is the bank routing number. The check number is a similar type of number. So too
is the credit card number. Hence, while all these attributes are numbers, they are business-based
numbers whose values are controlled outside the domain of the movies system. A case could be
made that the bank routing number and the credit card number are really formatted strings of all
numbers and thus their data types in the Implemented and Operational Data models should
therefore be character data types. That is not a “battle” germane to this example, however. And
finally, there are no data types in the Specified Data Model as data types are not appropriate for
this class of data model.

4.5.4 Create New Primary Keys

This step makes primary keys based on “natural” entity attributes. For example, for employee,
while the surrogate key attribute was Employee Id, the “natural” primary key attribute would be
Employee Social Security Number. For store, it is Store Name.

Adding a primary key is a two step process. First, add the primary key, and second, add the
column(s) belonging to the primary key. The first step is displayed in Figure 41. In this step,
both the primary key browse screen and the Adding a primary key overlay is shown. Select
Primary Key from the Keys menu item. Select the subject, then the entity, then press Insert. The
overlay then appears. If you tab through the Entity Id entry field, the Primary Key’s name is
automatically generated. You can change it if you wish. Add a description. The bottom browse is
for the currently assigned attributes for the primary key. Since there are none, this is empty.
Now, click OK and the screen closes. The newly added primary key now appears in the primary
key browse list. Now proceed to add a Primary Key to every entity. The next step will be to add
the columns to the Primary Keys.

The process of adding a primary key attribute is displayed in Figure 42. Select the subject, the
entity, then tag the primary key. Tag then the attributes that are to appear in the primary key.
Then press the Build button. If the attribute you are adding is allowed to contain Null, then an
error message is presented. You must go back to Maintain Attributes and change the null-
allowed indicator to “No.”

A review of Figure 4 shows that the independent entities are really: Movie, Customer,
Distributor and Store. Entities Movie Copy, Payment, and Movie Rental Record do not have
natural attributes to then make primary keys. So, you must make new attributes, such as Movie
Copy Number for Movie Copy, Payment Number for Payment, and Movie Rental Record
Number for Movie Rental Record. These are not IT numbers, but are numbers assigned by the
store that would be printed on the rental record contracts, payment slips, or recorded onto the
movie copies to distinguish them.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

64

Figure 41. Primary key creation.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

65

Store is not dependent merely because the relationship between Distributor and Store. Rather,
the relationship is based on one of “servicing.” A distributor services a particular store.

The primary keys of the two new entities should also be created. That is, Location Address, and
Telephone Number.

Figure 42. Primary key attribute creation.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

66

4.5.5 Create New Foreign Keys

The process of making a foreign key is as follows:

! Select the target entity
! Pick the primary key of the source entity
! Create an Action Word
! Select the proper Referential Action.

At that point, the foreign key is constructed. Constructed too are the source entity’s primary
key’s attributes within the target entity that then serve as the foreign key’s attributes. Finally
constructed are the relationships between the foreign key and its attributes, and between the
primary key and this newly created foreign key.

The foreign key add process begins by selecting the Foreign Key menu item within Keys. When
the Foreign key browse comes up, as shown in Figure 43, select the subject, then target foreign
key, then press the Insert button. If after pressing the insert button you cancel the operation, then
a “fake” foreign key will have been made. To get rid of the “fake” foreign key, just reselect a
different target entity and then select the original one. The “fake” foreign key will then disappear
from the database.

After the Insert button is pressed, Figure 44 is presented. Tab through the Primary Key entry box
which shows a “0.” At that point, Figure 45, the primary key select screen is presented. It
enables you to select the source entity’s primary key. Select the subject and then the primary
key. Press the Select button, then press Close. Once the primary key is selected you are returned
to Figure 44. You can then enter an “action phrase” so that the foreign key’s name is
automatically created. When you add the action phrase, the software automatically creates a
Foreign Key Name. The metabase constructs it as follows:

< source entity > < must|may > < action phrase > < target entity name >

In this particular example, if the action word was “Have” then the foreign key name would be:

Customer Must Have Movie Rental Record.

The three remaining items are Key Match options, Unique indicator, and Referential Actions.
Key match options are full or partial. The unique choice causes the relationship to either be one-
to-one or one-to-many. Referential actions are listed. If the choice is Set Null then the
<must|may> is not must, but may.

Once all these choices are made, press the button, “Press to Create Foreign Key or to Commit
Changes” Once pressed, press the Cancel/Close button. It is essential that you commit the
changes. Otherwise if you merely Cancel/Close then the “fake” Fkey will be created that gets
deleted in the manner described above.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

67

Now, for the purposes of this example, create the following foreign keys:

! Customer May Have Movie Rental Record
! Customer May Make Payment
! Movie must Be Recorded in Movie Rental Record
! Movie May Have Movie Copy
! Movie Copy must Be Recorded in Movie Rental Record
! Payment must Affect Movie Rental Record
! Store May Have Employee
! Employee May Make Payment
! Employee May Supervise Employee
! Distributor May Service Store
! Distributor Must Have Address

Figure 43. Foreign key add.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

68

! Store Must Have Address
! Customer Must Have Address
! Employee Must Have Address
! Distributor Must Have Phone Number
! Store Must Have Phone Number S
! Customer Must Have Phone Number
! Employee Must Have Phone Number

Figure 44. Foreign key add form.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

69

4.6 Maintain Attributes

Prior to leaving the Specified Data Model, you should give it a final run-through and make sure
of the following:

! All entities have a definition and abbreviations.
! All attributes have a definition and abbreviations.
! All attributes have the right business basis for allowing or disallowing null.
! All primary and foreign keys have the proper name and definition.
! All attributes in both primary and foreign keys are in the correct major to minor

sequence.

Figure 45. Foreign key add: primary key select.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

70

5.0 Data Element Creation

The next step in the overall reverse engineering process is to make data elements. First, what is a
data element? Is it a column in a table? Is it an attribute in an entity? Is it a field in a File? Is it a
data entry or display object on a screen? No, no, no, and no. A data element is none of those. A
data element within the scope of ISO standard 11179 is a stand alone, context independent
business fact template. Nothing more and nothing less.

To put it more succinctly, a data element is a semantic rubber stamp. If you need to “brand” a
column in a table with the semantics of a data element, just stamp it. Thus, the column is not the
stamp. It employs the stamp for the essence of its meaning. Similarly, if you need to “brand” an
attribute in an entity with the semantics of a data element, just stamp it, or if you need to “brand”
a field in a file with the semantics of a data element, just stamp it. And finally, if you need to
“brand” a data entry or display object on a screen with the semantics of a data element, just
stamp it. Thus, a data element is a semantic layer “above” all of these semantic uses. Again, the
column, for example, is not the stamp; it employs the stamp for the essence of its meaning and
thus, the stamp (i.e., the data element) is not “used up.”

It is critical to know whether somebody means a real data element or just a column, attribute, or
field during a discussion. When they start talking about data elements, ask the simple question: If
you have 10 database tables and each has 10 columns, how many data elements will you have? If
the person answers, 100, then they believe that a data element is a column. If they say something
to the effect that they don’t know because it is unclear how many times a given data element has
been employed to provide semantics to the column, then you are speaking with someone who
understands the power of the data element.

To illustrate the benefit of a data element, Table 4 shows the reuse of the data elements that will
be built in this Section of the paper and the attributes that are “branded” by their semantics. To
the right of each attribute is its entity. The ration for just this simple database is almost 2:1.
Building data elements is not easy. It takes analysis, reflection, and clear thinking. Additionally,
building data elements is not exactly the same skill set as building data models. It requires
critical thinking about concepts, about the concepts surrounding value domains, the construction
of value domains, and the construction of the data element concepts.

The value from building data elements starts with re-use. In the little example in this paper, if the
data elements were accomplished first then the definition of about 50% of the attributes would
have been less. If it takes about 2 hours to define a data element, and each is employed two
hundred times across an enterprise’s set of databases then you’ve just saved four hundred hours
of analysis and design. So, for about $200 of investment you may have saved $40,000 effort. Not
a bad return on your investment.

Extending that a bit further, an average enterprise has about 100 databases. Each has about 150
tables. Each table has on average about 10 columns. That’s 150,000 columns. If a data element is
a column and each takes about 2 hours to design and define, that’s about $30 million. Now, if

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

71

alternatively a data element maps to about 100 columns then the quantity of data elements is
about 1500, and the cost is about $300,000. Still sizable, but certainly less than $30 million. It
should seem that no more justifications or arguments need be made.

Data Element Attribute Entity

Assessment General_Condition Movie_Copy

Rating Movie

Communications Locator String Telephone Number Phone_Number Telephone Number

Event Date Employee_Hire_Date Employee

Movie_Date Movie

Movie_Rental_Record_Due_Date Movie_Rental_Record

Payment_Credit_Card_Expiration Payment

Payment_Date shit head Payment

Financial Amount Movie_Rental_Rate Movie

Financial Institution Identifier Check_Bank_Number Payment

Financial Instrument Identifier Check_Number Payment

Movie_Rental_Record Number Movie_Rental_Record

Payment Number Movie_Rental_Record

Payment Number Payment

Geopolitical Name Location Address City Location Address

Location Address State Location Address

Government Institution Identifier Employee_Social_Security Employee

Employee_Social_Security_# Payment

Supervise Employee_Social_Security Employee

Identifier Information Technology Attributes
Identifier

Information Technology
Attributes

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Data Element Attribute Entity

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

72

Organization Name Distributor_Name Distributor

Distributor_Name Store

Store_Name Employee

Store_Name Store

Payment Mechanism Name Payment_Credit_Card_Type Payment

Payment Mechanism Number Credit_Card_Number Payment

Payment Mechanism Type Payment_Type Payment

Person Name Customer_Name Customer

Customer_Name Movie_Rental_Record

Customer_Name Payment

Employee_Name Employee

Movie_Director Movie

Movie_Star Movie

Postal Code Location Address Zip_Code Location Address

Product Description Description Movie

Product Name Movie_Name Movie

Movie_Name Movie_Copy

Movie_Name Movie_Rental_Record

Property Identifier Movie_Copy Number Movie_Copy

Movie_Copy Number Movie_Rental_Record

Street Address Location Address Street Address Location Address

Transaction Amount Payment_Amount Payment

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Data Element Attribute Entity

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

73

Transaction Date Movie_Rental_Record_Date Movie_Rental_Record

Movie_Rental_Record_Overdue_Char
ge

Movie_Rental_Record

Movie_Rental_Record_Rate Movie_Rental_Record

Transaction Status Movie_Rental_Record_Status Movie_Rental_Record

Payment_Status Payment

Table 4. Data element reuse within entities of the Movies metabase.

But more importantly, data elements are the corner stone for data interoperability. It is from the
corner stone of the data element that attributes, and then columns, and then DBMS columns, and
finally SQL view columns proceed. Each layer may be more refined but it’s essential meaning
proceeds from the data element. Consequently there is traceability across entities, tables, DBMS
tables, views and then into the actual information system. Figure 46 makes illustrates the concept
of the data element being the cornerstone.

This example, from the ISO 11179 data element metadata framework, starts with the premise
that the logistics facts are to be represented across the data model layers, that is, specified,
implemented, and operational. In this example, a logistic fact starts with a fundamental concept,
Materiel Resource. That is, that the facts are going to be related to the characteristics of materiel
resources. The next step is to then identify the concepts that will form the foundation for the
various types of value domains. Note in the diagram, that conceptual value domains are
independent of the concepts. Thus, conceptual value domains can be associated with many
different concepts.

In this example, the concept behind the value domain is a physical measure. There could be
many types of physical measures, for example, quantities, size, weight, and the like. When a
concept is combined with a conceptual value domain, the ISO 11179 result is a data element
concept. Then, when the data element concept is, in turn, combined with a more refined value
domain a data element results.

Thus, in this specific example, the data element concept, Physical Item Balance is combined with
a type of value domain, quantity, to then produce a Supply Item Resource Quantity data element.
There could be many more data elements proceeding from this example such as Physical Item
Reorder Quantity, Physical Item Quantity on Hand, Physical Item Minimum Allowed Quantity,
and the like. All these data elements proceed from the one concept, from the one conceptual
value domain, and from the one data element concept. Again this is an example of define once
and use many times. With this strategy you could quicky find in any information system all the
uses of material resource data. Or a subset dealing with physical item balances, or those dealing
with quantities in some way. These levels of abstraction are very powerful.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

74

Mat_Itm_Inv_Qt

Materiel
Inventory
Quantity

Materiel Item
Inventory
Quantity

Mat_Inv_Qty

Materiel Unit
Inventory
Quantity

Supply Unit
Quantity

Stocked Materiel
Quantity Ships Stores

Quantity

Functional/Organizational
Context Dependent

“Specified” Data Model

Army Logistics
Management

Navy Logistics
Management

Technology Dependent
“Implemented” Data Model

ANSI SQL

ANSI SQL

Vendor Dependent
SQL DBMS

“Operational” Data Model

“Oracle” DBMS

“Sybase” DBMS

Business Application
Information System (AIS)

“View” Data Model

Navy UADPS (AIS)

Army SAMS (AIS)

Concepts

Data Element
Concept

Value
Domain

Data Element

CORE METADATA
REPOSITORY

Implemented Model

Operational DBMS
Application View

Specified Model

ISO 11179 Model

View Column
Names

DBMS Column
Names

SQL Column
Names

Attribute
Names

Business Fact
Semantic

Template Name

Metadata Repository Architecture of Related
Representations of DoD Enterprise Shared Data Elements

in Support of Data and Information Sharing

The quantity of each type of
Federal Supply System materiel
item contained in an identifiable
inventory of materiel objects.

Data Element Definition:

Additional Data Element
Structural Metadata:

Supply Item
Resource
Quantity

Materiel
Resource

Physical
Item

Balance

Quantity

Physical
Measure

Conceptual
Value Domain

Data type characteristics,
local definition, enumerated
values (if specific), etc.

ISO 11179 Context Inde pendent
Data Element Representation Meta Model

Mat_Itm_Inv_Qt

Materiel
Inventory
Quantity

Materiel Item
Inventory
Quantity

Mat_Inv_Qty

Materiel Unit
Inventory
Quantity

Supply Unit
Quantity

Stocked Materiel
Quantity Ships Stores

Quantity

Functional/Organizational
Context Dependent

“Specified” Data Model

Army Logistics
Management

Navy Logistics
Management

Technology Dependent
“Implemented” Data Model

ANSI SQL

ANSI SQL

Vendor Dependent
SQL DBMS

“Operational” Data Model

“Oracle” DBMS

“Sybase” DBMS

Business Application
Information System (AIS)

“View” Data Model

Navy UADPS (AIS)

Army SAMS (AIS)

Concepts

Data Element
Concept

Value
Domain

Data Element

CORE METADATA
REPOSITORY

Implemented Model

Operational DBMS
Application View

Specified Model

ISO 11179 Model

View Column
Names

DBMS Column
Names

SQL Column
Names

Attribute
Names

Business Fact
Semantic

Template Name

Metadata Repository Architecture of Related
Representations of DoD Enterprise Shared Data Elements

in Support of Data and Information Sharing

The quantity of each type of
Federal Supply System materiel
item contained in an identifiable
inventory of materiel objects.

Data Element Definition:

Additional Data Element
Structural Metadata:

Supply Item
Resource
Quantity

Materiel
Resource

Physical
Item

Balance

Quantity

Physical
Measure

Conceptual
Value Domain

Data type characteristics,
local definition, enumerated
values (if specific), etc.

ISO 11179 Context Inde pendent
Data Element Representation Meta Model

Fig-11

Figure 46 Logistics example about the power of data elements.

While this use of data elements is important, a number of additional critical points need to be
conveyed. In this particular example, the ISO 11179 based shared data element, Supply Item
Resource Quantity, has been defined and is available as a unitary fact template for use in
creating data models. The first layer of data model is the Specified Data Model, and within that
data model, there is some entity that has supply item resource quantity as the template for the
two attributes, material inventory quantity, and material item inventory quantity. Note that the
names are different not only with respect to the ISO 11179 based shared data element, but also
from each other. That’s perfectly acceptable because what these two attributes really are is
Supply Item Resource Quantity.

Further, note that the systems employing this ISO 11179 based shared data element are from the
Navy and the Army. The significance of this is that the Army and Navy are free to employ their
own particular business area languages/dialect terms in naming their specified, implemented,
operational, and view deployments of ISO 11179 data elements. And, since legacy systems have
already done that, this metadata strategy will accommodate those existing differences as opposed
to requiring those legacy schemas to be re-engineered at most likely great expense and disruption
to business operations

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

75

The next level of data model, the Implemented Data Model for the Army, has a table that
contains the column, Mat_Inv_Qty. For the Navy, the column is Mat_Itm_Inv-Q. Not only are
these names different one from the other, they are also different from their “parent” attribute
names. Again this is perfectly acceptable because these names are all mapped, thus traceable
back to their source. The Operational Data Model level also shows a similar pattern as does the
View Model layer that supports the business information system.

This approach works quite acceptably for legacy systems. Their database schemas already exist
at the view and Operational Data Model levels. These schemas and views are imported into the
metabase. Given that the ISO 11179 and the Specified Data Model layer of shared data segments
have been populated, then the task that remains is the construction of the Implemented Data
Model layer that maps one to the other.

Once these are built and mapped, then there is semantic mapping across legacy systems, between
legacy systems of different Operational Data Models and their common Implemented Data
Model, and from Specified Data Model templates of standard data structures across all
implemented and Operational Data Models. Finally, there exists mapping from concepts and
conceptual value domains to all data element concepts, and from data element concepts to all
ISO 11179 based shared data elements, and finally, from all ISO 11179 based shared data
elements to all uses of that shared data element across all uses within information systems within
the inventory of information systems.

The data element layer, thus, represents the corner stone of data interoperability. From this
cornerstone the layers proceed outward. But more importantly, an operational system’s DBMS
table columns can trace back to the progenitor data elements. And, when two such systems
accomplish this, the common hits represent potential areas of interoperability. The precision and
granularity of the DBMS tables still need to be examined. But at least it is a start.

The propose of this section then is to set out how to build the data element layers in such a way
that the resulting metadata can be used over and over again. Further, as new Operational Data
Model systems are brought into this environment, two things will start to become clear. First,
their Specified Data Model templates, seen through Implemented Data Models, will likely
already be sufficient, and thus, no new ones will have to be created. Similarly, the data element
layer will also be sufficient. Thus, to bring an Operational Data Model into a state of
interoperability will mainly be just a matter of importing Operational Data Models building and
building mappings to already existing implemented, specified, and data element layers.

In the prior sections, the process proceeded from operational to implemented to specified. In this
section, however, the material proceeds from the “top” of the ISO 11179 data element model
down through the creation of the data elements. The section then proceeds to connect attributes
to the data elements. Finally the section concludes by synchronizing the Implemented Data
Model columns to the data elements. The steps are thus:

! Build Concepts

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

76

! Build Conceptual Value Domains
! Build Data Element Concepts
! Build Value Domains
! Build Data Elements
! Connect Specified Data Model Attributes to Data Elements
! Synchronize Implemented Data Model Columns to Data Elements

The Data Element data model diagram is presented in Figure 47. The “story” of ISO 11179 data
element metadata is that concepts can either be simple or complex. Regardless, concepts within
their structures are the source for the concepts supporting data elements, that is, data element
concepts. Similarly, the concepts supporting value domains, that is conceptual value domains
can also be either simple or complex. Regardless, conceptual value domains are similarly the
conceptual source for the conceptual value domains supporting data element concepts.
Conceptual value domains are also able to be represented more precisely by value domains.
Value domains, which too can be simple or complex are able to be related to each other for the
purposes of tracking evolution and transformations. Data element concepts can be simple or
complex. Together, value domains and data element concepts form the basis for one or more data
elements.

In ISO standard 11179, Concepts are called Objects, and Conceptual Value Domains are called
Conceptual Domain. A close reading, however, of the standard will lead you to see that the
names provided in this document and in the metabase system, that is, Concepts (for objects) and
Conceptual Value Domains (for Conceptual Domains) are more reflective of the real intent.

So, other than for a renaming, this model is a faithful third normal form database implementation
of the conceptual model that resides in the ISO 11179 Standard, Part 3.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

77

5.1 Build Concepts

The process of building concepts consists of the following steps:

! Building concepts
! Building concept structure types
! Building conceptual structures

The three part construct for concepts enables concepts to be either simple or complex. By
simple, the concepts are either single or exist in hierarchies. By complex, concepts can be
engineered to be complete networks of concepts. In the example from this guide, concepts are
just two level hierarchies. The purpose of the conceptual structure type is to label the
relationship that the concept members have with one another within a collection of concept

Data Element

Value Domain

Conceptual
Value

Domain

Conceptual
Value Domain

Structure

Conceptual
Value Domain
Structure Type

Data Element
Concept Structure

Data Element
Concept

Structure Type
Data Element

Concept

Value Domain
Structure

Value Domain
Structure Type

Value Domain
Data Type

Value Domain
Values

Value Domain
Values Structure

Value Domain
Values

Structure Type

Concept Concept
Structure

Concept
Structure

Type

Figure 47. Data Element Data Model diagram.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

78

structure records. For example, containment. Each relationship has two forms for the names:
passive and active. A passive name is, for example, “is contained in,” while the active form is:
“contains.” This enables the production of reports that “tell a story.” For example, if there are
three concepts, Asset, Real Asset, and Abstract Asset, bound together through the containment
relationship, then the relationship sentences able to be produced are:

! Asset contains real asset
! Asset contains abstract asset
! Abstract asset is contained in asset
! Real asset is contained in asset

5.1.1 Build Concepts

Figure 48 presents the Concepts browse screen. To get the screen, activate the Data Element
Module, select the data set, and then choose, Concepts under the Concepts main menu item. To
insert a new concept, press Insert. Figure 49 will then appear. Provide the appropriate name and
definition, and then press OK. The newly added concept appears in the browse list.

Figure 48. Concept browse.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

79

That’s the mechanical process of creating and entering concepts. But more importantly, “Where
do concepts come from?” A Google search produces only about 30 hits, including one from the
works of Mao Tse-tung From the 8th Party congress, The First Speech May 8, 1958
(http://www.marxists.org/reference/archive/mao/selected-works/volume-8/mswv8_10.htm).
While certainly interesting, a more practical source is from the lecture notes of James Hampton.
His web page, http://www.staff.city.ac.uk/hampton, contains links to his works. In these notes he
suggests a classical explanation of concepts, and his explanation seems quite on point.

Hampton states that “A concept is a class of things which all have certain attributes in common,
Everything which is in the class must possess all these attributes. Everything which possesses all
these attributes must be in the class.” He further states in these notes that each instance of a
concept has the following characteristics:

Figure 49. Concept update screen.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

80

! Each class at any level has no overlap with any other at the same level
! Every individual object must belong to one and only one class at each level
! There are no residual classes ("things that don't fit elsewhere")
! Everything that is true of Vertebrates is also true of all the classes at every level

below Vertebrate which are subordinate to it, and true of all the individuals in
those classes

! If an object belongs to a particular class, it also must belong to all the classes that
are superordinate to that class

Hampton then indicates in his notes that benefits are derived from this classical definition. That
is,

! Taxonomic Structure. Subsets in the tree are mutually exclusive and jointly
exhaustive of the next class up. A "clean" way to divide up the world

! Efficient Storage – each concept needs only its link to a superordinate plus its
distinctive attributes

! Logical inferences – taxonomies support many simple deductive inferences,
including negative conclusions such as that no horses are donkeys, no horses are
reptiles etc.

! Solid basis for semantics of natural language, if language is to support rationality

Finally, Hampton suggest that “If we examine the concepts that best fit the classical model, they
are often those which we learn through our culture - scientific and mathematical concepts
learned at school, legal definition of crimes as felonies or misdemeanors, or kinship concepts
learned by each group of language speakers for their own language.”

The only exception to the above is that Hampton seems to define a concept within the context of
a “thing.” That seems too “real.” Some of the concepts that have been created for the purpose of
this example are definitely not “real” in the sense of a “real thing” such as an automobile or a
person. Some of the concepts are purely abstract. However, as the process of creating data
elements proceeds from concepts to data element concepts to data elements, the “realness”
increases.

Given the guidance from James Hampton, Table 5 contains an enumeration and description of
the concepts that seem to related to all the different subjects, entities, and attributes within the
Movies domain. The goal here is to have a place for everything and everything in a place. This
process is iterative and changes during the construction of these conceptual
hierarchies/networks.

It is important that the concepts be comprehensive and inclusive rather than being required to be
exactly correct and absolutely precise. Once hypothesized it’s ultimately a matter of adjusting
the concepts and their interrelationship with each other until there’s a rational and reasonable
place for everything.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

81

Concept Concept Description

Abstract Asset An abstract asset is an asset that is essentially intellectual property
such as a copyright, a document, a patent, or computer software.

Asset A component of the enterprise that has value. An asset may be either
real or abstract.

Communications Various modes of communications among parties and organizations.

Communications Components Different components associated with communications.

Event An occurrence of an activity about which characteristic data is
recorded.

Event Component Some well bounded part of an event.

Finance Various aspects of financial activities and transactions among
organizations and partites.

Finance Components Various components associated with finance.

Information Technology Various aspects of information technology dealing with computers,
systems, databases, and the like.

Information Technology Components Varous components dealing with information technology.

Location A specific place at which an event occurs or a facility exists or person
resides.

Location Components Some well bounded characterisitc or property of a location.

Organization Components Various components associated with an organization.

Organizations Various aspects associated with formal and informal organizaitons
such as companies, agencies, or groups.

Person Components Some well bounded aspect of a person.

Persons A human engaged in a process or event, or related to a process or
event.

Real Asset A real asset is an asset that is real in nature. That is, property,
machinery, furniture and fixtures, and buildings.

Transactions Well bounded activities that ususally represent some aspect of
commerce.

Transaction Components Some well bounded part of a transaction.

Table 5. Concepts related to the movies domain.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

82

5.1.2 Build Concept Structure Types

Concept Structure Types provide the “glue” that holds siblings together across an identified
collection of concepts within another concept that exists at a higher level. Examples of level
phrases include:

Phrases

Active Passive

Includes Is included in

Contains Is contained in

Directs Is directed by

Specifies Is specified in

Controls Is controlled by

Supports Is supported by

Table 6. Levels phrases

Figure 50 presents the browse for Conceptual Structure Types. To insert a new phrase-set, press
Insert. Figure 51 is presented. Add its name, active and passive phrases, and then a description of
the basis for its use.

5.1.3 Build Concept Structures

The main purpose of a concept structure is to proceed from generalized to specialized. This is
illustrated in Table 7. Data Element Concepts then proceed from the leafs of Concepts contained
within their structures.

Concept Contained Concept

Asset Abstract Asset

Real Abstract

Communications Communications Components

Event Event Component

Finance Finance Components

Information Technology Information Technology Components

Location Location Components

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Concept Contained Concept

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

83

Organizations Organization Components

Persons Person Components

Transactions Transaction Components

Table 7. Concepts within Concept Structures

Building the Concept Structures is slightly more complicated than just adding a new set of data.
The process involves deciding whether this is a new root-structure concept or one that is
contained within another. If it is contained, then the process of picking the right concept has to
be done somewhat carefully. For example, you should not try to insert a concept as a child of
itself. Nor should you include the same concept more than once in a set of siblings. That would
cause redundancy (e.g., A contains B, and A contains B). Nor should you choose a concept that
already exists in a higher level. That would cause in infinite recursion (e.g, A contains B
contains A). These cases are ruled out via the software which chases up the trees looking for
these classes of errors.

Figure 52 presents an explosion browse for concepts. Select the Concept Structure Type, and
then the Concept. In this example, note that in this browse that Asset contains both Real Asset
and Abstract Asset. In Figure 53, however, which displays an implosion browse, it shows that
Abstract Asset is contained in Asset. Hence the names, Explosion and Implosion.

Figure 54 represents an insert attempt. To add a new concept within Asset, highlight Asset and
then press the Insert button on an Explosion browse. Figure 54 is then displayed. What is
presented is a complete collection of all concepts that are eligible for inclusion in the concept
structure. In this particular example, Abstract Asset is highlighted. Note the error, that is, that the
“Select disabled. Attempting to insert a twin.” That is because Abstract Asset is already within
the structure. If you had highlighted Asset, then the error message would have read, “Select
disabled. Attempting to insert the same as selected.” Finally, highlight Abstract Asset and press
Insert. Then select Asset. The error message then reads, “Select disable. Insert will result in
recursion.”

Deleting a concept from a concept structure is relatively straight forward. Highlight the Concept
and press the Delete button. If the concept can be safely deleted then it will. Otherwise an error
message will be displayed. Because of strong referential integrity you are only allowed to delete
ends of structures.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

84

Figure 50. Concept structure type browse.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

85

Figure 51. Concept structure type update form.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

86

Figure 52. Concept structure explosion.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

87

Figure 53. Concept structure implosion.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

88

5.2 Build Conceptual Value Domains

Building Conceptual Value Domains is similar to building concepts. They consist of three parts:

! Conceptual Value Domains
! Conceptual Value Domain Structure Types
! Conceptual Value Domain Structures

While the building process is similar, Conceptual Value Domains are quite different than
Concepts. Conceptual Value domains are parallel with Concepts. They both contribute to the
semantic construction of Data Element Concepts (see Section 5.3). Conceptual Value Domains
are all about the concepts supporting value domains. Hence the name. They are different from
value domains because there may be multiple value domains for one Conceptual Value Domain.
In the ISO 11179 standard, the name for this is Conceptual Domains. It’s definition, however,

Figure 54. Concept structure insert.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

89

leads to a better understanding under the name, Conceptual Value Domain. The method of
discovery of Conceptual Value Domains parallels that of Concepts. Please refer back to the
Hampton quotes above. Table 8 enumerates the conceptual value domains that appear
appropriate for the movies domain.

Conceptual Value Domain Structures similarly provide the ability to proceed from generalized to
specialized. An example of this is provided in Table 9.

Conceptual Value Domains Description

Alphabetic Strings A string of alphabetic characters for use in names, definitions, and
descriptions.

Date Interval A specific duration between two dates that includes those dates.

Dates Representation of legal dates in all forms.

Decimals A set of numbers with decimal positions of an arbitrary scale.

Descriptions Textual descriptions of concepts.

Discrete Dates Specific Date related to one day.

Formatted String A string of numbers, letters. and special characters that conform to a
specific format for a specific purpose. Examples would include
Reservation Numbers, Credit Card Numbers, Check Numbers, and the
like.

Integers A range of numbers that are whole that may be both positive or negative.

Money Monetary representations expressed as numbers, and if appropriate
partial monetary amounts expressed in decimals.

Names Textual names of concepts.

Numbers Numeric values that may be integers, decimals, real, complex, or
imaginary.

Specific Money Amount A specific money amount that may represent the cost of a transaction or
asset.

Table 8. Conceptual Value Domains

The key to assessing the sufficiency of the Conceptual Value Domains to determine that one or
more of the attributes are represented by one Conceptual Value Domain. Conceptual Value
Domain, like Concepts may be either simple or complex. Complex Conceptual Value Domains
may either be hierarchies or networks.

In this particular example, there is a two level hierarchy that seems sufficient. It is provided in
Table 9.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

90

Conceptual Value Domains Contained Conceptual Value Domain

Alphabetic Strings Descriptions

Names

Formatted String

Dates Date Interval

Discrete Date

Money Specific Money Amount

Numbers Decimals

Integers

Table 9. Conceptual Value Domain Structures

Because the mechanics of constructing Conceptual Value Domains is exactly the same as
constructing Concepts, refer back to previous sections.

5.3 Build Data Element Concepts

Data Element Concepts are the first step on the road to enumerated data elements. Data Element
Concepts are similar to Concepts and Conceptual Value Domains in that they are at the
“conceptual” level, not at an enumeration level. Data Element Concepts are a merger of
Concepts and Conceptual Value Domain, and thus represent a binding of a Conceptual Value
Domain to a Concept. Data element Concepts bring a greater precision to a concept. Because of
the construction technique, a given concept may be bound multiple ways by a Conceptual Value
Domain.

Table 10 Shows the “marriage” of a Concept with one or more Conceptual Value Domains so as
to generate a specific Data Element Concept. The quantity of Data Element Concepts here is 44.
The quantity of Concepts is just 11. The listing of Data Element Concepts for a particular
Concept is provided in Table 11. As to Conceptual Value Domains, the quantity used is 6 and
their relationship to Data element concepts is provided in Table 12.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

91

Concept Conceptual Value
Domain

Data Element
Concept

Data Element Concept
Description

Abstract Asset Descriptions Abstract Asset
Description

The description associated with an
abstract asset.

Integers Abstract Asset Computer
Generated Identifier

A Computer Generated Identifier
that is employed by the computer to
uniquely identify an asset.

Abstract Asset Integer
Identifier

An abstract asset Integer Identifier
is an integer number that is
employed to uniquely identify an
asset.

Names Abstract Asset
Characteristics

The characteristics of an asset
including for example, its identifier,
name, description, etc.

Abstract Asset Name The name associated with the
abstract asset.

Communications
Components

Names Communications Locator
Characteristics

Characteristics examples of
communications components.

Communications Locator
Names

Components of various
communications mechanisms such
as email addresses, phone numbers,
URL, etc.

Email Address An email address of an organization
or a person

Telephone Number A telephone number of an
oranization or party.

Event Component Descriptions Event Description Description of an event.

Discrete Dates Event Date Specific data associated with an
event.

Names Event Characteristics Specific named characteristics of an
event.

Event Name Name of an event.

Finance
Components

Formatted String Financial Instrument
Identifier

The identifier that is associated with
a financial instrument. Examples
could be credit card numers, check
card numbers, check numbers, bank
routing numbers, and the like.

Names Financial Characteristics Characteristics of financial
transactions or events.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Concept Conceptual Value
Domain

Data Element
Concept

Data Element Concept
Description

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

92

Financial Transaction
Form

The form of a financial transaction.
This might include cash, wire,
credit card, or check.

Specific Money
Amount

Financial Amount A specific amount of money.

Financial Institution
Identifier

The identifier of a financial
institution that uniquely identifies to
to some processing organization or
activity.

Information
Technology
Components

Integers Information Technology
Components Integer
Identifers

Names Information Technology
Components
Characteristics

The specific names of
characteristics associated with
information technology
components.

Location
Components

Formatted String Postal Code A postal code is a formatted string
created by a postal service to assist
in the location of specific addresses
for the purpose of delivering the
mail.

Names Geopolitical Names Geopolitical names could be
countries, counties, states,
provinces, citites, and the like.

Location Address The complete set of location
address parts.

Location Characteristics The specific names of
characteristics associated with a
location.

Organization
Components

Descriptions Organization Description A description of the organization.

Formatted String Organizational Identifier The identifier that is associated with
a organizational instrument.
Examples could be a designation
created by the organization that
uniquely identifies it.

Names Organization Name The name of the organization.

Organizational
Characteristics

Various characteristics of an
organization.

Person
Components

Discrete Dates Person Birth Date Person Birth Date

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Concept Conceptual Value
Domain

Data Element
Concept

Data Element Concept
Description

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

93

Person Related Event
Dates

Specific dates related to a person.

Names Person Characteristics Identifed and named characteristics
about persons.

Person Name Part A specific part of a person's name.

Real Asset Descriptions Real Asset Description The description associated with a
real asset.

Integers Real Asset Computer
Generated Integers

A Computer Generated Identifier
that is employed by the computer to
uniquely identify a real asset.

Real Asset Integer
Identifier

An Real Asset Integer Identifier is
an integer number that is employed
to uniquely identify an asset.

Names Real Asset Characteristics Characteristics of real assets such as
names, identifiers, and the like.

Real Asset Name The name of the real assset.

Transaction
Components

Discrete Dates Transaction Date A specific date on which a
transaction occurs.

Integers Transaction Number The number that is assigned to a
transaction so that it can be
uniquely identified.

Names Transaction
Characteristics

Specific names associated with
characterizations of transactions
such as dates, amounts, descriptions
and names.

Transaction Name The specific name that commonly
signifies the kind or nature of a
transaction.

Transaction State The state of a transaction. For
example, submitted, in process,
completed, etc.

Specific Money
Amount

Transaction Amount An amount of money that is
tendered to partially or completely
satisfy a transaction between two
parties.

Table 10. Data Element Concepts created from Concepts and Conceptual Value Domains.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

94

Concept Data Element Concept

Abstract Asset Abstract Asset Characteristics

Abstract Asset Computer Generated Identifier

Abstract Asset Description

Abstract Asset Integer Identifier

Abstract Asset Name

Communications Components Communications Locator Characteristics

Communications Locator Names

Email Address

Telephone Number

Event Component Event Characteristics

Event Date

Event Description

Event Name

Finance Components Financial Amount

Financial Characteristics

Financial Institution Identifier

Financial Instrument Identifier

Financial Transaction Form

Information Technology Components Information Technology Components Characteristics

Information Technology Components Integer Identifers

Location Components Geopolitical Names

Location Address

Location Characteristics

Postal Code

Organization Components Organization Description

Organization Name

Organizational Characteristics

Organizational Identifier

Person Components Person Birth Date

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Concept Data Element Concept

Abstract Asset Abstract Asset Characteristics

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

95

Person Characteristics

Person Name Part

Person Related Event Dates

Real Asset Real Asset Characteristics

Real Asset Computer Generated Integers

Real Asset Description

Real Asset Integer Identifier

Real Asset Name

Transaction Components Transaction Amount

Transaction Characteristics

Transaction Date

Transaction Name

Transaction Number

Transaction State

Table 11. Concepts and related Data Element Concepts.

Conceptual Value Domain Data Element Concept

Descriptions Abstract Asset Description

Event Description

Organization Description

Real Asset Description

Discrete Dates Event Date

Person Birth Date

Person Related Event Dates

Transaction Date

Formatted String Financial Instrument Identifier

Organizational Identifier

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Conceptual Value Domain Data Element Concept

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

96

Postal Code

Integers Abstract Asset Computer Generated Identifier

Abstract Asset Integer Identifier

Information Technology Components Integer Identifers

Real Asset Computer Generated Integers

Real Asset Integer Identifier

Transaction Number

Names
Abstract Asset Characteristics

Abstract Asset Name

Communications Locator Characteristics

Communications Locator Names

Email Address

Event Characteristics

Event Name

Financial Characteristics

Financial Transaction Form

Geopolitical Names

Information Technology Components Characteristics

Location Address

Location Characteristics

Organization Name

Organizational Characteristics

Person Characteristics

Person Name Part

Real Asset Characteristics

Real Asset Name

Telephone Number

Transaction Characteristics

Transaction Name

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Conceptual Value Domain Data Element Concept

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

97

Transaction State

Specific Money Amount Financial Amount

Financial Institution Identifier

Transaction Amount

Table 12. Conceptual Value Domains and related Data Element Concepts.

5.3.1 Data Element Concepts

Data Element Concepts are a subordinate menu item under the menu item, Data Elements.
Fundamentally, the process of building a Data Element Concept is to pick the appropriate
Concept, the select an appropriate Data Element Concept, and then enter in the rest of the Data
Element Concept information. Figure 55 presents the Data Element Concept browse. What
you’re actually picking is not Concept or Conceptual Value Domain, but an instance of a
Concept Structure and a Conceptual Value Domain Structure. The reason for picking within the
context of a structure is that a “part” could be in multiple structures. Hence, the need to pick the
Concept or Conceptual Value Domain within the context of their structures. The Movies
example doesn’t require it, but the need for complex structures exists.

Once the Concept and Conceptual Domains are properly selected, and selection is allowed only
on leafs, press Insert. Note, selection is only allowed when leafs are selected. Otherwise a
message is displayed that indicates that selection is prevented. Figure 56 then presents itself. The
form automatically identifies that the data element concept is within the context of a particular
conceptual value domain structure and concept structure. Then enter abbreviations and a brief
description of the data element concept.

When all the data element concepts are created, a review should support the conclusion that
when all the attribute are finally mapped to the data elements that there will be a home for each.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

98

Figure 55. Data element concept browse.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

99

Figure 56. Data element concept update form.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

100

5.3.2 Data Element Concept Structure Type

Data Element Concept Structure Types are essentially the same as for all the others, so refer
back to the instruction under Concept for its creation.

5.3.3 Data Element Concept Structures

The Data Element Concept Structures are essentially the same as for all the others, so refer back
to the instruction under Concept Structures for their creation. You should create all the Data
Element Concept Structures identified in Table 13. Data Elements are defined within the context
of the Data Element Concept leafs. Once these are all built then proceed to the next step,
building Value Domains.

Data Element Concept Contained Data Element Concept

Abstract Asset Characteristics Abstract Asset Computer Generated Identifier

Abstract Asset Description

Abstract Asset Integer Identifier

Abstract Asset Name

Communications Locator Characteristics Communications Locator Names

Email Address

Telephone Number

Event Characteristics Event Date

Event Description

Event Name

Financial Characteristics Financial Amount

Financial Institution Identifier

Financial Instrument Identifier

Financial Transaction Form

Information Technology Components Characteristics Information Technology Components Integer
Identifiers

Location Characteristics Geopolitical Names

Location Address

Postal Code

Organizational Characteristics Organization Description

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Data Element Concept Contained Data Element Concept

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

101

Organization Name

Organizational Identifier

Person Characteristics Person Birth Date

Person Name Part

Person Related Event Dates

Real Asset Characteristics Real Asset Computer Generated Integers

Real Asset Description

Real Asset Integer Identifier

Real Asset Name

Transaction Characteristics Transaction Amount

Transaction Date

Transaction Name

Transaction Number

Transaction State

Table 13. Data Element Concept Structures

5.4 Build Value Domains

Value domains are the specification and enumeration of the value domains associated with
Conceptual Value Domains. Table 14 presents value domains for the various Conceptual Value
domains. The purpose of value domains is that they will help restrict the specific values that are
allowed in Data Elements and downstream in entity attributes, table columns, or DBMS table
columns. In this particular example the value domains are just general purpose. They can
however be very specific including enumerations of specific values. This is not covered in this
guide.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

102

Conceptual
Value Domain

Value
Domain

Description Pre-
cision

Scale Null-
Allowed

Date Interval Quantity of Days The quantity of days between
two fixed dates. This interval is
computed elsewhere. It is
normally a quantity of days not
to exceed a year.

0 0 No

Decimals Decimal
numbers of
varying sizes

Decimal numbers of varying
precisions and scales.

14 3 No

Descriptions Character strings
of arbitrary
length

Generalized strings of various
lengths to hold definitions and
or descriptions.

255 0 No

Discrete Dates Specific Legal
Dates

A specific legal date on a
calendar. It would hold
someone's Birthdate, the due
date for a payment, and the like.

0 0 No

Formatted String Engineered
strings of
specific length
and construction

A string of fixed length and
construction that would hold for
example, a telephone number
that contains country code, area
code, exchange, and number. Or
a Social Security Number that
contains three numerics
separated by two hyphens.

128 0 No

Integers Integer Numbers Integers of various sizes. 0 0 No

Large Integers An integer of maximum size
allowed by the DBMS.
Commonly this is allowed up to
64 bits.

0 0 No

Medium Integers An integer of medium size
allowed by the DBMS, that is,
up to 32 bits.

0 0 No

Small Integers An integer of small size, one
byte of 8 bits.

0 0 No

Names Name strings of
arbitrary length

A string of arbitrary length that
holds the name of the object.

255 0 No

Specific Money
Amount

Amounts less
than 1,000

A specific money amount of less
than $100, USD.

9 2 No

US Dollars Monies in United States Dollar
amounts.

14 2 No

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Conceptual
Value Domain

Value
Domain

Description Pre-
cision

Scale Null-
Allowed

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

103

Table 14. Value domain

The creation of Value Domains contains these steps:

! Create Value Domain
! Create Value Domain Structure Type
! Create Value Domain Structure

5.4.1 Create Value Domain

The process of creating a Value Domain consists of selecting the appropriate Conceptual Value
Domain and then entering the appropriate other value domain information. Figure 57 presents
the Value Domain Browse. Select the Conceptual Value Domain and press Insert to add a new
Value Domain. Figure 58 is then presented. Enter the information about the value domain, click
OK. You are then back at the browse screen. Add more value domains, change them or close the
screen.

5.4.2 Create Value Domain Structure Type

Value Domain Structure Types are essentially the same as for all the others, so refer back to the
instruction under Concept for its creation with this one.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

104

Figure 57. Value domain browse.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

105

Figure 58. Value domain update form.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

106

5.4.3 Create Value Domain Structure

The Value Domain Structures are essentially the same as for all the others, so refer back to the
instruction under Concept Structures for their creation. You should create all the Value Domain
structures identified in Table 14. Once these are all built then proceed to the next step, Build
Data Elements.

Value Domain Contained Value Domain

Amounts less than 1,000

Character strings of arbitrary length

Decimal numbers of varying sizes

Engineered strings of specific length and construction

Integer Numbers Large Integers

Medium Integers

Small Integers

Name strings of arbitrary length

Quantity of Days

Specific Legal Dates

US Dollars

Table 14. Value Domain Structures

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

107

5.5 Build Data Elements

The process of building a data element is similar to that of building Data Element Concepts
except that data elements do not have Data Element Structures or Data Element Structure Types.
In short, all data elements are atomic and not derived. The data element module has processes
for defining both compound (not atomic) and derived data elements. Since these are needed for
this example they are not presented.

The process of creating a data element starts with it’s browse. It is presented in Figure 59. Select
the appropriate business domain, for example, Finance, and then press Insert. Figure 60 then
appears. The business domain is filled in automatically. The Data Element Concept Id entry field
is initially set to zero. Tab through it. A Data Element Concept select screen will then appear.
Select the data element concept for the data element. The Value Domain Id field cannot be
valued and so it is set to “1" (that is, unknown). The value domain for the data element is set
within the Data Element Value Domains menu item that is within the Data Element menu item.

Figure 59. Data element browse.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

108

Figure 60. Data element form.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

109

Enter a common business name for the data element. One is automatically created for you and
consists of the combination of the Business Domain name and the Data Element Concept name.
Change it as you wish. Enter the abbreviations, and then press the “Reset” button. That process
ensures that the name is fully constructed and sets the constructed values into Data Element
Name and the User Set Name. Change these if you wish. Finally, enter a description. Press OK
and you are taken back to the Data Element browse. The newly created data element then
appears.

A data element is a slightly generalized version of an entity attribute or a table column. An
attribute may have a more refined value domain. A column may have a more refined data type
and also a more refined value domain. Table 15 presents the results of this top-down Concept to
Data Element Concept to Data Element exercise. The next step is to then relate all the attributes
from the entities to the data elements.

Concept Data Element Concept Data Element

Abstract Asset Abstract Asset Characteristics Product Description

Communications Components Communications Locator Names Communications Locator String

Event Component Event Date Event Date

Event Name Assessment

Finance Components Financial Instrument Identifier Financial Instrument Identifier

Payment Mechanism Name

Payment Mechanism Number

Information Technology
Components

Information Technology
Components Integer Identifiers

Identifier

Location Components Location Address Geopolitical Name

Postal Code

Street Address

Organization Components Organization Identifier Government Institution Identifier

Financial Institution Identifier

Organization Name Organization Name

Person Components Person Name Part Person Name

Real Asset Real Asset Name Product Name

Transaction Components Transaction Amount Financial Amount

Transaction Amount

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Concept Data Element Concept Data Element

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

110

Transaction Date Transaction Date

Transaction Name Payment Mechanism Type

Transaction State Transaction Status

Table 15. Concepts, Data Element Concepts and Data Elements.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

111

5.6 Connect Specified Data Model Attributes to Data Elements

This section started with Table 4. That is, the list of data elements to which the Attributes are to
be attached. This list of data elements was created top-down, but always with careful notice of
the attributes to which they will ultimately map.

There is another way to create data elements: Bottom up. You can also create Data Element
Concepts, and even Concepts bottom up as well. Check the Re-engineering menu items within
the Data Element module for the process.

The process of attaching attributes to data elements begins with the Specified Data Model
module Re-engineering menu item, Reassign Attributes to Data Elements. The screen is shown
in Figure 61. In this example, select the subject then the entity. Then tag one or more attributes.
Tag the data element to which the attribute is to be reassigned. It’s initial assignment is always to
“Unknown.” Hence it is always being reassigned. Press the “press” button to effect the
reassignment. Once reassigned, proceed to the next attribute and the next entity and the next
subject area for reassignment. Once completed, the reassignments should look like Table 4.

5.7 Synchronize Implemented Data Model Columns to Data Elements

Once the attributes are re-assigned, the column data element assignments still have to be
accomplished. Since the process was reverse engineering, and since data elements certainly did
not exist at the time the Implemented Data Model was created, then the only data element that
the columns could be assigned to was the “Unknown” data element.

To accomplish the re-assignments, bring up the Implemented Data Modeler, and then under the
Re-Engineering menu item, activate Column Data Element Re-Assignments. This is shown in
Figure 62. Select the Movies Original Data Capture schema, then the Movie Rental Record table.
Then note that the data element assigned to all the columns is “Unknown.” Note, however, that
from the prior step, all the attributes are shown. That is, all the columns are assigned to
attributes. It is unreasonable for an attribute to be assigned a data element different from the
column’s data element. Not only is it unreasonable, it is an error. So, the choices are two:
reassign the columns, one-by-one, as was done for attributes in the prior step, or assign them en-
mass.

The process of en-mass assignment merely requires you to select the schema and the table. Then
press the Reset Column Data Elements button that is right above the Attribute browse. Once the
process finishes, proceed to the next table and repeat until all the column are re-assigned.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

112

5.8 Data Element Summary

The business case for accomplishing the building of data elements is simple: time and money. If
the strategy set out in this document had been employed by the U.S. Department of Defense in
the 1990s (as they were advised to do so), then the U.S. DoD would have had a successful data
standardization process; they would have saved hundreds of millions of dollars; and they would
have largely succeeded in achieving data interoperability.

So, the choice is simple. Spend tens-of-thousands, or waste hundreds-of-millions.

Figure 61. Attribute data element reassign screen.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

113

Figure 62. Column data element reassignment screen.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

114

6.0 Forward Engineering

The forward engineering process causes metadata to be imported into the Implemented Data
Model from the Specified Data Model, and from the Implemented Data Model into the
Operational Data Model. Once in the Operational Data Model, SQL DDL can be generated and
then delivered over to the DBMS for creation of the database itself.

One or more Specified Data Model templates may contribute to the creation of the Implemented
Data Model. The following alternatives are available:

! One entity becomes one table.
! More than one entity can be combined into one table.
! One entity can be employed in more than one table.
! Part of an entity can be employed in one or more tables.

Similarly, one or more Operational Data Models may be created from the Implemented Data
Model. The data modeling alternative listed above apply as well. Thus, the Specified,
Implemented, and Operational data models each may be different with different quantities of
tables, columns, with different primary and foreign keys, and finally, different names. Despite all
these differences they may be related and their relationships are all contained within the
metabase. The relationships are based on the Entity Attributes from the Specified Data Model
being related to th Table Columns within the Implemented Data Model, which are in turn related
to the DBMS Table Columns within the Operational Data Model.

This not only maximizes flexibility on the part of the data modeler but it also enables the
database concept: Define once and use many times, to be accomplished again. The steps
associated with forward engineering are:

! Employ Specified Data Model entities to create an Implemented Data Model
! Employ Implemented Data Model entities to create an Operational Data Model
! Generate SQL DDL

6.1 Build an Implemented Data Model

The process of building an Implemented Data Model consists of the following steps:

! Create a schema
! Import Specified Data Model entities
! Add or delete columns as appropriate
! Adjust column data types as appropriate
! Create primary and foreign keys

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

115

6.1.1 Create a schema

Start this the Implemented Data Model building process by creating a schema. Start the
Implemented Data Model module and then select the Schema process under the Schema and
Tables main menu item. Figure 63 will then be shown.

Figure 63. Schema browse.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

116

This schema is for a data warehouse. It is going to contain five tables. The fact table is going to
be based on the movie rental record. There are going to be four dimensions: Customer,
Employee, Movie, and Store. To start the process, press Insert. Figure 64 will be presented.
Enter the name of the database, Movie Sales. Create the abbreviations, and then create a
description. Press Ok, and then press Close to end this step.

Figure 64. Schema update form.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

117

6.1.2 Import Specified Data Model Entities

The process of creating Implemented Data Model entities consists identifying a subject, and an
entity. Identify the receiving schema, and then press the Import entity button.

Figure 65 presents the screen to import a single entity. You can also import all the entities from a
subject, or all the entities that are related through primary and foreign keys. In this case we are
going to import the following entities: Movie Rental Record, Employee, Movie, Customer,
Store, and Payment. This will form the basis of the data warehouse. The fact table is the Movie
Rental Record. We’ll add to the fact table some columns from Payment, so the fact table
becomes Movie Rental Record Payment. Then we’ll have dimensions of Employee, Movie,
Customer, and Store.

Figure 65. Import single entity.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

118

When a single entity is imported, if it has foreign keys, then the foreign keys are not imported
except when the foreign key’s columns are part of the primary key. In that one case the foreign
key is not imported but its column remains as part of the imported table.

Highlight the subject and the entity. Select the schema that will hold the imported entities. Then
press the Import Specified Data Model Entity button. Repeat this process until all the entities are
imported. You can check the primary keys. You will see that they all exist.

6.1.3 Add, Delete, or Adjust Columns

The first step in adjusting the columns in the Movie Rental Record is to move the payment
columns to it. This is accomplished through the re-engineering process, Move Columns to
Tables. The columns that were moved were: Payment Amount, Payment Credit Card Type,
Payment Date, and Payment Status. When moving columns, as illustrated in Figure 66, select
from the left side, the schema, the table, and then tag the columns to move. Then, on the right
side, select the schema and the receiving table. Press the button to move the columns. Now the
Movie Rental Record will contain only the columns we want. At this point, delete the Payment
table.

In addition to adding or deleting columns, some column names may have to be adjusted. For
example the newly added Payment column names should be changed to reflect the context,
Movie Rental Record. This process is accomplished by the Column Maintenance menu item
which is under Maintenance under the main menu item, Columns. These changes should all be
done prior to the creation or modification of foreign keys. If they are not, then the column
maintenance screen has buttons that will adjust the data type and picture, and also adjust the
column names so that there is a match between the primary key column(s) and the foreign key
column(s).

The final action to add “Telephone Number” to three of the dimension tables, Store, Employee,
and Customer. This is accomplished through the process depicted in Figure 67. Activate the
Import Attributes from the Specified Data Model via Schema & Tables, then Import and Export,
then Import from Specified Data Model then Import Attributes from Subject.

Once the Telephone Number columns are added, proceed back through the set of all columns
adjusting names as may be appropriate. For example, changing Telephone Number within
Customer to Customer Telephone Number.

When you attempt to change a column associated with a foreign key, the metabase system will
reject the attempt as the column is not a “natural” column of the table but is a foreign column
which really is derived from the source table. Hence Customer Number in Movie Rental Record
cannot be changed to, for example, Movie Rental Record Customer Number because Customer
Number is a natural column of Customer, not Movie Rental Record.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

119

Figure 66. Reassign columns to tables.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

120

In this example, select subject, then entity and then tag one or more attributes. On the destination
side, select the schema and tag the receiving table. Then press the import button. The process
copies the attribute across. Repeat twice more, once for employee and then for store. At that
point, all three tables have the column, Telephone Number including all its standardized
semantics including data type and value domain. Also copied are all the abbreviations.

Once Telephone Number is copied into the tables, perform maintenance on the column to reduce
the length of telephone number from 128 characters to just 10 characters. The data type that was
assigned to the data element does not have a length more restrictive than the value domain of the
value domain, formatted string. Proceed likewise through the rest of the columns in all the tables
changing the data type lengths to a more realistic number. When you attempt to adjust the length
of some of the columns an error message will surface indicating that such changes are not

Figure 67. Import attribute from specified data model.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

121

allowed for foreign key column. In that case, only change the primary key column, and the press
the button to reset the foreign key data types, precision, and scale.

6.1.4 Adjust Column Data Types

A review of the data types for the Implemented Data Model may make you wonder if they were
all created by magic. No. Given that a data element is mapped to a value domain, then when a
column is created in a table, its source attribute is checked to see if it has a related data element.
If it does, and if it has an assigned value domain then the data type of that value domain is
employed for the data type of the column. Actually, it’s the SQL data type for that value
domain’s data type that is the actual source. Again, this is another example of the power of data
elements: define once and use many times.

Figure 68 presents the data type re-engineering screen. Select the schema, then table, then tag
one or more data types that are to change. Then tag the data type that the columns are to reflect
and then press the reassignment button.

6.1.5 Create Primary and Foreign keys

The process of creating primary and foreign keys for the Movies Sales database consists of the
following processes:

! Create the primary key
! Assign the primary key column
! Create the foreign key

The process of accomplishing this is contained in Sections 4.5.4 and 4.5.5. In this particular
example, you need to add four foreign keys:

! Customer to Movie Rental Record
! Employee to Movie Rental Record
! Store to Movie Rental Record
! Movie to Movie Rental Record

6.1.6 Summary

The process of creating the Implemented Data Model is quite simple. This is attested to the
brevity of this section of the document compared to the other sections. Simply put, once all the
investment has been accomplished in creating the Specified Data and Data Element models then
the process of creating a new database design is reduced to analysis and design, with the design
activities concentrated on picking and assembling pre-standardized Specified Data Model parts
into Implemented Data Models.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

122

6.2 Build an Operational Data Model

The process of building an Operational Data Model consists of the following steps:

! Create a database
! Create a DBMS Schema
! Import Implemented Data Model entities into the DBMS schema
! Add or delete DBMS columns as appropriate
! Adjust DBMS data types as appropriate
! Create primary and foreign keys

The process of building the Operational Data Model is simpler than building the Implemented
Data Model. All of these activities occur within the Operational Data Model module.

Figure 68. Column data type re-assignment.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

123

6.2.1 Create a database

This process is the same as contained in Section 3.1.4.

6.2.2 Create a DBMS Schema

This process is the same as contained in Section 3.1.4. In this particular example, choose Clarion
as the DBMS.

6.2.3 Import Implemented Data Model entities into the DBMS schema

This process is similar to that contained in Section 6.1.2 except you would choose the menu
item, Import Schema Table Set. As you can see from that list, you can import single tables, a
collection of tables that are related through primary and foreign keys, and individual columns.
Since the data models are independent of each other, an operational dta model schema can
ultimately contain tables from more than one Implemented Data Model schema.

6.2.4 Add or delete DBMS columns as appropriate

This process is the same as contained in Section 6.1.3.

6.2.5 Adjust DBMS data types as appropriate

This process is the same as contained in Section 6.1.4. If in step 6.2.2, above you choose Oracle
as the DBMS, then you need to examine if the data types of Oracle are the set necessary to match
the newly created Operational Data Model. If they are not, then you will have to do data type
adjustment. For example, the data type for Date in Oracle is Datetime. If you do not pick the
right data types then when you generate SQL DDL, the required data type will not be present and
the generation step will terminate.

6.2.6 Create primary and foreign keys

This process is the same as contained in Section 6.1.5.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

124

6.3 Generate SQL DDL

The process of generating SQL DDL is the same across all three models, that is, Specified,
Implemented and Operational. Activate the menu item, Export through Schemas & Tables,
Import and Export, SQL DDL, then Export. Figure 69 is then presented.

In this figure, select the database then schema, then press the Select Output File button. Choose
the output file to which SQL DDL is to be generated. The next choice is to select how SQL DDL
is to be generated for sub-type tables. The choices are: One, that is, all sub-typed tables are
folded into one table, or Each which each sub-typed table is its own SQL Table connected by
one-to-one relationships. Or SQL 1999 where the SQL DDL conforms to the SQL 1999
standard. That last choice is not implemented because no SQL DBMS has implemented that SQL
1999 feature.

Then you have another choice. Generate a complete set of SQL DDL for all the tables in a
Schema (first button choice), or generate the SQL DDL for just a set of tables connected by the
primary key of the high lighted table (i.e., Store) and it’s connected table, which would be Movie
Rental Record.

Once the SQL DDL is generated a “Finish” message is displayed. Press the View Generation
Result button to see the resulting SQL DDL file.

That’s it you have now created a new database design from existing metadata starting with the
Specified Data Model and then the Implemented Data Model.

To “see” what the database design looks like, you can import the SQL DDL into an ER modeling
tool like deZiner (www.datanamic.com). Figure 70 is the five table Movie Sales data warehouse.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

125

Figure 69. Generate SQL DDL.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

126

Figure 70. Movie Sales data warehouse data model diagram.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

127

6.4 The Payoff

Table 16 that follows shows the benefit of having metadata from data element concepts all the
way down to Operational Data Model DBMS columns. From this table you can see the counts in
the table immediately below. Clearly there is reuse. And, that’s the whole point of this effort

ISO 11179 Data Element Model Specified Data
Model

Implemented
Data Model

Concepts Data Element
Concepts

Data Elements Entity
Attributes

Database
Columns

10 15 21 35 93

In this very trivial and small example there is significant reuse. In general, every data element
was re-used about 4.5 times. As the quantity of operational data capture databases grows, the
quantity of concepts, data element concepts, and data elements will NOT grow in proportion.
Rather they will converge ultimately on a high degree of re-use. The low estimate is about 30:1.
This ratio comes from a study of a data analysis effort that was done on a class of U.S.
Department of Defense applications in the early 1990s. That study showed the following
statistics:

Activity Quantity
Cost for
standardization

Starting quantity of columns/fields 19,000 $6.75 million

Elimination of closely named columns and
fields reduced the quantity to

3,000 $1.06 million

Elimination of same concept but very
differently named columns and fields
reduced the quantity to

560 $200,000

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

128

Concept Data Element
Concept

Data Element Attribute Column

Abstract Asset Abstract Asset
Characteristics

Product
Description

Description DESCRIPTION

Movie Description

Communications
Components

Communications
Locator

Communicatio
ns Locator
String

Telephone
Number Phone
Number

CUSTOMER PHONE NUMBER

Customer Phone Number

DISTRIBUTOR PHONE NUMBER

EMPLOYEE PHONE NUMBER

Employee Phone Number

STORE PHONE NUMBER

Store Phone Number

Event
Component

Event Date Event Date Employee Hire
Date

EMPLOYEE HIRE DATE

Employee Hire Date

Movie Date MOVIE DATE

Movie Date

Movie Rental
Record Due
Date

MOVIE RENTAL RECORD DUE DATE

Movie Rental Record Due Date

Payment
Credit Card
Expiration

PAYMENT CREDIT CARD EXPIRATION

Payment Date Movie Rental Record Payment Date

PAYMENT DATE

Event Name Assessment General
Condition

GENERAL CONDITION

Rating Movie Rating

RATING

Finance
Components

Financial
Instrument
Identifier

Financial
Instrument
Identifier

Check Number CHECK NUMBER

Movie Rental
Record
Number

Movie Rental Record Number

Payment
Mechanism
Name

Payment
Credit Card
Type

Movie Rental Record Payment Credit Card
Type

PAYMENT CREDIT CARD TYPE

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Concept Data Element
Concept

Data Element Attribute Column

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

129

Payment
Mechanism
Number

Credit Card
Number

CREDIT CARD NUMBER

Information
Technology
Components

Information
Technology
Components
Integer
Identifiers

Identifier Information
Technology
Attributes
Identifier

CUSTOMER NUMBER

CUSTOMER NUMBER

CUSTOMER NUMBER

DISTRIBUTOR ID

DISTRIBUTOR ID

EMPLOYEE ID

EMPLOYEE ID

EMPLOYEE ID

MOVIE COPY NUMBER

MOVIE COPY NUMBER

MOVIE NUMBER

MOVIE NUMBER

PAYMENT TRANSACTION NUMBER

PAYMENT TRANSACTION NUMBER

RENTAL RECORD NUMBER

STORE ID

STORE ID

Identifier Information
Technology
Attributes
Identifier

SUPERVISOR

Location
Components

Location
Address

Geopolitical
Name

Location
Address City

CUSTOMER CITY

DISTRIBUTOR CITY

EMPLOYEE CITY

Location
Address State

CUSTOMER STATE

DISTRIBUTOR STATE

EMPLOYEE STATE

Postal Code Location
Address Zip
Code

CUSTOMER ZIP CODE

DISTRIBUTOR ZIP CODE

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Concept Data Element
Concept

Data Element Attribute Column

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

130

EMPLOYEE ZIP CODE

Street Address Location
Address Street
Address

CUSTOMER STREET ADDRESS

DISTRIBUTOR STREET ADDRESS

EMPLOYEE STREET ADDRESS

STORE STREET ADDRESS

Organization
Components

Organization
Name

Organization
Name

Distributor
Name

DISTRIBUTOR NAME

Organization
Name

Store Name STORE NAME

Organization
Name

Store Name Store Name

Organizational
Identifier

Financial
Institution
Identifier

Check Bank
Number

CHECK BANK NUMBER

Government
Institution
Identifier

Employee
Social Security

EMPLOYEE SOCIAL SECURITY #

Employee Social Security

Person
Components

Person Name
Part

Person Name Customer
Name

CUSTOMER NAME

Customer Name

Customer Name

Employee
Name

EMPLOYEE NAME

Employee Name

Movie
Director

MOVIE DIRECTOR

Movie Director

Movie Star MOVIE STAR

Movie Star

Real Asset Real Asset Name Product Name Movie Name MOVIE NAME

Movie Name

Movie Name

Store Name

Transaction
Components

Transaction
Amount

Financial
Amount

Movie Rental
Rate

MOVIE RENTAL RATE

Movie Rental Rate

Transaction
Amount

Payment
Amount

Movie Rental Record Payment Amount

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Concept Data Element
Concept

Data Element Attribute Column

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

131

PAYMENT AMOUNT

Transaction Date Transaction
Date

Movie Rental
Record Date

MOVIE RENTAL RECORD DATE

Movie Rental Record Date

Movie Rental
Record
Overdue
Charge

MOVIE RENTAL RECORD OVERDUE
CHARGE

Movie Rental Record Overdue Charge

Movie Rental
Record Rate

MOVIE RENTAL RECORD RATE

Movie Rental Record Rate

Transaction
Name

Payment
Mechanism
Type

Payment Type PAYMENT TYPE

Transaction
State

Transaction
Status

Movie Rental
Record Status

MOVIE RENTAL RECORD STATUS

Movie Rental Record Status

Payment
Status

Movie Rental Record Payment Status

PAYMENT STATUS

Table 16. Multiple use of concepts down through Implemented data model columns.

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

132

Attachment 1
Movie Rentals SQL DDL

CREATE TABLE MOVIE_COPY (
 MOVIE_COPY_NUMBER INTEGER NOT NULL,
 GENERAL_CONDITION INTEGER
);

ALTER TABLE MOVIE_COPY
 ADD PRIMARY KEY (MOVIE_COPY_NUMBER);

CREATE TABLE MOVIE (
 MOVIE_NUMBER INTEGER NOT NULL,
 MOVIE_NAME CHARACTER(25),
 MOVIE_DIRECTOR CHARACTER(25),
 DESCRIPTION INTEGER,
 MOVIE_STAR CHARACTER(25),
 RATING INTEGER,
 MOVIE_RENTAL_RATE DECIMAL(7,2),
 MOVIE_DATE INTEGER
);

ALTER TABLE MOVIE
 ADD PRIMARY KEY (MOVIE_NUMBER);

CREATE TABLE DISTRIBUTOR (
 DISTRIBUTOR_ID INTEGER NOT NULL,
 DISTRIBUTOR_NAME CHARACTER(25),
 DISTRIBUTOR_STREET_ADDRESS CHARACTER(45),
 DISTRIBUTOR_CITY CHARACTER(20),
 DISTRIBUTOR_STATE CHARACTER(2),
 DISTRIBUTOR_ZIP_CODE INTEGER,
 DISTRIBUTOR_PHONE_NUMBER INTEGER
);

ALTER TABLE DISTRIBUTOR
 ADD PRIMARY KEY (DISTRIBUTOR_ID);

CREATE TABLE STORE (
 STORE_ID INTEGER NOT NULL,
 DISTRIBUTOR_ID INTEGER,
 STORE_STREET_ADDRESS CHARACTER(45),
 STORE_PHONE_NUMBER INTEGER,
 STORE_NAME CHARACTER(25)
);

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

133

ALTER TABLE STORE
 ADD PRIMARY KEY (STORE_ID);

CREATE TABLE EMPLOYEE (
 EMPLOYEE_ID INTEGER NOT NULL,
 STORE_ID INTEGER,
 EMPLOYEE_NAME CHARACTER(25),
 SUPERVISOR INTEGER NOT NULL,
 EMPLOYEE_STREET_ADDRESS CHARACTER(45),
 EMPLOYEE_CITY CHARACTER(20),
 EMPLOYEE_STATE CHARACTER(2),
 EMPLOYEE_ZIP_CODE INTEGER,
 EMPLOYEE_PHONE_NUMBER INTEGER,
 EMPLOYEE_SOCIAL_SECURITY_# INTEGER,
 EMPLOYEE_HIRE_DATE INTEGER
);

ALTER TABLE EMPLOYEE
 ADD PRIMARY KEY (EMPLOYEE_ID);

CREATE TABLE CUSTOMER (
 CUSTOMER_NUMBER INTEGER NOT NULL,
 CUSTOMER_NAME CHARACTER(25),
 CUSTOMER_STREET_ADDRESS CHARACTER(45),
 CUSTOMER_CITY CHARACTER(20),
 CUSTOMER_STATE CHARACTER(2),
 CUSTOMER_ZIP_CODE INTEGER,
 CUSTOMER_PHONE_NUMBER INTEGER
);

ALTER TABLE CUSTOMER
 ADD PRIMARY KEY (CUSTOMER_NUMBER);

CREATE TABLE PAYMENT (
 PAYMENT_TRANSACTION_NUMBER INTEGER NOT NULL,
 CUSTOMER_NUMBER INTEGER,
 EMPLOYEE_ID INTEGER NOT NULL,
 PAYMENT_TYPE CHARACTER(20),
 PAYMENT_AMOUNT DECIMAL(7,2),
 PAYMENT_DATE INTEGER,
 PAYMENT_STATUS CHARACTER(2),
 CHECK_BANK_NUMBER INTEGER,
 CHECK_NUMBER INTEGER,
 CREDIT_CARD_NUMBER INTEGER,
 PAYMENT_CREDIT_CARD_EXPIRATION INTEGER,
 PAYMENT_CREDIT_CARD_TYPE CHARACTER(20)
);

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

134

ALTER TABLE PAYMENT
 ADD PRIMARY KEY (PAYMENT_TRANSACTION_NUMBER);

CREATE TABLE MOVIE_RENTAL_RECORD (
 EMPLOYEE_ID INTEGER NOT NULL,
 RENTAL_RECORD_NUMBER INTEGER NOT NULL,
 MOVIE_COPY_NUMBER INTEGER NOT NULL,
 MOVIE_NUMBER INTEGER NOT NULL,
 CUSTOMER_NUMBER INTEGER NOT NULL,
 PAYMENT_TRANSACTION_NUMBER INTEGER,
 MOVIE_RENTAL_RECORD_DATE INTEGER,
 MOVIE_RENTAL_RECORD_DUE_DATE INTEGER,
 MOVIE_RENTAL_RECORD_STATUS CHARACTER(2),
 MOVIE_RENTAL_RECORD_RATE DECIMAL(7,2),
 MOVIE_RENTAL_RECORD_OVERDUE_CHARGE DECIMAL(7,2)
);

ALTER TABLE MOVIE_RENTAL_RECORD
 ADD PRIMARY KEY (EMPLOYEE_ID, RENTAL_RECORD_NUMBER,
 MOVIE_COPY_NUMBER, MOVIE_NUMBER, CUSTOMER_NUMBER);

ALTER TABLE STORE
 ADD FOREIGN KEY (DISTRIBUTOR_ID)
 REFERENCES DISTRIBUTOR (DISTRIBUTOR_ID)
 ON DELETE RESTRICT
 ON UPDATE RESTRICT;

ALTER TABLE EMPLOYEE
 ADD FOREIGN KEY (STORE_ID)
 REFERENCES STORE (STORE_ID)
 ON DELETE RESTRICT
 ON UPDATE RESTRICT;

ALTER TABLE EMPLOYEE
 ADD FOREIGN KEY (SUPERVISOR)
 REFERENCES EMPLOYEE (EMPLOYEE_ID)
 ON DELETE RESTRICT
 ON UPDATE RESTRICT;

ALTER TABLE PAYMENT
 ADD FOREIGN KEY (EMPLOYEE_ID)
 REFERENCES EMPLOYEE (EMPLOYEE_ID)
 ON DELETE RESTRICT
 ON UPDATE RESTRICT;

ALTER TABLE PAYMENT

Whitemarsh Metabase: Reverse and Forward Engineering Users Guide

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

135

 ADD FOREIGN KEY (CUSTOMER_NUMBER)
 REFERENCES CUSTOMER (CUSTOMER_NUMBER)
 ON DELETE RESTRICT
 ON UPDATE RESTRICT;

ALTER TABLE MOVIE_RENTAL_RECORD
 ADD FOREIGN KEY (PAYMENT_TRANSACTION_NUMBER)
 REFERENCES PAYMENT (
 PAYMENT_TRANSACTION_NUMBER)
 ON DELETE RESTRICT
 ON UPDATE RESTRICT;

ALTER TABLE MOVIE_RENTAL_RECORD
 ADD FOREIGN KEY (MOVIE_NUMBER)
 REFERENCES MOVIE (MOVIE_NUMBER)
 ON DELETE RESTRICT
 ON UPDATE RESTRICT;

ALTER TABLE MOVIE_RENTAL_RECORD
 ADD FOREIGN KEY (MOVIE_COPY_NUMBER)
 REFERENCES MOVIE_COPY (
 MOVIE_COPY_NUMBER)
 ON DELETE RESTRICT
 ON UPDATE RESTRICT;

ALTER TABLE MOVIE_RENTAL_RECORD
 ADD FOREIGN KEY (CUSTOMER_NUMBER)
 REFERENCES CUSTOMER (CUSTOMER_NUMBER)
 ON DELETE RESTRICT
 ON UPDATE RESTRICT;

