
XQuery 1.0 Formal Semantics Page 1 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

XQuery 1.0 Formal Semantics

W3C Working Draft 07 June 2001

This version:
http://www.w3.org/TR/2001/WD-query-semantics-20010607

Latest version:
http://www.w3.org/TR/query-semantics/

Previous versions:
http://www.w3.org/TR/2001/WD-query-algebra-20010215/
http://www.w3.org/TR/2000/WD-query-algebra-20001204/

Editors:
Peter Fankhauser (GMD-IPSI) <fankhaus@darmstadt.gmd.de>
Mary Fernández (AT&T Labs - Research) <mff@research.att.com>
Ashok Malhotra (Microsoft) <ashokma@microsoft.com>
Michael Rys (Microsoft) <mrys@microsoft.com>
Jérôme Siméon (Bell Labs, Lucent Technologies) <simeon@research.bell-labs.com>
Philip Wadler (Avaya) <wadler@avaya.com>

Copyright ©2001 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark, document
use and software licensing rules apply.

Abstract

This document presents the formal semantics of [XQuery 1.0: A Query Language for XML], an XML
query language. This document replaces the [XML Query Algebra].

Status of this document

This section describes the status of this document at the time of its publication. Other documents
may supersede this document. The latest status of this document series is maintained at the W3C.

This is a First Public Working Draft for review by W3C Members and other interested parties. This
document replaces the [XML Query Algebra]. It is a draft document and may be updated, replaced or
made obsolete by other documents at any time. It is inappropriate to use W3C Working Drafts as
reference material or to cite them as other than "work in progress". This is work in progress and does
not imply endorsement by the W3C membership.

This document has been produced as part of the W3C XML Activity, following the procedures set out
for the W3C Process. The document has been written by the XML Query Working Group.

The purpose of this document is to present the current state of the formal semantics of [XQuery 1.0: A
Query Language for XML] and to elicit feedback on its current state. The XML Query Working Group
feels that it has made good progress on this document but that it is subject to change in future

XQuery 1.0 Formal Semantics Page 2 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

versions. Comments on this document should be sent to the W3C mailing list www-xml-query-
comments@w3.org (archived at http://lists.w3.org/Archives/Public/www-xml-query-comments/).
Important issues remain open - see [B.3.1 Open Issues]. In particular, the reader should note the
following issues related to compatibility of the XQuery formal semantics with related XML activities.

? [Issue-0089: Syntax for types in XQuery]: The XQuery formal semantics's is based on a
subset of the XQuery surface syntax, but some misalignments exist. The XQuery formal
semantics presents a syntax for type expressions that is not supported in the XQuery surface
syntax. It also has a static type-assertion expression (see [Issue-0090: Static type-assertion
expression]), an attribute constructor expression (see [Issue-0091: Attribute expression]),
and an error expression (see [Issue-0092: Error expression]) that are not in the XQuery
surface syntax

? [Issue-0088: Align XQuery types with XML Schema : Formal Description.]: The XQuery
formal semantics's type system is based on [XML Schema : Formal Description] (XSFD), but
some misalignments exist. A related issue is [Issue-0018: Align algebra types with
schema]. We assume that the XQuery formal semantics will be based on XSFD and leave
alignment of XSFD and XML Schema for others to resolve.

? [Issue-0056: Operators on Simple Types]: A joint XSLT/Schema/Query task force is
chartered to define the operators on Schema simple types. XQuery will adopt the operators
defined by that group.

The XML Query Working Group is working diligently to achieve compatibility with these XML activities.

A list of current W3C Recommendations and other technical documents can be found at
http://www.w3.org/TR/.

Table of contents

1 Introduction
2 XQuery Semantics by Example
 2.1 Data and types
 2.2 Projection
 2.3 Simple data
 2.4 Iteration
 2.5 Selection
 2.6 Quantification
 2.7 Join
 2.8 Unordered built-in function
 2.9 Parent and treat operators
 2.10 References and node identity
 2.11 Restructuring and grouping
 2.12 Querying order
 2.13 Sorting
 2.14 Aggregation
 2.15 Expanded names
 2.16 Comments and processing instructions
 2.17 Mixed Content
 2.18 Functions
 2.19 Structural recursion
 2.20 Functions for all well-formed documents
 2.21 Top-level queries and XML results
3 XQuery Core Syntax
 3.1 Expressions

XQuery 1.0 Formal Semantics Page 3 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

 3.2 Operators
 3.3 Built-in functions
 3.4 Atomic simple types
 3.5 Types
4 Static Semantics : Type-Inference Rules
 4.1 Relating data to types
 4.2 Equivalences and subtyping
 4.3 Environments
 4.4 Expressions
 4.5 Operators
 4.6 Built-in functions
 4.7 Typing unordered expressions
 4.8 Iteration expressions
 4.9 Typeswitch expressions
 4.10 Typing descendent-or-self
 4.11 Top-level declarations and query expressions
5 Dynamic Semantics : Value-Inference Rules
 5.1 Semantic objects
 5.2 Environments
 5.3 Expressions
 5.4 Operators
 5.5 Built-in functions
 5.6 Iteration expressions
 5.7 Typeswitch expressions
 5.8 Top-level declarations and query expressions
6 XQuery Mapping to Core
 6.1 Notations
 6.2 Mapping for XQuery expressions
 6.2.1 Path expressions
 6.2.2 Element and attribute constructors
 6.2.3 FLWR expressions
 6.2.4 Operators
 6.2.5 Function application
 6.2.6 Quantification
 6.2.7 Type related operations
 6.3 Mapping of XQuery declarations to Algebra declarations
 6.3.1 Mapping of type declarations
 6.3.2 Mapping of function declarations
 6.3.3 Predefined functions
7 References

Appendices

A Equivalences
 A.1 Relating projection to iteration
 A.2 Laws
B Issues
 B.1 Introduction
 B.2 Issues list
 B.3 Alphabetic list of issues
 B.3.1 Open Issues
 B.3.2 Resolved (or redundant) Issues
 B.4 Delegated Issues
 B.4.1 XPath 2.0
 B.4.2 XQuery
 B.4.3 Operators

XQuery 1.0 Formal Semantics Page 4 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

1 Introduction

This document defines the formal semantics of XQuery, an XML query language. The formal
semantics of XQuery is defined with respect to a ``core syntax'' of XQuery. XQuery's core syntax is
based on a subset of the complete syntax that is available to users, and every expression in the user-
level syntax can be rewritten as an expression in the core syntax. Although the intent is for the core
syntax to be a proper subset of the complete XQuery syntax, some misalignments exist. The XQuery
formal semantics presents a syntax for type expressions that is not supported in the XQuery surface
syntax. It also has a static type-assertion expression (see [Issue-0090: Static type-assertion
expression]), an attribute constructor expression (see [Issue-0091: Attribute expression]), and an
error expression (see [Issue-0092: Error expression]) that are not in the XQuery surface syntax

A forthcoming document defines operators and a library of built-in functions for XQuery and XPath 2.0.
In this document, functions in this library have the namespace prefix xfo.

In this document, ``query-analysis time'' refers to when an XQuery expression is parsed and type
checked, that is before the value of the expression is computed, and ``query-evaluation time'' refers to
when an XQuery expression is evaluated, that is, when it is reduced to a value. We sometimes use
the phrases query-analysis time and ``compile time'' interchangeably as well as the phrases query-
evaluation time and ``run time''.

This work builds on long-standing traditions in the database community. In particular, we have been
inspired by systems such as SQL, OQL, and nested relational algebra (NRA). We have also been
inspired by systems such as Quilt, UnQL, XDuce, XML-QL, XPath, XQL, XSLT, and YaTL. We give
citations for all these systems below.

In the database world, it is common to translate a query language into an algebra; this happens in
SQL, OQL, and NRA, among others. The purpose of the algebra is twofold. First, an algebra is used
to give a semantics for the query language, so the operations of an algebra should be well-defined.
Second, an algebra is used to support query optimization, so it should possess a rich set of laws. The
core syntax of XQuery serves as an algebra for XQuery. The laws we give include analogues of most of
the laws of relational algebra.

It is also common for a query language to exploit schemas or types; this happens in SQL, OQL, and
NRA, among others. The purpose of types is twofold. Types can be used to detect certain kinds of
errors at query-analysis time and to support query optimization. Given the type of input values, a
query applied to those values, and the expected type of the query's output value, the XQuery type
system can detect at query-analysis time if the query's output value has the expected output type.

DTDs and XML Schema can be thought of as providing something like types for XML. The XQuery
formal semantics uses a a type system based on the formalism in [XML Schema : Formal
Description]. On this basis, XQuery is statically typed. This allows an implementation of XQuery to
determine and check at query-analysis time the output type of a query on documents conforming to
an input type. Compare this to an untyped or dynamically typed query language, where each individual
output has to be validated against a schema at query-evaluation time, and there is no guarantee that
this check will always succeed.

To define the XQuery completely, we present a static semantics and a dynamic semantics. The static
semantics is presented as type inference rules, which relate XQuery expressions to types and and
specify under what conditions an expression is well typed. The semantics is static, because ill-typed
expressions are identified at query-analysis time, i.e., before the query is evaluated. The dynamic, or
operational, semantics is presented as value inference rules, which relate XQuery expressions to

XQuery 1.0 Formal Semantics Page 5 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

values. XQuery's values are defined in the [XQuery 1.0 and XPath 2.0 Data Model]; for example, they
include XML simple values, attributes, and elements, as well as other values. A dynamic semantics
guarantees that every expression can be reduced to a value and may serve as the basis for a query
interpreter or compiler.

The document is organized as follows. A tutorial introduction is presented in [2 XQuery Semantics
by Example]. The primary purpose of this tutorial to present various features of XQuery and to show
how a type is computed for each XQuery expression. The reader is referred to [XQuery 1.0: A Query
Language for XML] for a complete tutorial on XQuery's features. The grammar of XQuery's core syntax
and the grammar for types are given in [3 XQuery Core Syntax]. We give the static typing rules for
XQuery in [4 Static Semantics : Type-Inference Rules] and then the dynamic semantics for XQuery
in [5 Dynamic Semantics : Value-Inference Rules]. These sections formalize the information
presented informally in [2 XQuery Semantics by Example]. Although these two sections contain the
most challenging material, we have tried to make the content as accessible as possible. Readers only
interested in learning about XQuery's features need not read these sections, however, we expect that
implementors of XQuery will read them. Finally, in [6 XQuery Mapping to Core], we present the
mapping from complete syntax of XQuery to the core syntax. We note here that this section is still
preliminary and contains inconsistencies (see [Issue-0099: Incomplete/inconsistent mapping
from XQuery to core]).

In [B.2 Issues list], we discuss open issues and problems. We present some equivalence and
optimization laws of XQuery in [A Equivalences].

Cited literature includes: monads [Mog89], [Mog91], [Wad92], [Wad93], [Wad95], NRA [BNTW95],
[Col90], [LW97], [LMW96], OQL [BK93], [BKD90], [CM93], Quilt [Quilt], SQL [Date97], UnQL
[BFS00], XDuce [HP2000], XMSL-QL [XMLQL99], XPath [XPath], XQL [XQL99], XSLT [XSLT 99], and
YaTL [YAT99].

2 XQuery Semantics by Example

For a complete introduction to XQuery, see [XQuery 1.0: A Query Language for XML]. This document
focuses on the static type and dynamic operational semantics of XQuery. This section introduces the
static and dynamic semantics of XQuery, using examples based on accessing a database of books.

2.1 Data and types

Consider the following sample data:

 <bib>
 <book year="1999" isbn="1-55860-622-X">
 <title>Data on the Web</title>
 <author>Abiteboul</author>
 <author>Buneman</author>
 <author>Suciu</author>
 </book>
 <book year="2001" isbn="1-XXXXX-YYY-Z">
 <title>XML Query</title>
 <author>Fernandez</author>
 <author>Suciu</author>
 </book>
 </bib>

Here is a fragment of an XML Schema for such data:

 <xs:group name="Bib">

XQuery 1.0 Formal Semantics Page 6 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

 <xs:element name="bib">
 <xs:complexType>
 <xs:group ref="Book"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:complexType>
 </xs:element>
 </xs:group>

 <xs:group name="Book">
 <xs:element name="book">
 <xs:complexType>
 <xs:attribute name="year" type="xs:integer"/>
 <xs:attribute name="isbn" type="xs:string"/>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="author"type="xs:string" maxOccurs="unbounded"/>
 </xs:complexType>
 </xs:element>
 </xs:group>

In the XQuery formal semantics, we present a syntax for type expressions that allows us to explain
how the type of an XQuery expression is inferred. This type syntax is not in the XQuery surface
syntax (see [Issue-0089: Syntax for types in XQuery]. In addition, the XQuery formal semantics
includes an expression that asserts statically the type of an expression (see [Issue-0090: Static
type-assertion expression]), an attribute constructor expression (see [Issue-0091: Attribute
expression]), and an error expression (see [Issue-0092: Error expression]) that are not in the
XQuery surface syntax. With the exception of type expressions and the static type-assertion
expression, all other XQuery expressions in this document are in the XQuery surface syntax. The data
and schema above is represented as follows:

 TYPE Bib = ELEMENT bib (Book*)
 TYPE Book =
 ELEMENT book
 (ATTRIBUTE year (xs:integer) &
 ATTRIBUTE isbn (xs:string)
 ELEMENT title (xs:string),
 (ELEMENT author(xs:string))+
)
 LET $bib0 :=
 <bib>
 <book year="1999" isbn="1-55860-622-X">
 <title>Data on the Web</title>
 <author>Abiteboul</author>
 <author>Buneman</author>
 <author>Suciu</author>
 </book>
 <book year="2001" isbn="1-XXXXX-YYY-Z">
 <title>XML Query</title>
 <author>Fernandez</author>
 <author>Suciu</author>
 </book>),
 </bib> : Bib
 RETURN ...

The expression above defines two types, Bib and Book, and defines one variable, $bib0.

The Bib type corresponds to a single bib element, which contains a sequence of zero or more Book
elements. Every attribute or element can be viewed as a sequence of length one.

XQuery 1.0 Formal Semantics Page 7 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

The Book type corresponds to a single book element, which also contains a sequence of zero or more
attributes and elements. It contains one year attribute and one isbn attribute, followed by one title
element, followed by one or more author elements. The & operator, called the interleave operator,
indicates that the year and isbn attributes may occur in any order. A isbn attribute and a title or
author element contains a string value, and a year attribute contains an integer.

The let expression above binds the variable $bib0 to a literal XML value. The variable $bib0 is in
scope for all expressions in the body of the RETURN clause. For convenience, the RETURN ...
indicates that the expressions in the rest of this document are contained within the scope of this LET
expression. The value of a variable is immutable, that is, once a variable is defined, its value does not
change. The value of $bib0 is a bib element that contains two book elements.

XQuery is a strongly typed language, therefore the value of $bib0 must be an instance of its declared
type, or the expression is ill-typed. Here the value of $bib0 is an instance of the Bib type, because it
contains one bib element, which contains two book elements, each of which contain an integer-
valued year attribute, a string-valued isbn attribute, a string-valued title element, and one or more
string-valued author elements.

For convenience, we define a second global variable $book0 also bound to a literal value, which is
equal to the first book in bib0.

 LET $book0 :=
 <book year="1999" isbn="1-55860-622-X">
 <title>Data on the Web</title>
 <author>Abiteboul</author>
 <author>Buneman</author>
 <author>Suciu</author>
 </book> : Book
 RETURN ...

2.2 Projection

One of XQuery's most basic operations is projection. The following expression returns all author
elements contained in book elements contained in $bib0:

 $bib0/book/author
==>(<author>Abiteboul</author>,
 <author>Buneman</author>,
 <author>Suciu</author>,
 <author>Fernandez</author>,
 <author>Suciu</author>)
: (ELEMENT author (xs:string))*

Note that in the result, the document order of author elements is preserved.

The above example and the ones that follow have three parts. First is an expression in XQuery.
Second, following the ==> is the value of this expression. Third, following the : is the type of the
expression, which is (of course) also a legal type for the value.

It may be unclear why the type of $bib0/book/author contains zero or more authors, even though
the type of a book element contains one or more authors. Let's look at the derivation of the result type
by looking at the type of each sub-expression:

XQuery 1.0 Formal Semantics Page 8 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

 $bib0 : Bib
 $bib0/book : Book*
 $bib0/book/author : (ELEMENT author (xs:string))*

Recall that Bib, the type of bib0, may contain zero or more Book elements, therefore the expression
bib0/book might contain zero book elements, in which case, bib0/book/author would contain no
authors.

This illustrates an important feature of the type system: the type of an expression depends only on
the type of its sub-expressions. It also illustrates the difference between an expression's value at
query-evaluation time and its type at query-analysis time. Since the type of $bib0 is Bib, the best
type for $bib0/book/author is one listing zero or more authors, even though for the given value of
$bib0, the expression will always contain exactly five authors.

Its also possible to project on attributes. This expression produces the year attribute of $book0
whose type is ATTRIBUTE year (xs:string).

 $book0/@year
==> ATTRIBUTE year "1999"
: ATTRIBUTE year (xs:string)

2.3 Simple data

One may access simple data (strings, integers, or booleans) using the keyword data(). For instance,
if we wish to select all author names in a book, rather than all author elements, we could write the
following.

 $book0/author/data()
==> ("Abiteboul",
 "Buneman",
 "Suciu")
: xs:string+

Similarly, it is possible to project the simple values of attributes. The following returns the year the
book was published.

 $book0/@year/data()
==> 1999
: xs:integer

The data() operator has a similar purpose to the the text() node test in XPath 1.0, in that they both
project the atomic values in a document. In XPath 1.0, text selects the text node children of an
element node, where as in XQuery, data returns the simple-typed value of the element node. We
chose the keyword data() because, as the second example shows, not all data items are strings.

2.4 Iteration

Another common operation is to iterate over elements in a document so that their content can be
transformed into new content. Here is an example of how to process each book to list the author
before the title, and remove the year and isbn.

 FOR $b IN $bib0/book RETURN

XQuery 1.0 Formal Semantics Page 9 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

 <book> { $b/author, $b/title } </book>
==> (<book>
 <author>Abiteboul</author>
 <author>Buneman</author>
 <author>Suciu</author>
 <title>Data on the Web</author>
 </book>,
 <book>
 <author>Fernandez</author>
 <author>Suciu</author>
 <title>XML Query</author>
 </book>)
: (ELEMENT book(
 (ELEMENT author(xs:string))+,
 ELEMENT title(xs:string))
)*

The for expression iterates over all book elements in $bib0, and binds the variable $b to each such
element. For each element bound to $b, the inner expression constructs a new book element
containing the book's authors followed by its title. The transformed elements appear in the same order
as they occur in $bib0.

In the result type, a book element is guaranteed to contain one or more authors followed by one title.
Let's look at the derivation of the result type to see why:

 $bib0/book : Book*
 $b : Book
 $b/author : (ELEMENT author(xs:string))+
 $b/title : ELEMENT title (xs:string)

The type system can determine that $b is always Book, therefore the type of $b/author is (ELEMENT
author(xs:string))+, and the type of $b/title is ELEMENT title (xs:string).

In general, the value of a for expression is a sequence of zero or more data-model values as defined
in [XQuery 1.0 and XPath 2.0 Data Model]. If the body of the for expression itself yields a sequence,
then all of the sequences are concatenated together. For instance, the expression:

 FOR $b IN $bib0/book RETURN
 $b/author

is exactly equivalent to the expression $bib0/book/author.

2.5 Selection

To select values that satisfy some predicate, we use the where expression. For example, the
following expression selects all book elements in $bib0 that were published before 2000.

 FOR $b IN $bib0/book
 WHERE $b/@year/data() <= 2000 RETURN
 $b
==> <book year="1999" isbn="1-55860-622-X">
 <title>Data on the Web</title>
 <author>Abiteboul</author>
 <author>Buneman</author>
 <author>Suciu</author>
 </book>
: Book*

XQuery 1.0 Formal Semantics Page 10 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

In general, an expression of the form:

where e1 return e2

is converted to the form

if e1 then e2 else ()

WHERE e1 and e2 are expressions. Here () is an expression that stands for the empty sequence, a

sequence that contains no attributes or elements. We also write () for the type of the empty
sequence.

According to this rule, the expression above translates to

FOR $b IN $bib0/book RETURN
 IF $b/@year/data() <= 2000 THEN $b ELSE ()

and this has the same value and the same type as the preceding expression.

2.6 Quantification

The following expression selects all book elements in $bib0 that have some author named
"Buneman".

 FOR $b IN $bib0/book
 WHERE SOME $a IN $b/author SATISFIES $a/data() = "Buneman" RETURN
 $b
==> <book year="1999" isbn="1-55860-622-X">
 <title>Data on the Web</title>
 <author>Abiteboul</author>
 <author>Buneman</author>
 <author>Suciu</author>
 </book>
: Book*

We can use the every expression to find all books where all the authors are Buneman:

 FOR $b IN $bib0/book
 WHERE EVERY $a IN $b/author SATISFIES $a/data() = "Buneman" RETURN
 $b
==> ()
: Book*

There are no such books, so the result is the empty sequence.

2.7 Join

Another common operation is to join values from one or more documents. To illustrate joins, we give a
second data source that defines book reviews:

 TYPE Reviews =
 ELEMENT reviews (
 (ELEMENT book (

XQuery 1.0 Formal Semantics Page 11 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

 ELEMENT title (xs:string),
 ELEMENT review (xs:string))
)*
)
 LET $review0 :=
 <reviews>
 <book>
 <title>XML Query</title>
 <review>A darn fine book.</review>
 </book>,
 <book>
 <title>Data on the Web</title>
 <review>This is great!</review>
 </book>
 </review> : Reviews
 RETURN ...

The Reviews type contains one reviews element, which contains zero or more book elements; each
book contains a title and a review.

We can use nested for expressions to join the two sources $review0 and $bib0 on title values. The
result combines the title, authors, and reviews for each book.

 FOR $b IN $bib0/book, $r IN $review0/book
 WHERE $b/title/data() = $r/title/data() RETURN
 <book>{ $b/title, $b/author, $r/review }</book>
==> (<book>
 <title>Data on the Web</title>
 <author>Abiteboul</author>
 <author>Buneman</author>
 <author>Suciu</author>
 <review>A darn fine book.</review>
 </book>,
 <book>
 <title>XML Query</title>
 <author>Fernandez</author>
 <author>Suciu</author>
 <review>This is great!</review>
 </book>)
: (ELEMENT book(
 ELEMENT title (xs:string),
 (ELEMENT author (xs:string))+,
 ELEMENT review (xs:string))
)*

Note that the outer-most for expression determines the order of the result. Readers familiar with
optimization of relational join queries know that relational joins commute, i.e., they can be evaluated in
any order. This is not true for XQuery: changing the order of the first two for expressions would
produce different output. In [2.8 Unordered built-in function], we introduce support for unordered
sequences, which permits commutable joins.

It is beyond the scope of this document to describe algorithms for evaluating nested loop joins. See
[Graefe93] for a survey.

2.8 Unordered built-in function

As discussed in [2.7 Join] joins do not commute on ordered forests. In databases, ordering often

XQuery 1.0 Formal Semantics Page 12 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

does not matter. To permit commutable joins, and to allow for other query optimization techniques,
XQuery also allows to explicitly disregard the order of a sequence. This is accomplished by the built-in
function UNORDERED. The expression UNORDERED(Expr) may return any permutation of the sequence
returned by Expr. For example, when applying UNORDERED to the join-query [2.7 Join], the result may
be either ordered as in [2.7 Join] or as below:

 UNORDERED(
 FOR $b IN $bib0/book, $r IN $review0/book
 WHERE $b/title/data() = $r/title/data() RETURN
 <book> { $b/title, $b/author, $r/review } </book>
)
==> (<book>
 <title>XML Query</title>
 <author>Fernandez</author>
 <author>Suciu</author>
 <review>This is great!</review>
 </book>,
 <book>
 <title>Data on the Web</title>
 <author>Abiteboul</author>
 <author>Buneman</author>
 <author>Suciu</author>
 <review>A darn fine book.</review>
 </book>)
: ELEMENT book (
 ELEMENT title (xs:string),
 ELEMENT author (xs:string)+,
 ELEMENT review (xs:string)
)*

The expression UNORDERED(Expr) satisfies some useful laws that can be used for optimization. E.g.,
UNORDERED distributes over FOR, and nested FOR expressions on UNORDERED expressions are
commutative; see also Rules 12--18 in [A.2 Laws]. On this basis joins can be commuted, i.e.,
switching the inner FOR expression with the outer FOR expression, does not change the semantics of
the above query:

 UNORDERED(
 FOR $r IN $review0/book, $b IN $bib0/book
 WHERE $b/title/data() = $r/title/data() RETURN
 <book> { $b/title, $b/author, $r/review } </book>
)

Note that unordered sequences are currently not distinguished from ordered sequences at type level.
This is mainly for two reasons: (1) XML Schema does not distinguish between unordered sequences
and ordered sequences and (2) the distinction requires to overload all built-in operators for sequences,
such as FOR, DISTINCT, as well as user defined functions on sequences.

2.9 Parent and treat operators

Many of the previous queries select values and return them or use them in the construction of new
values. Once a value is selected, however, the previous queries do not access the original source of
the selected value, i.e., the document or hierarchy of elements in which the selected value is
contained. It is sometimes useful, however, to access or preserve the original context of selected
nodes.

Consider the following example, which contains a new bibliography of articles in bib1:

XQuery 1.0 Formal Semantics Page 13 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

 TYPE Bib1 = <bib>Article*</bib>
 TYPE Article =
 ELEMENT article(
 ATTRIBUTE year (xs:integer),
 ELEMENT title (xs:string),
 ELEMENT journal(xs:string),
 (ELEMENT author (xs:string))+
)
 LET $bib1 :=
 <bib>
 <article year="2000">
 <title>Queries and computation on the web</title>
 <journal>Theoretical Computer Science</journal>
 <author>Abiteboul</author>
 <author>Vianu</author>
 </article>
 </bib> : Bib1
 RETURN ...

Assume there exists a full-text search function, contains, which given a set of documents, selects
elements that contain a particular keyword. (This function is not defined in XQuery, but is used here to
illustrate a point.) The details of function application and declaration are given in [2.18 Functions].

The following expression returns those elements in bib0 and bib1 that contain the keyword
"Abiteboul". Note that the result type of the expression is AnyTree*. This is because the contains
function cannot know apriori which elements, if any, contain a given keyword.

 FOR $a IN contains(($bib0, $bib1), "Abiteboul") RETURN
 $a
==> (<author>Abiteboul<author>, <author>Abiteboul</author>)
: AnyTree*

The result above does not provide the context in which the two author elements occur. Even if the
contains function did return more context, it might be useful to browse the context in which they
occurred, for example, by accessing their parent and/or sibling elements. The built-in function parent
accesses the parent of an attribute or element. For example, this expression returns more useful
information than the previous one:

 FOR $a IN contains(($bib0, $bib1), "Abiteboul") RETURN
 $a/..
==> (<book year="1999" isbn="1-55860-622-X">
 <title>Data on the Web</title>
 <author>Abiteboul</author>
 <author>Buneman</author>
 <author>Suciu</author>
 </book>,
 <article year="2000">
 <title>Queries and computation on the web</title>
 <journal>Theoretical Computer Science</journal>
 <author>Abiteboul</author>
 <author>Vianu</author>
 </article>)
: AnyElement*

Note that the result type of the expression is AnyElement*. When applied to an attribute or element
value, the parent function always has return type AnyElement?, i.e., zero or one AnyElement. This is
because XQuery's type system only preserves type information about an attribute or element's

XQuery 1.0 Formal Semantics Page 14 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

content, not about its containing parent.

It is possible to recover more precise type information with the dynamic or run-time treat operator,
which attempts to cast at run time an expression to a given type. If the expression does not have the
given type, a run-time error is raised. Dynamic casts are necessary when it not possible to determine
at query-analysis time the most precise type of a value; they are sometimes called ``down casts''.

For example, the use of parent in the following expression loses some useful type information, that is
that p is a Book. We can recover more precise information by casting p to the Book type:

 FOR $p IN $book0/title/.. RETURN
 TREAT AS Book ($p)
==> <book year="1999" isbn="1-55860-622-X">
 <title>Data on the Web</title>
 <author>Abiteboul</author>
 <author>Buneman</author>
 <author>Suciu</author>
 </book>
: Book?

The result type is Book? because the parent function has type AnyElement?. If we try erroneously to
cast p to an Article, the error value is returned. Its type is again Article?, because AnyElement
could be an Article:

 FOR $p IN $book0/title/.. RETURN
 TREAT AS Article ($p)
==> error
: Article?

However, if we try to cast $book0 to an Article, the result type becomes Ø, the empty choice,
because we can statically determine that a Book is not an Article.

 FOR $p IN $book0 RETURN
 TREAT AS Article ($p)
==> error
: 0

We have already seen many examples of static or compile-time casting. A static cast permits the
type of an expression to be changed and checked at query-analysis time; they are sometimes called
``up casts''. For example, consider the type Book0, which permits a book to have zero or more
authors.

 TYPE Book0 =
 ELEMENT book(
 ATTRIBUTE year (xs:integer) &
 ATTRIBUTE isbn (xs:string),
 ELEMENT title (xs:string),
 (ELEMENT author (xs:string))*
)

The explicit-type expression e : t statically casts a value to the given type. For example, the
expression below statically casts $book0 to Book0; this is permissible because the type of $book0 at
query-analysis time is a sub-type of Book0.

 $book0 : Book0
==> <book year"1999" isbn="1-55860-622-X">

XQuery 1.0 Formal Semantics Page 15 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

 <title>Data on the Web</title>
 <author>Abiteboul</author>
 <author>Buneman</author>
 <author>Suciu</author>
 </book>
: Book0

If we try erroneously to cast $book0 to a more precise type (e.g., a book with 4 or more authors), a
type error will occur at query-analysis time.

2.10 References and node identity

The uses of the parent operator in [2.9 Parent and treat operators] show that it is possible to
access the original context of nodes. This is possible because the XML Query Data Model supports
node identity, that is, every instance of a node (e.g., element, attribute, processing instruction, and
comment) in the data model has a unique identity. We can compare the identity of two nodes for
equality using the == operator. For example, in the following expression, two distinct element nodes
are created and bound to variables a1 and a2. Although the two nodes are structurally equal, their
identities are not equal:

 LET $a1 := <author>Suciu</author>,
 $a2 := <author>Suciu</author>
 RETURN
 $a1 == $a2
==> false
: xs:boolean

In general, all XQuery's operators preserve node identity. There is one exception: the element
constructor, which given a tag name and a sequence of children nodes, constructs a new element. A
new element's content does not refer directly to the given children nodes, but to copies of these
nodes. For example, the following expression constructs an element with name newbook and content
$book0/author, $book0/title:

 LET $book1 :=
 <newbook>
 { $book0/author, $book0/title }
 </newbook>
 RETURN $book1
==> <newbook>
 <author>Abiteboul</author>
 <author>Buneman</author>
 <author>Suciu</author>
 <title>Data on the Web</title>
 </newbook>
: ELEMENT newbook (
 (ELEMENT author (xs:string))+,
 ELEMENT title (xs:string)
)

The newbook element contains copies of the nodes in the sequence $book0/author, $book0/title,
not the original nodes in $book0. Copying guarantees that a node is always the parent of its child
nodes and a node is always the child of its parent; these constraints are invariants of [XQuery 1.0 and
XPath 2.0 Data Model]. For example, we would expect that the following expression is always true:

 $book1/author/.. == $book1

XQuery 1.0 Formal Semantics Page 16 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

If the element constructor did not copy its arguments, anomalies such as the following could occur:

 $book1/author/.. == $book0

that is, the parent of book1's child node is not book1, and this would violate the XML Query Data
Model's parent-child invariant.

Sometimes it is useful to construct elements that do preserve the identity of its child nodes, for
example, when constructing a view of one or more XML documents. In this case, we want the new
element to contain references to, not copies of, the original nodes. The ref operator constructs a
reference to a node. For example, book2 below contains references to the nodes in $book0:

 LET $book2 :=
 <newbook>
 { (FOR $a IN $book0/author RETURN ref($a)),
 ref($book0/title)
 }
 </newbook>
 RETURN $book2
==> <newbook>
 <q:ref><author>Abiteboul</author></q:ref>
 <q:ref><author>Buneman</author></q:ref>
 <q:ref><author>Suciu</author></q:ref>
 <q:ref><title>Data on the Web</title></q:ref>
 </newbook>
: ELEMENT newbook (
 (REFERENCE (ELEMENT author (xs:string)))+,
 REFERENCE (ELEMENT title (xs:string))
)

Ed. Note: MF : Issue - serialized representation of Data Model reference nodes.

Note that the type of the expression contains reference types. The deref operator dereferences a
reference value. In the following, it returns the elements in $book0.

 FOR $v IN $book2/* RETURN deref($v)
==> (<author>Abiteboul</author>,
 <author>Buneman</author>,
 <author>Suciu</author>,
 <title>Data on the Web</title>)
: (ELEMENT author (xs:string))+,
 ELEMENT title (xs:string)

For convenience, the expression above can be also be written as $book2/deref().

2.11 Restructuring and grouping

Often it is useful to regroup elements in an XML document. For example, each book element in $bib0
groups one title with multiple authors. This expression groups each author with the titles of his/her
publications.

 FOR $a IN distinct-value($bib0/book/author/data()) RETURN
 <biblio>
 <author>{ $a }</author>
 { FOR $b IN $bib0/book, $a2 IN $b/author/data()

XQuery 1.0 Formal Semantics Page 17 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

 WHERE $a = $a2 RETURN
 $b/title
 }
 </biblio>
==> (<biblio>
 <author>Abiteboul</author>
 <title>Data on the Web</title>
 </biblio>,
 <biblio>
 <author>Buneman</author>
 <title>Data on the Web</title>
 </biblio>,
 <biblio>
 <author>Suciu</author>
 <title>Data on the Web</title>
 <title>XML Query</title>
 </biblio>,
 <biblio>
 <author>Fernandez</author>
 <title>XML Query</title>
 </biblio>)
: (ELEMENT biblio (
 ELEMENT author (xs:string),
 (ELEMENT title (xs:string))*)
)*

Readers may recognize this expression as a self-join of books on authors. The expression distinct-
value($bib0/book/author/data()) produces a sequence of author names whose values are all
distinct. The outer for expression binds $a to the name of each author element, and the inner for
expression selects the title of each book that has some author whose name equals $a.

Here distinct-value is an example of a built-in function. It produces a sequence of nodes whose
values are all distinct, i.e., there are no duplicate values; the order of the resulting sequence is not
defined. The builtin function distinct-node produces a sequenc of nodes whose identities are all
distinct.

The type of the result expression may seem surprising: each biblio element may contain zero or
more title elements, even though in $bib0 every author co-occurs with a title. Recognizing such
a constraint is outside the scope of the type system, so the resulting type is not as precise as we
would like.

2.12 Querying order

Ed. Note: MF: Clearly, the following example of index is not appropriate for a tutorial -- it
is only used to define RANGE.

Often it is useful to query the order of elements in an sequence or a document. There are two kinds of
order among elements: local order and document (or global) order. XQuery supports querying of local
and global order.

Local order refers to the order among sibling elements in an sequence. To query local order, the
index function pairs an integer index with each element in an sequence:

 index($book0/author)
==> (<q:pair><q:fst>1</q:fst>
 <q:snd><q:ref><author>Abiteboul</author></q:ref></q:snd></q:pair>,
 <q:pair><q:fst>2</q:fst>

XQuery 1.0 Formal Semantics Page 18 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

 <q:snd><q:ref><author>Buneman</author></q:ref></q:snd></q:pair>
 <q:pair><q:fst>3</q:fst>
 <q:snd><q:ref><author>Suciu</author></q:ref></q:snd></q:pair>)
: (ELEMENT q:pair(
 ELEMENT q:fst (xs:integer),
 ELEMENT q:snd (REFERENCE (ELEMENT author (xs:string))))
)+

The index function uses reference in order to preserve node identity when accessing local order. Note
that the result type takes into account that at least one pair exists in the result, as $book0/author
always contains one or more authors.

Once we have paired authors with an integer index, we can select the first two authors:

 FOR $p IN index($book0/author)
 WHERE ($p/q:fst/data() <= 2) RETURN
 $p/q:snd/deref()
==> (<author>Abiteboul</author>,
 <author>Buneman</author>)
: (ELEMENT author (xs:string))*

The for expression iterates over all pair elements produced by the index expression. It selects
elements whose index value in the q:fst element is between one and two inclusive, and it returns the
original content by dereferencing the content of the q:snd element.

The result type may be surprising, because the Book type guarantees that each book has at least one
author. However, the type system cannot determine that the conditional where expression will always
succeed, so the inner expression may produce zero results. (A sophisticated analysis might improve
type precision, but is likely to require much work for little benefit.)

Document (or global) order refers to the total order among all elements in a document. Global order is
defined as the order of appearance of the element nodes when performing a pre-order, depth-first
traveral of a tree. This corresponds to the order of appearance of their opening tags in the XML
serialization. This is equivalent to the definition used in [XPath].

To query global order, the xfo:node-before function can be applied to two nodes. It returns true if the
first node is before (and different from) the second node in document order. It returns false if the first
node is equal to or after the second node in document order. It raises an error if the nodes are in
different documents. For example, the nodes bib0 and review0 are unrelated therefore comparing
their order raises an error:

 xfo:node-before($bib0, $review0)
==> ERROR
: 0

The xfo:node-after function is defined similiarly.

Using global order, the following expression returns all author nodes appearing after a book written in
2001:

 FOR $b IN $bib0/book
 WHERE $b/@year/data() = 2001 RETURN
 (FOR $a IN $bib0/book/author
 WHERE $b before $a RETURN $a)
==> (<author>Fernandez</author>,
 <author>Suciu</author>)

XQuery 1.0 Formal Semantics Page 19 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

: (ELEMENT author (xs:string))*

Note that the root element of a document is before any other element. More generally, an element is
before all of its children. For example, the set of elements that are before $bib0 is empty:

 empty(FOR $b IN $bib0/book
 WHERE $b before $bib0 $b RETURN
 $b)
==> true
: xs:boolean

XQuery supports global order only for elements within the same document. Support for global order
among elements in distinct documents is discussed in [Issue-0003: Global Order].

2.13 Sorting

To sort a sequence, XQuery provides a sort expression, whose form is: Expr1 sortby Expr2. The built-

in variable '.', called dot, ranges over the items in the sequence Expr1 and sorts those items using the

key value defined by Expr2. For example, this expression sorts book elements in $review0 by their

titles.

 $review0/book SORTBY ./title/data()
==> (<book>
 <title>Data on the Web</title>
 <review>This is great!</review>
 </book>,
 <book>
 <title>XML Query</title>
 <review>This is pretty good too!</review>
 </book>)
: (ELEMENT book (
 ELEMENT title (xs:string),
 ELEMENT review (xs:string))
)*

The sort expression is a restricted form of higher-order function, i.e., it takes a function as an
argument. In this case, sort takes a single function, which extracts the key value from each element.
The sort expression requires that the less-than inequality, <, be defined for the type of Expr2.

2.14 Aggregation

We have already seen two built-in functions: index and distinct-value. In addition to these
functions, XQuery has five built-in aggregation functions: avg, count, max, min, and sum.

This expression selects books that have more than two authors:

 FOR $b IN $bib0/book
 WHERE count($b/author) > 2 RETURN
 $b
==> <book year="1999" isbn="1-55860-622-X">
 <title>Data on the Web</title>
 <author>Abiteboul</author>
 <author>Buneman</author>
 <author>Suciu</author>

XQuery 1.0 Formal Semantics Page 20 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

 </book>
: Book*

All the aggregation functions take a sequence with repetition type and return an integer value; count
returns the number of elements in the sequence.

2.15 Expanded names

So far, all our examples of attributes and elements use unqualified local names, i.e., names that do
not include an explicit namespace URI. It is also possible to specify and match on the expanded
name of an attribute or element. The expanded name Namespace:LocalName consists of a
namespace URI Namespace and a local name LocalName.

Consider an inventory of books that contains data from both http://www.BooksRUs.com and
http://www.cheapBooks.com. In this example, the first element contains values whose names are
defined in the BooksRUs.com namespace, and the second element contains values whose names are
defined in the cheapBooks.com namespace:

 NAMESPACE booksRus = "http://www.BooksRUs.com/books.xsd"
 NAMESPACE cheapBooks = "http://www.cheapBooks.com/ourschema.xsd"
 TYPE Inventory = <inv> InvBook* </inv>
 LET $inventory :=
 <inv>
 <booksRus:book year="1999" isbn="1-55860-622-X">
 <booksRus:title>Data on the Web</booksRus:title>
 <booksRus:author>Abiteboul</booksRus:author>
 <booksRus:author>Buneman</booksRus:author>
 <booksRus:author>Suciu</booksRus:author>
 </booksRus:book>
 <cheapBooks:book year="2001">
 <cheapBooks:title>XML Query</cheapBooks:title>
 <cheapBooks:author>Fernandez</cheapBooks:author>
 <cheapBooks:author>Suciu</cheapBooks:author>
 <cheapBooks:isbn>1-XXXXX-YYY-Z</cheapBooks:isbn>
 </cheapBooks:book>
 </inv> : Inventory
 RETURN ...

In this example, elements imported from existing schemas each refer to a single namespace, thus the
definition of InvBook is:

 TYPE BooksRUBook =
 ELEMENT booksRus:book (
 ATTRIBUTE year (xs:integer) &
 ATTRIBUTE isbn (xs:string),
 ELEMENT booksRus:title(xs:string)
 (ELEMENT booksRus:author(xs:string))+
)
 TYPE CheapBooksBook =
 ELEMENT cheapBooks:book (
 ATTRIBUTE year (xs:integer),
 ELEMENT cheapBooks:title (xs:string),
 (ELEMENT cheapBooks:author(xs:string))+
 ELEMENT cheapBooks:isbn (xs:string)
)
 TYPE InvBook = BooksRUBook | CheapBooksBook

XQuery 1.0 Formal Semantics Page 21 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

Here vertical bar (|) is used to indicate a choice between types: each InvBook is either a
BooksRUBook or a CheapBooksBook.

We have already seen how to project on the constant name of an attribute or element. It is also useful
to project on wildcards, which are used to match names with any namespace and/or any local name.
For example, this expression matches elements with any local name and with namespace URI
http://www.BooksRUs.com/books.xsd:

 $inventory/booksRus:*
==> <booksRus:book year="1999" isbn="1-55860-622-X">
 <booksRus:title>Data on the Web</booksRus:title>
 <booksRus:author>Abiteboul</booksRus:author>
 <booksRus:author>Buneman</booksRus:author>
 <booksRus:author>Suciu</booksRus:author>
 </booksRus:book>
: ELEMENT booksRus:book (
 ATTRIBUTE year (xs:integer) &
 ATTRIBUTE isbn (xs:string),
 ELEMENT booksRus:title (xs:string)
 (ELEMENT booksRus:author (xs:string))+
)

Similarly, this expression first projects elements in any namespace whose local name is book and
then projects on their year attributes:

 $inventory/*:book/@year
==> (ATTRIBUTE year (1999), ATTRIBUTE year (2001))
: (ATTRIBUTE year (xs:integer))*

Ed. Note: MF: Open issue whether *:localname will be supported.

The expression Expr/a is shorthand for Expr/ns:a, where ns is the default namespace. Similarly, * is
shorthand for ns:*, i.e., any name in the default namespace.

2.16 Comments and processing instructions

In an XML document, comments and processing instructions may appear anywhere outside other
markup[XML]. Processing instructions permit documents to contain instructions for applications.
Comments and processing instructions are not part of the document's character data. An XML
processor may, but need not, make the text of comments available to an application, but it must pass
processing instructions to the application. The processing instruction begins with a target used to
identify the application to which the instruction is directed.

XQuery supports comments and processing instructions in types and expressions. The type
expression PIC(t) denotes a value in which zero or more processing instructions and comments may
be interleaved arbitrarily with the nodes in type t. For example, the two element types BibPIC and
BookPIC permit PIs and comments to be interleaved with their content:

 TYPE BibPIC = ELEMENT bib (pic(BookPIC*))
 TYPE BookPIC =
 ELEMENT book (
 ATTRIBUTE year (xs:integer) &
 ATTRIBUTE isbn (xs:string),

XQuery 1.0 Formal Semantics Page 22 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

 PIC (ELEMENT title (xs:string), (ELEMENT author(xs:string))+)
)

Note that in the book element, the PIC operator is only applied to its element content, not its attribute
content, because comments and processing instructions may not occur in attributes.

We can construct processing instruction and comment values using the built-in constructors
processing_instruction and comment:

 LET $bibpc0 :=
 <bib>
 { comment("Canonical XQuery example.") }
 <book year="1999" isbn="1-55860-622-X">
 { comment("First book example"),
 processing_instruction("Publisher.asp",
 "publisher=http://www.mkp.com") }
 <title>Data on the Web</title>
 <author>Abiteboul</author>
 <author>Buneman</author>
 <author>Suciu</author>
 </book>
 <book year="2001" isbn="1-XXXXX-YYY-Z">
 <title>XML Query"</title>
 { comment("Second book example") }
 <author>Fernandez</author>
 <author>Suciu</author>
 </book>
 </bib> : BibPIC
 RETURN ...

Finally, we can project on processing instructions and comments, in the same way we project on
children, attributes, and simple content:

 $bibpc0/book/comment()
==> (comment("First book example"), comment("Second book example"))
: Comment*

 $bibpc0/book/processing_instruction()
==> processing_instruction("Publisher.asp", "publisher=http://www.mkp.com")
: ProcessingInstruction*

Comments and processing instructions may be ignored by an XML processor, in which case they
would not even be accessible to a query processor. If they are not ignored, however, comments and
processing instructions are typed values and are treated like any other value in an XQuery expression.

2.17 Mixed Content

An element type has mixed content when elements of that type may contain character data,
optionally interspersed with child elements[XML]. The type expression mixed(t) denotes a value in
which zero or more xs:string values may be interleaved arbitrarily with the nodes in type t. For
example, the content of the review element contains a reviewer element, which may be interleaved
with string values:

 TYPE ReviewsMixed =
 ELEMENT reviews (
 (ELEMENT book (

XQuery 1.0 Formal Semantics Page 23 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

 ELEMENT title (xs:string),
 ELEMENT review (MIXED (ELEMENT reviewer(xs:string)))))*
)

Here are two examples of mixed content, in which the text of the book review may be interleaved with
the name of the reviewer:

 LET $reviewmix0 :=
 <reviews>
 <book>
 <title>XML Query</title>
 <review>A darn fine book: <reviewer>XML On-line</reviewer></review>
 </book>
 <book>
 <title>Data on the Web</title>,
 <review>The <reviewer>publisher</reviewer> says 'This is great!'</review>
 <book>
 </reviews> : ReviewsMixed
 RETURN ...

It is often useful to concatenate all the string values of a mixed-content element to recover its
complete text value. We use the builtin function string_value; as defined in XPath [XPath], the string
value of a node is determined by its kind, e.g., element, attribute, etc.

 FOR $b IN $reviewmix0/book RETURN
 string_value($b/review)
==> ("A darn fine book : XML On-line",
 "The publisher says 'This is great!'")
: xs:string*

2.18 Functions

Functions can make queries more modular and concise. Recall that we used the following query to
find all books that do not have "Buneman" as an author.

 FOR $b IN $bib0/book
 WHERE EVERY $a IN $b/author SATISFIES NOT($a/data() = "Buneman") RETURN
 $b
==> <book year="2001" isbn="1-XXXXX-YYY-Z">
 <title>XML Query</title>
 <author>Fernandez</author>
 <author>Suciu</author>
 </book>
: Book*

A different way to formulate this query is to first define a function that takes a string s and a book b as
arguments, and returns true if book b does not have an author with name s.

 DEFINE FUNCTION notauthor (xs:string $s, Book $b) RETURNS xs:boolean {
 EVERY $a IN $b/author SATISFIES NOT($a/data() = $s)
 }

The query can then be re-expressed as follows.

 FOR $b IN bib0/book
 WHERE notauthor("Buneman", $b) RETURN
 $b

XQuery 1.0 Formal Semantics Page 24 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

==> <book year="2001" isbn="1-XXXXX-YYY-Z">
 <title>XML Query</title>
 <author>Fernandez</author>
 <author>Suciu</author>
 </book>
: Book*

Note that a function declaration includes the types of all its arguments and the type of its result. This
is necessary for the type system to guarantee that applications of functions are type correct.

In general, any number of functions may be declared at the top-level. The order of function declarations
does not matter, and each function may refer to any other function. Among other things, this allows
functions to be recursive (or mutually recursive), which supports structural recursion, the subject of the
next section.

Functions make XQuery extensible. We have seen examples of built-in functions (sort and
distinct-value) and examples of user-defined functions (notauthor). In addition to built-in and user-
defined functions, XQuery could support externally defined functions, i.e., functions that are not
defined in XQuery itself, but in some external language. This would make special-purpose
implementations of, for example, full-text search functions available in XQuery. We discuss support for
externally defined functions in [Issue-0009: Externally defined functions].

2.19 Structural recursion

XML documents can be recursive in structure, for example, it is possible to define a part element that
directly or indirectly contains other part elements. In XQuery, we use recursive types to define
documents with a recursive structure, and we use recursive functions to process such documents.
(We can also use mutually recursive functions for more complex recursive structures.)

For instance, here is a recursive type defining a part hierarchy.

 TYPE Part = Basic | Composite
 TYPE Basic =
 ELEMENT basic (
 ELEMENT cost (xs:integer)
)
 TYPE Composite =
 ELEMENT composite (
 ELEMENT assembly_cost(xs:integer)
 ELEMENT subparts (Part+)
)

And here is some sample data.

 LET $part0 :=
 <composite>
 <assembly_cost>12</assembly_cost>
 <subparts>
 <composite>
 <assembly_cost>22</assembly_cost>
 <subparts>
 <basic><cost>33</cost</basic>
 </subparts>
 </composite>
 <basic><cost>7</cost</basic>
 </subparts>
 </composite> : Part

XQuery 1.0 Formal Semantics Page 25 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

 RETURN ...

Here vertical bar (|) is used to indicate a choice between types: each part is either basic (no
subparts), and has a cost, or is composite, and includes an assembly cost and subparts.

We might want to translate to a second form, WHERE every part has a total cost and a list of
subparts (for a basic part, the list of subparts is empty).

 TYPE Part2 =
 ELEMENT part (
 ELEMENT total_cost (xs:integer),
 ELEMENT subparts (Part2*)
)

Here is a recursive function that performs the desired transformation. It uses a new construct, the
typeswitch expression.

 DEFINE FUNCTION convert(Part $p) RETURNS Part2 {
 TYPESWITCH ($p) AS $x
 CASE Basic RETURN
 <part>
 <total_cost> { $x/cost/data() } </total_cost>
 <subparts/>
 </part>
 CASE Composite RETURN
 LET $s := (FOR $y IN $x/subparts/* RETURN convert($y))
 RETURN
 <part>
 <total_cost>
 { $q/assembly_cost/data() +
 sum($s/total_cost/data()) }
 <total_cost>
 <subparts> { $s } </subparts>
 </part>
 DEFAULT RETURN ERROR
 }

Each branch of the typeswitch expression is labeled with a type, Basic or Composite. The evaluator
checks the type of the value of $p at query-evaluation time, i.e., run time, and evaluates the
corresponding branch. If the first branch is taken then $x is bound to the value of $p, and the branch
returns a new part with total cost the same as the cost of $x, and with no subparts. If the second
branch is taken, then $x is bound to the value of $p. The function is recursively applied to each of the
subparts of $x, giving a sequence of new subparts $s. The branch returns a new part with total cost
computed by adding the assembly cost of $x to the sum of the total cost of each subpart in $s, and
with subparts $s.

One might wonder why $x is required, since it has the same value as $p. The reason why is that $p
and $x have different types.

 $p : Part
 $x : Basic -- in the first branch
 $x : Composite -- in the second branch

The type of $x is more precise than the type of $p, because which branch is taken depends upon the
type of value in $p.

XQuery 1.0 Formal Semantics Page 26 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

Applying the query to the given data gives the following result.

 convert($part0)
==> <part>
 <total_cost>74</total_cost>
 <subparts>
 <part>
 <total_cost>55</total_cost>
 <subparts>
 <part>
 <total_cost>33</total_cost>
 <subparts/>
 </part>
 </subparts>
 </part>
 <part>
 <total_cost>7</total_cost>
 <subparts/>
 </part>
 </subparts>
 </part>
: Part2

Of course, a typeswitch expression may be used in any query, not just in a recursive one.

2.20 Functions for all well-formed documents

[XML Schema : Formal Description] defines a ``root'', or most general type, for the four kinds of
schema components: elements, attributes, simple types, and complex types. They are named
xs:AnyElement, xs:AnyAttribute, xs:AnySimpleType, and xs:AnyComplexType, respectively. The
type xs:AnySimpleType stands for the most general simple type. All built-in primitive types (like
xs:integer or xs:string) and lists of simple types are subtypes of it. The built-in simple types are
listed in [3.4 Atomic simple types]. The remaining schema components are defined as follows:

TYPE xs:AnyTree = xs:AnySimpleType
 | xs:AnyElement
 | xs:AnyAttribute
TYPE xs:AnyAttribute = ATTRIBUTE *:* (xs:AnySimpleType)
TYPE xs:AnyElement = ELEMENT *:* (xs:AnyComplexType)
TYPE xs:AnyComplexType = xs:AnyAttribute*,
 ((xs:AnyElement | xs:string)* | xs:AnySimpleType)
TYPE xs:AnyType = (xs:AnyTree)*

The type xs:AnyTree denotes any simple type, element, or attribute. The type xs:AnyAttribute
stands for the most general attribute type, which may have any name, and its content must have type
xs:AnySimpleType, i.e., it may contain simple values, but no elements. The type xs:AnyElement
stands for the most general element type, which may have any name, and its content must be a
complex type. The type xs:AnyComplexType stands for the most general complex type, which is any
sequence of attributes followed by any sequence of elements or strings or by any simple type. Strings
are permissible in a complex type because an element may contain mixed content, i.e., character
data interleaved with other elements. Finally, xs:AnyType is a sequence of any tree.

In particular, our earlier data also has type xs:AnyElement.

 $book0 : xs:AnyElement
==> <book year="1999" isbn="1-55860-622-X">

XQuery 1.0 Formal Semantics Page 27 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

 <title>Data on the Web</title>
 <author>Abiteboul</author>
 <author>Buneman</author>
 <author>Suciu</author>
 </book>
: xs:AnyElement

A specific type can be indicated for any expression in the query language, by writing a colon and the
type after the expression.

As an example of a function that can be applied to all well-formed documents, we define a recursive
function that converts any XML data into HTML. We first give a simplified definition of HTML.

 TYPE HTML_body =
 (xs:AnySimpleType
 | ELEMENT b(HTML_body)
 | ELEMENT ul ((ELEMENT li (HTML_body))*)
) *

An HTML body consists of a sequence of zero or more items, each of which is either a simple value,
or a b element, where the content is an HTML body, or an ul element, where the children are li
elements, each of which has as content an HTML body.

Now, here is the function that performs the conversion.

DEFINE FUNCTION html_of_xml(xs:AnyTree $x) RETURNS HTML_Body {
 TYPESWITCH ($x) AS $z
 CASE xs:AnySimpleType RETURN $z
 CASE xs:AnyAttribute RETURN
 { name($z) } ,
 { FOR $y IN $z/data() RETURN { html_of_xml($y) } }
 CASE xs:AnyElement RETURN
 { name($z) } ,
 { FOR y IN $z/@* RETURN { html_of_xml($y) } } ,
 { FOR y IN $z/* RETURN { html_of_xml($y) } }
 DEFAULT RETURN ERROR
}

The first branch of the typeswitch expression checks whether the value of $x is a subtype of
xs:AnySimpleType, and if so then $z is bound to that value, so if this branch is taken then $z is the
same as $x, but with a more precise type (it must be a simple type, not an element). This branch
returns the scalar.

The second branch checks whether the value of $x is a subtype of xs:AnyAttribute. As before, $z is
the same as $x but with a more precise type (it must be an attribute, not a scalar). This branch
returns a b element containing the name of the attribute, and a ul element containing one li element
for each value of the attribute. The function is recursively applied to get the content of the li element.
The last branch is analogous to the second, but it matches an element instead of an attribute, and it
applies html_of_xml to each of the element's attributes and children.

Applying the query to the book element above gives the following result.

 html_of_xml($book0)
==> book

XQuery 1.0 Formal Semantics Page 28 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

 year1999
 isbn1-55860-622-X
 titleData on the Web
 authorAbiteboul
 authorBuneman
 authorSuciu

: HTML_Body

2.21 Top-level queries and XML results

A XQuery module consists of a sequence of top-level declarations, i.e., a namespace declaration,
function declaration, or type declaration, followed by a query expression. The order of top-level
declarations is immaterial; all namespace, function, and type declarations may be mutually recursive.

The query expression is evaluated in the environment specified by all of the declarations. We have
already seen examples of type, function, and namespace declarations. An example of a top-level
query is:

 html_of_xml(book0)

The result of a top-level query can be serialized into an XML document by the application in which
XQuery is used.

3 XQuery Core Syntax

In this section, we present the grammar for XQuery's core expressions and types. Literals are in
typewriter font. Terminal classes of literals are italicized and have the suffix 'literal', e.g.,
StringLiteral. Non-terminal symbols are italicized, e.g., Expr. In the grammar, the '|' operator denotes
an alternative of two symbols; '*' denotes zero or more repetition of a symbol; and '?' denotes an
optional symbol.

3.1 Expressions

[Figure 1] contains the grammar for XQuery's core expressions. We define XQuery's typing rules on
these core expressions in [4 Static Semantics : Type-Inference Rules].

NCName
Variable ::= $u, $v, $w, ...

StringLiteral ::= "", "a", ...
NumericLiteral ::= 0, 1, 2, ...
BooleanLiteral ::= true | false

Literal ::= StringLiteral
| NumericLiteral
| BooleanLiteral

QName ::= NCName
| NCName:NCName

Opeq ::= eq | node-equal | ne | lt | lteq | gt | gteq

Oparith ::= + | - | * | mod | div

Opcoll ::= union | except | intersect

Opbool ::= and | or

Op | Op | Op | Op

XQuery 1.0 Formal Semantics Page 29 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

Figure 1: XQuery Core Expression Syntax

Many of the expressions that appear in the examples, for example Expr/*, do not appear in
[Figure 1], because they are reducible to expressions in the core syntax. [6 XQuery Mapping to
Core] defines the mapping for every XQuery expression into an equivalent expression in the core
syntax.

3.2 Operators

In addition to the core syntax, XQuery has a set of operators and built-in functions. The binary and
unary operators are enumerated in [Figure 1]. They include two equality operators, eq and nodeeq,
defined in the [XQuery 1.0 and XPath 2.0 Data Model], and five inequality operators, lteq, lt, gteq,

InfixOp ::= Opeq | Oparith | Opcoll | Opbool

PrefixOp ::= + | - | not
Expr ::= Literal

 | Variable
 | QName (ExpSequence?)
 | Expr InfixOp Expr
 | PrefixOp Expr
 | attribute QName (Expr)
 | ElementConstructor

 | ExprSequence
 | if (Expr) then Expr else Expr
 | let Variable := Expr return Expr
 | Expr : Type
 | error
 | for Variable in Expr return Expr
 | Expr sortby Expr ascending | descending
 | cast as Type (Expr)
 | typeswitch (Expr) as Variable CaseRules

CaseRules ::= case Type return Expr CaseRules
 | default return Expr

ExprSequence::= Expr (, ExprSequence)*
ElementConstructor ::= <NameSpec/>

| <NameSpec> EnclosedExpression </NameSpec>
EnclosedExpression ::= { ExprSequence }

NameSpec ::= QName
| { Expr }

TypeDecl ::= type NCName = Type
ContextDecl ::= namespace NCName = StringLiteral

| default namespace = StringLiteral
FunctionDefn ::= define function QName (ParamList?)

returns Type { Expr }
ParamList ::= Type Variable (, Type Variable)*

QueryModule ::= ContextDecl*
TypeDecl*
FunctionDefn* ExprSequence?

QueryModuleList ::= QueryModule (; QueryModule)*

XQuery 1.0 Formal Semantics Page 30 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

gt, and ne. We have not defined the semantics of all the binary operators in XQuery. In particular, it
might be useful to define more than one type of equality over scalar and element values, or to define
implicit coercions between values of related types. A joint task force on operators with members from
the [XSLT 99], XML Schema, and XML Query working groups is chartered to define operators. XQuery
will adopt the decisions of that group (See [Issue-0056: Operators on Simple Types]).

3.3 Built-in functions

XQuery's built-in functions are either defined in [XQuery 1.0 and XPath 2.0 Data Model] or in a
forthcoming document that defines operators and a library of functions for XQuery and XPath 2.0. In
this document, the data model functions have no namespace prefix and the library functions have the
namespace prefix xfo. Some of these functions require special static type rules; these are listed in
[Figure 2] and [Figure 3]. [Figure 2] contains the constructor and accessor functions defined in the
[XQuery 1.0 and XPath 2.0 Data Model]. The remaining built-in functions are listed in [Figure 3]. One
benefit of having built-in functions is that more precise types can be given to these functions than to
user-defined functions. The type rules for these functions appear in [4 Static Semantics : Type-
Inference Rules].

Figure 2: Data Model Constructor and Accessor Functions

Figure 3: Built-In Functions

attributes(Expr) Returns attributes of element.
children(Expr) Returns children of element.
comment(Expr) Constructs a comment.
dereference(Expr) Dereferences a node reference.
local-name(Expr) Extracts local NCName of a node.
name(Expr) Returns element or attribute's tag name.
namespace-uri(Expr) Extracts URI namespace from a node.
parent(Expr) Returns the parent of a node.
pcdata(Expr) Constructs parsable character data from string argument.
processing-instruction(Expr, Expr) Constructs a processing instruction.
ref(Expr) Constructs a node reference.
string-value(Expr) Returns string value of given node, as defined in [XPath].
typed-value(Expr) Returns the simple typed value of an element or attribute.

agg(Expr) Aggregation functions, where agg is avg, count, min, max, sum.
descendent-or-self(Expr) Returns given node and all its descendents in document order.
distinct-node(Expr) Removes duplicate nodes from a sequence.
distinct-value(Expr) Removes duplicate values from a sequence.
eop(Expr) Equality/inequality functions,

where eop is one of eq, neq, lt, lteq, gt, gteq.
index(Expr) Pairs each element of an sequence with integer index.
xfo:node-before(Expr, Expr) True if first argument is before second in document order.
xfo:node-equal(Expr, Expr) Returns true if both expressions denote the same node.

XQuery 1.0 Formal Semantics Page 31 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

3.4 Atomic simple types

The XQuery type system takes as given the built-in simple datatypes from XML Schema Part 2 [XML
Schema Part 2]. We let b range over all built-in datatypes.

built-in datatype b ::= xs:AnySimpleType

| xs:string

| xs:boolean

| xs:float

| xs:double

| xs:decimal

| xs:timeDuration

| xs:recurringDuration

| xs:binary

| xs:uriReference

| xs:ID

| xs:IDREF

| xs:ENTITY

| xs:QName

| xs:CDATA

| xs:token

| xs:language

| xs:IDREFS

| xs:ENTITIES

| xs:NMTOKEN

| xs:NMTOKENS

| xs:Name

| xs:NCName

| xs:NOTATION

| xs:integer

| xs:nonPositiveInteger

| xs:negativeInteger

| xs:long

| xs:int

| xs:short

| xs:byte

| xs:nonNegativeInteger

| xs:unsignedLong

| xs:unsignedInt

| xs:unsignedShort

| xs:unsignedByte

| xs:positiveInteger

| xs:timeInstant

| xs:time

| xs:timePeriod

| xs:date

XQuery 1.0 Formal Semantics Page 32 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

The built-in simple datatype AnySimpleType stands for the most general simple type, and all other
primitive and simple types (like xs:integer or xs:string) are subtypes of it.

In [XML Schema Part 2], a simple datatype is either a primitive datatype, or is derived from another
simple datatype by specifying a set of facets. A type hierarchy is induced between simple types by
containment of facets. Note that lists of simple datatypes are specified using repetition and unions are
specified using alternation, as defined in [3.5 Types]

For simplicity, the type syntax in this document does not provide any way to define datatypes with
facets. Such types can be imported from XML Schema and may be referenced by a qualified name
QName. We let p range over all built-in datatypes, lists of built-in datatypes, and imported simple
types.

3.5 Types

[Figure 4] contains the abstract syntax for XQuery's type system. This type syntax appears in the
typing rules in [4 Static Semantics : Type-Inference Rules]. An XQuery type corresponds to a
content group as defined in [XML Schema : Formal Description]. See [Issue-0088: Align XQuery
types with XML Schema : Formal Description.] for alignment issues between XQuery type syntax
and [XML Schema : Formal Description].

| xs:month

| xs:year

| xs:century

| xs:recurringDate

| xs:recurringDay

p ::= b

| b min m max n

| QName

type variable y
unit type u ::= p simple type
 | ATTRIBUTE NameSet (t)
 | ELEMENT NameSet (t)
 | PROCESSING-INSTRUCTION
 | COMMENT
 | REFERENCE (t)
type t ::= y type variable
 | () empty sequence
 | Ø empty choice
 | u unit type

 | t1 , t2 sequence, t1 followed by t2

 | t1 & t2 interleaved product

 | t1 | t2 choice, t1 or t2

 | t min m max n repetition of t m to n times
 | t * repetition of t 0 to * times
 | t + repetition of t one to * times
 | t ? repetition of t 0 to 1 times
 | PIC (t)
 | MIXED (t)

XQuery 1.0 Formal Semantics Page 33 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

Figure 4: Abstract Syntax for Types

Figure 5: Precedence of Type Operators (highest to lowest)

A unit type is is either a simple type, an attribute or element type with name in NameSet and content
in t, a comment type, a processing-instruction type, or a node-reference type.

The empty sequence matches only the empty document; it is an identity for sequence and all. The
empty choice matches no document; it is an identity for choice.

An interleaved product t1 & t2 is nodes in t1 interleaved with nodes in t2 The interleaved product (also

known as the shuffle product) is a generalization of XML Schema's [XML Schema Part 1] allgroups. t1

& t2 matches any sequence that is an interleaving of a sequence that matches t1 and a sequence that

matches t2. For example,

 (ELEMENT a(), ELEMENT b()) & ELEMENT c() =
 ELEMENT a(), ELEMENT b(), ELEMENT c()
 | ELEMENT a(), ELEMENT c(), ELEMENT b()
 | ELEMENT c(), ELEMENT a(), ELEMENT b()

As another example, ELEMENT a()* & ELEMENT b() matches any sequence of ELEMENT a() and
ELEMENT b() that has exactly one ELEMENT b().

Allgroups in XML Schema may only consist of global or local element declarations with lower bound 0
or 1, and upper bound 1. With these restrictions, an allgroup in XML Schema is equivalent to p1min m1

max 1 & ... & pn min mn max 1 where pi are element declarations and 0 <= mi <= 1.

The repetition type t min m max n denotes a sequence of at least m and at most n t. The bounds on a
repetition type will be either a natural number (that is, either a positive integer or zero) or the special
value *, meaning unbounded. We extend arithmetic to include * in the obvious way:

 | MIXED (t)
bound m, n ::= natural number or *
prime type q ::= u
 | q | q
expanded QName expQName ::= {anyURI}NCName
names NameSet ::= QName

| expQName
| *
| NCName:*
| *:*
| NameSet OR NameSet
| NameSet DIFF NameSet
| (NameSet)

*, +, ?, min m max n, |, &, ,,

XQuery 1.0 Formal Semantics Page 34 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

For technical reasons, we allow the lower bound of a repetition to be *. A repetition t min m max n is
equivalent to the empty choice Ø if m > n or if m is *.

The type expression PIC(t) is a convenient shorthand for the type (PROCESSING-INSTRUCTION |
COMMENT)* & t, that is, a type in which processing instructions and comments may be interleaved
with nodes in type t. Similarly, the type expression MIXED(t) is a convenient shorthand for the type
xs:AnySimpleType* & t.

A prime type is a unit type or a disjunction of prime types. Unit and prime types appear in several
typing rules in [4 Static Semantics : Type-Inference Rules].

A wildcard expression ([XML Schema : Formal Description]) denotes a set of names. A name set is
either a QName denoting the name with the given namespace prefix and local name; an expanded
QName denoting the name with the given namespace uri and local name; *:* denoting any name in
any namespace; NCName:* denoting any local name in namespace NCName; or * denoting any local
name in the default namespace. A name set also consists of union of wildcards or difference of
wildcards. We let NameSet range over name sets.

The abstract syntax for content groups in [XML Schema : Formal Description] and in the
corresponding abstract syntax above is more permissive than XML Schema. For example, these
grammars permit an attribute to contain arbitrarily complex content and for attributes and elements to
be combined in arbitrary ways. In [XML Schema : Formal Description], syntactic categories are used
to specify various subsets of types and to restrict how types may be combined. Syntactic categories
can indicate, for example, that the content of an attribute should be a simple type and that the content
of an element should consist of attributes followed by elements. These restrictions guarantee that
errors in type construction can be caught during parsing of a query.

We also use syntactic categories to restrict how types may be constructed. In the concrete syntax
for types, we capitalize non-terminal symbols. We first distinguish between type variables used to
name attribute groups, element groups, and the content types of elements. Type variables correspond
to component names in [XML Schema : Formal Description].

A simple type is either an atomic type, a choice of atomic types, or a list of atomic or choice types:

An attribute group defines the syntactic form of attributes: their content may only be a simple type
and they are combined only with the interleaving operator, but not the sequence operator.

m + * = * + m = *
0 · * = * · 0 = 0

m · * = * · m = * if m ? 0
m min * = * min m = m
m max * = * max m = *

m <= * = true
* < m = false

TypeVar ::= AttrGroupVar
| ElemGroupVar
| ContentTypeVar

UnionType ::= p atomic simple type
| UnionType | UnionType choice of simple atomic types

SimpleType ::= UnionType
| UnionType min m max n list of union type

XQuery 1.0 Formal Semantics Page 35 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

An element group contains elements with constant or wildcard names and they are combined in
sequences, choices, interleavings, and repetitions.

The content type of an element is either a simple type, an attribute group, an element group, a
sequence of an attribute group followed by an element group, or a content-type variable.

Finally, a type in an XQuery expression may be an attribute group, an element group, or a content
type:

4 Static Semantics : Type-Inference Rules

XQuery's static semantics is presented as type inference rules, which relate XQuery expressions to
types and and specify under what conditions an expression is well typed. The rules for typing
expressions are described with an inference rule notation, which is used for describing type systems
and semantics of programming languages. For a textbook introduction to type systems, see, for
example, [Mitchell].

In inference notation, when all judgements above the line hold, then the judgement below the line
holds as well. Here is an example of a rule used later on:

Data is the subset of expressions that consists only of literal constant, attribute, element, sequence,
and empty-sequence expressions.

AttrGroup ::= ATTRIBUTE NameSet (SimpleType)
| ATTRIBUTE NameSet (SimpleType) min 0 max 1optional attribute
| AttrGroup & AttrGroup
| AttrGroupVar
| (AttrGroup)
| ()

ElemGroup ::= ELEMENT NameSet (ContentType)
| ElemGroup , ElemGroup
| ElemGroup | ElemGroup
| ElemGroup & ElemGroup
| ElemGroup min m max n
| ElemGroupVar
| PIC (ElemGroup)
| MIXED (ElemGroup)
| (ElemGroup)
| ()
| Ø

ContentType ::= SimpleType
| AttrGroup
| ElemGroup
| AttrGroup , ElemGroup
| ContentTypeVar content-type variable

Type ::= AttrGroup | ElemGroup | ContentType

|- Data1: t1 |- Data2: t2

|- Data1, Data2 : t1, t2

XQuery 1.0 Formal Semantics Page 36 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

The judgement "|- Data : t" is read as "in the empty environment, the value Data has type t." The
symbol |- is called a turnstyle, and is usually preceded by an environment symbol, which represents a
mapping from variables to values. In this example, there is no environment symbol, which means the
judgement holds in the empty environment. In [4.4 Expressions], we will see examples of rules that
have non-empty environments. The rule states that if both Data1 : t1 and Data2 : t2 hold, then Data1,

Data2 : t1, t2 holds as well. For instance, take

? Data1 = <a>{ 1 }

? Data2 = { "two" }

? t1 = ELEMENT a (xs:integer)

? t2 = ELEMENT b (xs:string).

Then since both these hold:

<a>{ 1 } : ELEMENT a (xs:integer)
{ "two" } : ELEMENT b (xs:string)

we may conclude that the following holds:

 <a>{ 1 }, { "two" }
: ELEMENT a (xs:integer), ELEMENT b (xs:string)

4.1 Relating data to types

The following type rules relate Data values to types. The next rule rules states that a literal NCName
has the type xs:NCName. The following three rules are analogous for strings and double precision
numbers.

Ed. Note: MF: Analogous rules are necessary for all the functions that construct
Schema simple-typed values.

The next three rules are for attribute and element construction. The first rule states that if Data has
type t, then the attribute expression attribute NCName Data has type ATTRIBUTE NCName (t). The
subsequent rules are analogous for element expressions.

Data::=Literal literal constant
 | attribute NCName Data attribute
 | <NCName/> empty element
 | <NCName> { Data } <NCName>element
 | Data, Data sequence
 | () empty sequence

|- NCName: xs:NCName

|- StringLiteral : xs:string

|- NumericLiteral : xs:double

XQuery 1.0 Formal Semantics Page 37 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

The next rule states that the empty sequence value always has the empty sequence type:

This rule was described above:

The rules above associate the most specific type possible with a Data value. The remaining rules in
this section associate more general types with a Data value, which are necessary when the type
system must determine whether a Data value with most specific type t is permissible when a value of
type t' is expected. This occurs during type checking of a query.

The next two rules are also for attribute and element construction, but these rules specify more
general types. The first rule states that if Data has type t, and NCName is in the set of names defined
by the wildcard expression NameSet, then the given attribute expression also has type ATTRIBUTE
NameSet (t). The subsequent rules are analogous for element expressions.

The next rule states that the sequence of one value with type t followed by a value with repetition type
t min m max n has repetition type t min m+1 max n+1.

The next rule states that the empty sequence is a repetition of any type with lower bound 0:

4.2 Equivalences and subtyping

|- Data : t

|- attribute NCName Data : ATTRIBUTE NCName (t)

|- <NCName/> : ELEMENT NCName ()

|- Data: t

|- <NCName> { Data } </NCName> : ELEMENT NCName (t)

|- (): ()

|- Data1: t |- Data2: t

|- Data1, Data2 : t 1, t 2

|- Data : t NCName <:Wild NameSet

|- attribute NCName Data : ATTRIBUTE NameSet (t)

NCName <:Wild NameSet

|- <NCName/> : ELEMENT NameSet ()

NCName <:Wild NameSet |- Data: t

|- <NCName> { Data } </NCName> : ELEMENT NameSet (t)

|- Data1: t |- Data2: t min m max n

|- Data1, Data2 : t min (m+1) max (n+1)

|- (): t min 0 max n

XQuery 1.0 Formal Semantics Page 38 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

The symbol <: denotes the subtype relation. We write t1<: t2 if for every data Data such that |- Data :

t1, it is also the case that |- Data : t2, i.e., is t1 is a subtype of t2. The subtyping relation is used in

many of the type rules that follow. It is easy to see that the subtype relation <: is a partial order, i.e.,
it is reflexive, t <: t, and it is transitive, if t1<: t2and t2<: t3then t1<: t3. Here are some of the inequalities

that hold:

Further, if QName <:wild NameSet and t <: t', then

If t <: t' and m >= m' and n <= n' then

If t1<: t1' and t2<: t2' then

We write t1= t2 if t1<:t2 and t2<: t1. Here are some of the equalities that hold:

Ø <: t
t <: xs:AnyType
p <: xs:AnySimpleType
t1 <: t1 | t2
t2 <: t1 | t2

ELEMENT QName (t) <: ELEMENT NameSet (t')

t min m max n <: t' min m' max n'

t1, t2 <: t1', t2'

t1, t2 <: t1' & t2'

t1 & t2 <: t1' & t2'

t min 1 max 1 = t
(t1, t2), t3 = t1, (t2, t3)

t, () = t
(), t = t
t, Ø = Ø
Ø, t = Ø
t1| t2 = t2| t1

(t1| t2) | t3 = t1 | (t2| t3)

t | Ø = t
Ø | t = t
t1, (t2| t3) = (t1, t2) | (t1, t3)

(t1| t2), t3 = (t1, t3) | (t2, t3)

(t1 & t2) & t3 = t1 & (t2 & t3)

t1 & t2 = t2 & t1

t & () = t
() & t = t
t & Ø = Ø
Ø & t = Ø
ELEMENT NameSet (t1 | t2) = ELEMENT NameSet(t1) | ELEMENT NameSet(t2)

ELEMENT NameSet (t) | ELEMENT *:* (t)= ELEMENT *:* (t)
t min 1 max n+1 = t, (t min 0 max n)
t min 0 max n +1 = () | t, (t min 0 max n)
t min 0 max 0 = ()

XQuery 1.0 Formal Semantics Page 39 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

We also have that t1<: t2 if and only if t1| t2= t2.

We define the intersection t1 /\ t2 of two types t1 and t2 to be the largest type t that is smaller than

both t1 and t2. That is, t = t1 /\ t2 if t <: t1 and t <: t2 and if for any t' such that t' <: t1 and t' <: t2, we

have t' <: t.

4.3 Environments

The type rules use an environment comprised of a type environment and a namespace environment,
defined in [Figure 6].

Figure 6: Environments used in type-inference rules

The type environment T is a finite map from variables and function names to types.

Part of an attribute or element's type is its tag name, which is a QName. A QName contains a
namespace prefix, whose meaning depends on the namespace environment NS, which is a finite map
from namespace prefixes (NCNames) to namespace URIs. The namespace environment is modified
by namespace declarations and by element constructors that contain namespace declarations.

To select the type-environment component of an environment, we use the notation T of ? ; similarly, we
use NS of ? to select the namespace environment.

We retrieve type information from the environment by writing T (Variable)= t to look up a variable, or by
writing T(QName) = (QName(t1, ..., tn) returns t) to look up a function type. We write NS(NCName) =

anyURI to look up a namespace prefix.

It is often necessary to modify an environment, for example, when defining variables or functions. The
modification of one environment ? by another ? ' is written ? , ? ' and it denotes:

The finite map f, g is the finite map with domain Dom f U Dom g, and values

 (f, g)(a) = if a in Dom g then g(a) else f(a)

This definition means that when ``looking up'' a variable in the environment ? , ? ', the environment ? ' will
always be searched first.

The type checking starts with an empty type environment. As type checking proceeds, new variables
are added to the type environment and new namespace prefixes are added to the namespace
environment. For instance, when typing the query of [2.4 Iteration], variable $b will be typed with
Book, and added in the environment. This will result in a new environment:

t min 0 max 0 = ()
t min m max n = Ø, if m > n or m = *

T in TypeEnv = (Variable -> Type) U Type environment
(QName -> QName(Type1, ..., Typen) returns Type)

NSinNamespaceEnv = NCName -> anyURI Namespace environment
? inEnv = TypeEnv X NamespaceEnv Static environment

? , ? ' = ((T of ?), (T' of ? '); (NS of ?), (NS' of ? '))

XQuery 1.0 Formal Semantics Page 40 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

G' = G, $b : Book

4.4 Expressions

We write ? |- Expr : t if in environment ? the expression Expr has type t. Below are all the rules except
those for for and typeswitch expressions, which are discussed in later subsections.

The following rule states that in any environment ? , the literal NCName has the type xs:NCName. The
two subsequent rules are analogous for strings and numerical values. For example, ? |- 1 :
xs:integer and ? |- "two" : xs:string.

The next rule simply states the variable Variable has type t in environment ? :

Part of an attribute or element's type is its tag name, which is a QName. Before computing the type of
an attribute or element, we convert the attribute or element's QName into an expanded QName. The
inference rule below converts a QName into an expanded QName by mapping its namespace prefix to
a namespace URI. Later rules rely on this judgement to resolve the namespace prefixes that occur in
the QNames of elements and attributes.

The next two rules are for attribute and element construction with a constant tag name. The first rule
states that if Expr has type t, and that QName resolves to the given expanded QName, then the
attribute expression ATTRIBUTE QName (Data) has type ATTRIBUTE expQName (t). The subsequent
rules are analogous for element expressions.

Ed. Note: MF: (08-May-2001) The above rules do not handle namespace attributes in
element constructors, e.g., <foo:bar xmlns:foo="http://www.foo.com/foo.xsd">.
These need to be added. In mapping from XQuery to core, all namespace attributes
should occur before other attributes.

? |- NCName: xs:NCName

? |- StringLiteral: xs:string

? |- NumericLiteral: xs:double

(T of ?)(Variable) = t

? |- Variable : t

QName = NCName1:NCName2 (NS of ?)(NCName1) = anyURI

? |- QName => {anyURI}NCName2

? |- Expr : t ? |- QName => expQName

? |- ATTRIBUTE QName (Expr): ATTRIBUTE expQName (t)

? |- QName => expQName

? |- <QName/> : ELEMENT expQName ()

? |- Expr : t ? |- QName => expQName

? |- <QName> { Expr } </QName> : ELEMENT expQName (t)

XQuery 1.0 Formal Semantics Page 41 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

The next rule is for element construction in which the tag name is computed. The built-in function
make-attribute is used to construct an attribute with a computed tag; its typing rule appears in [4.6
Built-in functions]. The rule states that if Expr2 has type t, then the element expression with

computed tag Expr1 has type ELEMENT *:* (t).

Ed. Note: MF: Note that the types are less precise than in Algebra, which supported
name expressions and wildcard types. This probably makes the 80-20 cut.

The following two rules are analogous to the sequence and empty sequence rules in [4.1 Relating
data to types].

Note that in the type rule for a conditional expression, the result type is the choice (t2|t3).

A let expression extends the type environment ? by mapping Variable to type t. Note that Expr2, the

body of the let expression, is typed in the extended environment, and the type of the entire let
expression is t2.

The next rule is for function application. In a function application, the type of each actual argument to
the function must be a subtype of the corresponding formal argument to the function, i.e., it is not
necessary for the actual and formal types to be equal.

The next rule states that it is always permissible to explicitly type an expression with a type t' that is
a supertype of the expression's type t. In programming-language terminology, this operation is
sometimes called an ``upcast''.

? |- Expr1: xs:QName ? |- Expr2: t

? |- <{ Expr1 }> { Expr2 } </> : ELEMENT *:*(t)

? |- Expr1: t1 ? |- Exprn: t2

? |- Expr1, Expr2: t1, t2

? |- () : ()

? |- Expr1: xs:boolean ? |- Expr2: t2 ? |- Expr3: t3

? |- if (Expr1) then Expr2 else Expr3: (t2 | t3)

? |- Expr1: t1 ? , (Variable : t1) |- Expr2: t2

? |- let Variable := Expr1 return Expr2: t2

(T of ?)(QName) = QName(t1, ···, tn) returns t

? |- Expr1: t'1 t'1 <: t1

···
? |- Exprn: t'n t'n <: tn

? |- QName (Expr1, ···, Exprn) : t

? |- Expr : t' t' <: t

? |- (Expr : t) : t

XQuery 1.0 Formal Semantics Page 42 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

The cast operator converts the type of an expression to the given atomic simple type.

Ed. Note: MF: the relationship between p and p' depends on operator work.

The error expression always has the empty choice type.

4.5 Operators

A joint task force on operators with members from the XSLT, XML Schema, and XML Query working
groups is chartered to define the operators for XQuery and XPath 2.0. The complete set of operators
will be defined in a forthcoming document by that group, so it is not possible to give the typing rules
for all operators here. (See [Issue-0056: Operators on Simple Types]). In general, however,
arithmetic operators will have a type rule such as the following, in which t1 and t2 are numeric types

and appropriate type conversions exist between the two:

Equality and inequality operators are typed similarly.

Boolean operators require that their subexpressions be boolean expressions.

The type rules for the collection operators, Opcoll, are given in [4.7 Typing unordered expressions].

4.6 Built-in functions

The following type rules define the input and output types for built-in functions.

The next two rules are for comment and processing instruction constructors.

? |- Expr : p p' <: p

? |- cast as p' (Expr) : p'

? |- error : Ø

? |- Expr1 : p1 ? |- Expr2 : p2 t = result-type(p1, p2)

? |- Expr1 Oparith Expr2 : t

? |- Expr1 : t1 ? |- Expr2 : t2

? |- Expr1 Opeq Expr2 : xs:boolean

? |- Expr1 : xs:boolean ? |- Expr2 : xs:boolean

? |- Expr1 Opbool Expr2 : xs:boolean

? |- Expr : t

? |- count(Expr) : xs:integer

? |- Expr : xs:string

? |- comment(Expr) : COMMENT

? |- Expr1 : xs:NCName ? |- Expr2 : xs:string

? |- processing-instruction(Expr1, Expr2) : PROCESSING-INSTRUCTION

XQuery 1.0 Formal Semantics Page 43 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

In the core syntax, all character-data literals are expressed using the built-in pcdata (parsable
character data) function. The type of PCDATA is always xs:AnySimpleType.

Attributes with computed tag names are constructed by the make-attribute. This rule states that if
Expr2 has type t, then the attribute expression with computed tag Expr1 has type ATTRIBUTE *:* (t).

The name of an attribute or element always has type xs:QName:

The attributes and children accessors only apply to values with element type.

The next two rules are for name expressions: they extract the constituent parts of a name.

The next rule is for the parent function, which may be applied to any unit type:

The next two rules are for the reference constructor and dereference function. Note that ref requires
that its argument have a unit type.

|- pcdata(StringLiteral) : xs:AnySimpleType

? |- Expr1: xs:QName ? |- Expr2: t

? |- make-attribute(Expr1, Expr2) : ATTRIBUTE *:*(t)

? |- Expr : ATTRIBUTE NameSet (t)

? |- name(Expr) : xs:QName

? |- Expr : ELEMENT NameSet(t)

? |- name(Expr) : xs:QName

? |- Expr : ELEMENT NameSet (t)
t <: t1, t2 t1 < xs:AnyAttribute* t2 < (xs:AnyElement | xs:string)*

? |- attributes(Expr) : t1

? |- Expr : ELEMENT NameSet(t)
t <: t1, t2 t1 < xs:AnyAttribute* t2 < (xs:AnyElement | xs:string)*

? |- children(Expr) : t2

? |- Expr : t ? |- t <: xs:AnyElement | xs:AnyAttribute | PROCESSING-INSTRUCTION | COMMENT

? |- namespace-uri(Expr) : xs:uriReference

? |- Expr : t ? |- t <: xs:AnyElement | xs:AnyAttribute | PROCESSING-INSTRUCTION | COMMENT

? |- local-name(Expr) : xs:NCName

? |- Expr : u

? |- parent(Expr) : xs:AnyElement?

? |- Expr : u

? |- ref(Expr) : REFERENCE(u)

? |- Expr : REFERENCE(t)

? |- deref(Expr) : t

XQuery 1.0 Formal Semantics Page 44 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

The next rule is for the string-value of a unit value.

The accessor typed-value returns the simple typed value of an attribute or element. An attribute
always contains a simple typed value, therefore typed-value simply returns the attribute's typed
content. An element may contain a simple-typed value or a complex-typed value. The second and
third rules below distinguish between these two cases.

4.7 Typing unordered expressions

The built-in functions index and unordered and the operator sortby disregard the relative order of
components in their input type.

For example, consider the following.

 index (children (book0))
==> (<q:pair><q:fst>1</q:fst>
 <q:snd><q:ref><title>Data on the Web</title></q:ref></q:snd></q:pair>,
 <q:pair><q:fst>2</q:fst>
 <q:snd><q:ref><author>Abiteboul</author></q:ref></q:snd></q:pair>,
 <q:pair><q:fst>3</q:fst>
 <q:snd><q:ref><author>Buneman</author></q:ref></q:snd></q:pair>,
 <q:pair><q:fst>4</q:fst>
 <q:snd><q:ref><author>Suciu</author></q:ref></q:snd></q:pair>,
 <q:pair><q:fst>5</q:fst>
 <q:snd><q:ref><year>1999<year></q:ref></q:snd></q:pair>)

By nesting the children of book0 under snd the original sequence of title, author+, year gets
lost. The snd element can contain either a title, an author, or a year. To compute a meaningful
type for this expression, we need to find a type q, m, and n such that

 children(book0) : q min m max n

and then the type is given by

 index(children(book0)) :
 ELEMENT q:pair(
 ELEMENT q:fst (xs:integer),
 ELEMENT q:snd (REFERENCE (ELEMENT author (q)))
) min m max n

In the case of books, the values of q are:

? |- Expr : t

? |- string-value(Expr) : xs:string

? |- Expr : ATTRIBUTE NameSet (t)

? |- typed-value(Expr) : t

? |- Expr : ELEMENT NameSet (t) t <: xs:AnySimpleType

? |- typed-value(Expr) : t

? |- Expr : ELEMENT NameSet (t) t <: xs:AnyComplexType

? |- typed-value(Expr) : ()

XQuery 1.0 Formal Semantics Page 45 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

ELEMENT title (xs:string) |
ELEMENT author (xs:string)

the value of m is three (because there will be one title, at least one author, and one year element)
and the value of n is * (because there may be any number of author elements).

We call a type like q a prime type. In general, it may contain scalar, attribute, element, choice, and
empty choice types, but it will not contain repetition, sequence, or empty sequence types (except,
perhaps, within an element or attribute type). The definition of prime types appears in [Figure 4].

Figure 7: Definition of factoring

The factor function, as shown in [Figure 7], converts any type t to a type of the form q min > max n,
where t <: q min > max n, so that any value that has type t also has type q min m max n. For example,

factor (ELEMENT title (xs:String),
 ELEMENT author (xs:String) min 1 max *,
 ELEMENT year (xs:integer)) =

 (ELEMENT title (xs:string) |
 ELEMENT author (xs:string) |
 ELEMENT year(xs:integer)) min 3 max *

We can see here that the factored type is less specific than the unfactored type. For convenience we
write q min m max n = factor (t), but one should actually think of the function as returning a triple
consisting of a prime type q and two bounds m and n.

Just as factoring a number yields a product of prime numbers, factoring a type yields a repetition of
prime types. Further, the result yielded by factoring is in some sense optimal. If q min m max n =
factor (t) then t <: q min m max n and for any q', m', and n' such that t <: q'min m max n' we have that q
<: q' and m >= m' and n <= n'. Also, if t = t', then factor (t) = factor (t'). In particular, the choice of the
lower bound * for factor (Ø) guarantees that factor (t) = factor (t | Ø), since m min * = m.

factor (p) = p min 1 max 1
factor (ELEMENT NameSet (t)) = ELEMENT NameSet (t) min 1 max 1
factor (ATTRIBUTE NameSet (t))= ATTRIBUTE NameSet (t) min 1 max 1
factor (t1 , t2) = (q1| q2) min m1+ m2 max n1+ n2

where qi min mi max ni = factor (ti)

factor (t1 & t2) = (q1| q2) min m1+ m2 max n1+ n2

where qi min mi max ni = factor (ti)

factor (t1| t2) = (q1| q2) min (min m1 m2) max (max n1 n2)

where qi min mi max ni = factor (ti)

factor (t min m max n) = q min m · m' max n' · n
where q min m' max n' = factor (t)

factor (()) = Ø min 0 max 0
factor (Ø) = Ø min * max 0

XQuery 1.0 Formal Semantics Page 46 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

Using factor, we can type index, sortby, unordered and the union, difference, and intersection
operations. Note that factor is only used by the type inference rules; it is not part of XQuery
expressions.

The type rule for index requires that its argument be a factored type. The second expression above
the judgement line converts t into a factored type.

The types of aggregated expressions must be factored, and their prime type must be a numeric type.

The sortby operator returns the factor of its input type.

Ed. Note: MF, Oct 23/2000: This definition assumes that the equality operator on t2 is

defined. An alternative is requiring Expr2 to have xs:AnySimpleType, but that seems too

restrictive.

The distinct-node function removes all duplicate nodes from its input.

Ed. Note: PF (Jan 29, 2000): a more accurate lower bound may be derived by counting
the disjoint constituent types of q. But this is probably too complex.

The distinct-value function removes all duplicate values from its input. The typing rule is analogous
to that of distinct-node, except the lower bound m can be at most one.

Similar to distinct-value and distinct-node, the intersect and except operators need to set
the lower bound of the cardinality of the input type to 0. The upper bound of the cardinality of the
intersection of two types can be at most the minimum of upper bounds of their individual cardinalities.

? |- Expr : t q min m max n = factor (t)

? |- index(Expr) :
ELEMENT q:pair(ELEMENT q:fst (xs:integer),
ELEMENT q:snd (REFERENCE (q))) min m max n

? |- Expr : t
q min m max n = factor (t)

q <: xs:decimal | xs:double

? |- agg Expr : q
agg is one of avg, max, min, sum.

? |- Expr1 : t1

? |- Expr1 : t2

q min m max n = factor(t1)

? |- Expr1 sortby Expr2 (ascending|descending): q min m max n

? |- Expr : t q min m max n = factor(t)

? |- distinct-node(Expr) : q min (1 min m) max n

? |- Expr : t q min m max n = factor(t) m' = 1 min m

? |- distinct-value(Expr) : q min m' max n

? |- Expr1 : t1 ? |- Expr2 : t2 q min m max n = factor (t1, t2)

? |- Expr1 union Expr2 : q min m max n

XQuery 1.0 Formal Semantics Page 47 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

The unordered function ignores the order of the items in its sequence argument, therefore its type is
also a factored type.

4.8 Iteration expressions

The typing of for expressions is rather subtle. We give an intuitive explanation first and then the
detailed typing rules below.

A unit type is defined in [Figure 4]; it is either an simple type, an attribute or element type with a
constant or wildcard name, a comment, or a processing instruction. A for expression

for Variable in Expr1 return Expr2

is typed as follows. First, one finds the type of expression Expr1. Next, for each unit type in this type

one assumes the variable Variable has the unit type and one types the body Expr2. Note that this

means we may type the body of Expr2 several times, once for each unit type in the type of Expr1.

Finally, the types of the body Expr2 are combined, according to how the types were combined in

Expr1. That is, if the type of Expr1 is formed with sequencing, then sequencing is used to combine the

types of Expr2, and similarly for choice or repetition.

For example, consider the following expression, which selects all author elements from a book.

 for $c in children($book0) return
 typeswitch ($c)
 case $a : ELEMENT author(xs:AnyType) return $a
 default return ()

The type of children(book0) is

ELEMENT title(xs:String), ELEMENT year(xs:integer), ELEMENT author(xs:string)+

This is composed of three unit types, and so the body is typed three times.

The three result types are then combined in the same way the original unit types were, using
sequencing and iteration.

(), (), ELEMENT author(xs:string)+

? |- Expr1 : t1 ? |- Expr2 : t2 q1 min m max n = factor (t1) q2 min m max n = factor (t2)

? |- Expr1 intersect Expr2 : (q1 /\ q2) min 0 max (m2 min n2)

? |- Expr1 : t1 ? |- Expr2 : t2 q1 min m1 max n1 = factor (t1) q2 min m2 max n2 = factor (t2)

? |- Expr1 except Expr2 : q1 min 0 max n1

? |- Expr : t q min m max n = factor (t)

? |- unordered(Expr) : q min m max n

assuming $c has type ELEMENT title(xs:string) the body has type ()

" ELEMENT year(xs:integer) " ()
" ELEMENT author(xs:string) " ELEMENT author(xs:String)

XQuery 1.0 Formal Semantics Page 48 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

as the type of the iteration, and simplifying yields

ELEMENT author(xs:string)+

as the final type.

As a second example, consider the following expression, which selects all title and author
elements from a book, and renames them.

 for $c in $book0/* return
 typeswitch ($c)
 case ELEMENT title (xs:string) return
 <titl> { t/data() } </titl>
 case ELEMENT year (xs:integer) return
 ()
 case ELEMENT author (xs:string) return
 <auth> { a/data() } </auth>
 default return ERROR

Again, the type of book0/* is

 ELEMENT title(xs:string), ELEMENT year(xs:integer), ELEMENT author(xs:string)+

This is composed of three unit types, and so the body is typed three times.

The three result types are then combined in the same way the original unit types were, using
sequencing and iteration. This yields

 ELEMENT titl(xs:string), (), ELEMENT auth(xs:string)+

as the type of the iteration, and simplifying yields

 ELEMENT titl(xs:string), ELEMENT auth(xs:string)+

as the final type. Note that the title occurs just once and the author occurs one or more times, as one
would expect.

As a third example, consider the following expression, which selects all basic parts from a sequence
of parts.

 for $p in $part0/subparts/* return
 typeswitch ($p)
 case Basic return $b
 case Composite return ()
 default return ERROR

The type of part0/subparts/* is

 (Basic | Composite)+

assuming $c has type ELEMENT title(xs:string) the body has type ELEMENT titl(xs:string)
" ELEMENT year(xs:integer) " ()
" ELEMENT author(xs:string) " ELEMENT auth(xs:string)

XQuery 1.0 Formal Semantics Page 49 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

This is composed of two unit types, and so the body is typed two times.

The two result types are then combined in the same way the original unit types were, using
sequencing and iteration. This yields

 (Basic | ())+

as the type of the iteration, and simplifying yields

 Basic*

as the final type. Note that although the original type involves repetition one or more times, the final
result is a repetition zero or more times. This is what one would expect, since if all the parts are
composite the final result will be an empty sequence.

In this way, we see that for expressions can be combined with typeswitch expressions to select
and rename elements from a sequence, and that the result is given a sensible type.

In order for this approach to typing to be sensible, it is necessary that the unit types can be uniquely
identified. However, the type system given here satisfies the following law.

 ELEMENT a (t1 | t2) = ELEMENT a (t1) | ELEMENT a (t2)

This has one unit type on the left, but two distinct unit types on the right, and so might cause trouble.
Fortunately, our type system inherits an additional restriction from XML Schema: we insist that the
regular expressions can be recognized by a top-down deterministic automaton. In that case, the
regular expression must have the form on the left, the form on the right is outlawed because it requires
a non-deterministic recognizer. With this additional restriction, there is no problem.

The method of translating projection to iteration described in the previous section combined with the
typing rules given here yield optimal types for projections, in the following sense. Say that variable x
has type t, and the projection x / a has type t'. The type assignment is sound if for every value of type
t, the value of x / a has type t'. The type assignment is complete if for every value y of type t' there is a
value x of type t such that x / a = y. In symbols, we can see that these conditions are complementary.

Any sensible type system must be sound, but it is rare for a type system to be complete. But,
remarkably, the type assignment given by the above approach is both sound and complete.

The type rule for for expressions uses the following auxiliary judgement. We write ? |- for Variable : t
return Expr : t', if in environment ? when the bound variable Variable of an iteration has type t then
the body Expr of the iteration has type t'.

if $p has type Basic the body has type Basic
" Composite " ()

sound: forall x in t. exist y in t'. x / a = y
complete:forall y in t'. exist x in t. x / a = y

? , Variable : t |- Expr : t'

? |- for Variable : t return Expr : t'

? |- for Variable : () return Expr : ()

XQuery 1.0 Formal Semantics Page 50 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

Given the above rules, the type rules for for expressions are immediate.

4.9 Typeswitch expressions

The typing of typeswitch expressions is closely related to the typing of for expressions. Due to the
typing rules of for expressions, it is possible that the body of an iteration is checked many times.
Thus, when a typeswitch expression is checked, it is possible that quite a lot is known about the
type of the expression being matched, and one can determine that only some of the clauses of the
typeswitch apply. The definition of typeswitch uses the auxiliary judgements to check whether a
given clause is applicable.

We write ? |- case Variable : t return Expr : t', if in environment ? , the Variable of the typeswitch
has type t, then the body Expr of case has type t'. Note the type of the body is irrelevant if t = Ø.

We write ? |- t <: t' default return Expr: t'' if in environment ? when t <: t' does not hold, then the
body Expr of the typeswitch expression's default return clause has type t''. Note that the type of
the body is irrelevant if t < t'.

Given the above, it is straightforward to construct the typing rule for a typeswitch expression. Recall

? |- for Variable : t1 Expr : t'1 ? |- for Variable : t2 Expr : t'2

? |- for Variable : t1, t2 return Expr : t'1, t'2

? |- for Variable : t1 Expr : t'1 ? |- for Variable : t2 Expr : t'2

? |- for Variable : t1 & t2 return Expr : t'1 & t'2

? |- for Variable : Ø return Expr : Ø

? |- for Variable : t1 Expr : t'1 ? |- for Variable : t2 Expr : t'2

? |- for Variable : t1 | t2 return Expr : t'1 | t'2

? |- for Variable : t Expr : t'

? |- for Variable : (t min m max n) return Expr : (t' min m max n)

? |- Expr1 : t1 ? |- for Variable : t1 return Expr2 : t2

? |- for Variable in Expr1 return Expr2 : t2

¬(t = Ø) ? , Variable : t |- Expr : t'

? |- case Variable : t return Expr : t'

? |- case Variable : Ø return Expr : Ø

t <: t'

? |- t <: t' else Expr : Ø

¬ t <: t' ? |- Expr : t''

? |- t <: t' else Expr : t''

XQuery 1.0 Formal Semantics Page 51 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

that we write t /\ t' for the intersection of two types.

4.10 Typing descendent-or-self

The built-in function DESCENDENT-OR-SELF(expr) implements the descendent-or-self axis of XPath,
and is used to express the sematics of the // operator. For example, consider the following type
declaration:

 TYPE Part = Basic | Composite
 TYPE Basic =
 ELEMENT basic (
 ELEMENT cost (xs:integer)
)
 TYPE Composite =
 ELEMENT composite (
 ELEMENT assembly_cost (xs:integer)
 ELEMENT subparts (Part+)
)

If $v has type Part, the XPath expression $v//basic would retrieve all basic parts. We would rewrite
this query into the core language as follows:

 for $x in descendent-or-self($v) return
 typeswitch ($x) as $z
 case ELEMENT basic(xs:AnyType) return $z
 default return ()

The type of descendent-or-self($v) is

 (ELEMENT basic (
 ELEMENT cost (xs:integer)
)
 | ELEMENT cost (xs:integer)
 | ELEMENT composite (
 ELEMENT assembly_cost (xs:integer)
 ELEMENT subparts (Part+)
)
 | ELEMENT assembly_cost (xs:integer)
 | ELEMENT subparts (Part+)
 | xs:integer
) min 3 max *

The lower bound of 3 indicates that descendent-or-self($v) returns at least three nodes, ELEMENT
basic (...), ELEMENT cost (...), and xs:integer, which is what happens when $v is bound to a

? |- Expr0 : t0

? |- case Variable : t0 /\ t1 return Expr1 : t'1

···
? |- case Variable : t0 /\ tn return Exprn : t'n

? |- t0 < t1 | ... | tn default return Exprn+1 : t'n+1

? |- (typeswitch (Expr0) as Variable

 case t1 return Expr1

 ···
 case tn return Exprn

 default return Exprn+1) : t'1 | ... | t'n+1

XQuery 1.0 Formal Semantics Page 52 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

single element of type Basic. Based on this type, the type of $v//basic is

 ELEMENT basic (
 ELEMENT cost (xs:integer)) min 0 max *

On the other hand, the type of $v//part is (), the empty sequence, because no part element
appears in the type Part. (An expression with type () typically indicates a programming error, unless
the expression is () itself.)

The typing of descendent-or-self loses all information about the relative ordering of the subparts.
For instance, in descendent-or-self($v) it is always the case that a basic element is immediately
followed (in document order) by a cost element, but this is not reflected in the type above.

There are two reasons why information about order is not retained.

First, there may exist two locally declared elements, e.g., ELEMENT foo(type1) and ELEMENT foo
(type2), with the same name but different content-type. Maintaining their relative order at type level
would generate the invalid type ELEMENT foo(type1) ... ELEMENT foo(type2), whereas ELEMENT
foo(type1) | ELEMENT foo(type2) can be transformed to the valid type ELEMENT foo(type1 |
type2).

Second, for some recursive types, maintaining the relative order of elements leads to a context-free
type. For example, with

 TYPE type1 = ELEMENT a (type1 min 0 max 1), ELEMENT b ()

the type of descendents would need to be the context-free type

 TYPE type1' = ELEMENT a (type1 min 0 max 1), type1', ELEMENT b ()

but there is no equivalent regular type expressible in our system.

In principle, DESCENDENT-OR-SELF(expr) could be expressed as a recursive user defined function:

 DEFINE FUNCTION descendent-or-self (xs:AnyTree $x)
 RETURNS (xs:AnyElement | xs:AnyScalar) min 0 max * {
 TYPESWITCH ($x)
 CASE (Comment|PI|AnyAttribute) RETURN ()
 DEFAULT RETURN
 ($x, FOR $z IN children($x) RETURN descendent-or-self($z))
 }

However, this loses far too much type information. With this definition and the translation above the
type of $v//basic is

 ELEMENT basic(xs:AnyType) min 0 max *

rather than

 ELEMENT basic(ELEMENT cost(xs:integer)) min 0 max *

Similarly, the type of $v//part is (ELEMENT part (AnyType) min 0 max *) rather than (), losing
the chance to uncover a type error.

XQuery 1.0 Formal Semantics Page 53 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

The rule for typing descendent-or-self(expr) is as follows.

This uses the function recfactor defined in [Figure 8]. The function recfactor() is similar to factor(), but
it applies to all the descendents of a node.

To be precise, recfactor(t; E) takes a type t and a choice of type variables E. The argument E is a
factoring environment: initially the empty choice Ø, it collects all the type variables encountered so far
in a recursive traversal of the type. If t is a type in which all elements have empty content models,
then recfactor(t; Ø) = factor(t).

Figure 8: Definition of recursive factoring

4.11 Top-level declarations and query expressions

We write ? |- QueryModule if in environment ? , the query module QueryModule is well-typed.

Context declarations are always well typed. Below, they have the effect of updating the namespace
environment.

? |- Expr : type

? |- descendent-or-self(Expr) : recfactor(type; Ø)

recfactor (p; E) = p min 1 max 1
recfactor (ELEMENT NameSet (t); E) = (ELEMENT NameSet (t) | q) min m + 1 max n + 1)

where q min m + 1 n + 1 = recfactor (t; E)
recfactor (ATTRIBUTE NameSet (t); E)= Ø min 0 max 0
recfactor (t1 , t2; E) = (q1| q2) min m1+ m2 max n1+ n2

where qi min mi max ni = recfactor (ti; E)

recfactor (t1 & t2; E) = (q1| q2) min m1+ m2 max n1+ n2

where qi min mi max ni = recfactor (ti; E)

recfactor (t1| t2; E) = (q1| q2) min (min m1 m2) max (max n1 n2)

where qi min mi max ni = recfactor (ti; E)

recfactor (t min m max n) = q min m · m' max n' · n
where q min m' max n' = recfactor (t; E)

recfactor ((); E) = Ø min 0 max 0
recfactor (Ø; E) = Ø min * max 0
recfactor (X; E) = recfactor (def(X);E | X)

if not X <: E
recfactor (X; E) = factor (def(X)) min * max *

if X <: E

? |- namespace NCName = StringLiteral

? |- default namespace = StringLiteral

XQuery 1.0 Formal Semantics Page 54 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

A type declaration is always well typed:

A function declaration is well-typed if in the environment extended with the type assignments for its
formal variables, its body is well-typed.

The function static-env constructs an environment by extracting type assertions and namespace
mappings from top-level declarations. It constructs a two part environment: the first part is the type
environment, T, and the second part is the namespace environment, NS.

Note that the default namespace is represented in the namespace environment by the empty string.

We write |- QueryModule if each declaration and expression in the query module is well typed.

5 Dynamic Semantics : Value-Inference Rules

XQuery's dynamic, or operational, semantics is presented as value inference rules. The value
inference rules are similar to the type inference rules in [4 Static Semantics : Type-Inference
Rules], but they relate expressions to values or semantic objects. XQuery's semantic objects are
defined in the [XQuery 1.0 and XPath 2.0 Data Model]. An operational semantics specifies the order in
which an XQuery expression is evaluated and guarantees that every expression can be reduced to a
simple semantic object. XQuery's dynamic semantics is modeled on the dynamic semantics
presented in [Milner].

? |- type NCName = t

? , (Variable1 : t1), ··· (Variablen : tn) |- Expr : t' t' <: t

? |- define function QName (t1 Variable1, ··· tn Variablen) returns t { Expr }

static-env (type x = t) =
 ((); ())
static-env (define function QName (Type1 Variable1, ···, Typen Variablen) returns t { Expr } =

 ((QName |=> QName(t1, ···, tn) returns t); ())

static-env (namespace NCName = StringLiteral) =
 ((); NCName |-> StringLiteral)
static-env (default namespace = StringLiteral) =
 ((); '' |-> StringLiteral)

? |- static-env (ContextDecl1),..., static-env (ContextDeclk),

static-env (TypeDecl1),..., static-env (TypeDecll),

static-env (FunctionDecl1),..., static-env (FunctionDeclm)

? |- ContextDecl1 ... ? |- ContextDeclk

? |- TypeDecl1 ... ? |- TypeDecll

? |- FunctionDecl1 ... ? |- FunctionDeclm

? |- Expr1 ... ? |- Exprn

|- ContextDecl1... ContextDeclk

TypeDecl1... TypeDecll

FunctionDecl1... FunctionDeclm
Expr1... Exprn

XQuery 1.0 Formal Semantics Page 55 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

5.1 Semantic objects

Figure 9: Semantic objects

There are five categories of values in [XQuery 1.0 and XPath 2.0 Data Model]: error, simple values,
nodes, sequences, and schema components. There is a single error value, named ERROR. Simple
values are the union of all the value spaces of XML Schema simple types. A node is one of eight node
kinds: element, attribute, namespace, comment, processing-instruction, text, and reference. A unit
value is the union of all simple values and nodes; a unit value is an instance of the unit type
[Figure 4].

A sequence is an ordered collection of nodes, simple values, or any mixture of nodes and simple
values. A sequence cannot be a member of a sequence. An important characteristic of the data model
is there is no distinction between a unit value (i.e., a node or a simple value) and a singleton sequence
containing that value, i.e., a unit value is equivalent to a singleton sequence containing that value and
vice versa.

Value is the class of values that includes all sequences and ERROR.

A schema component represents the type of element nodes, attribute nodes, and simple values.

All the above classes, except ERROR, are infinite sets.

[Figure 10] lists several basic functions from [XQuery 1.0 and XPath 2.0 Data Model] used in the
dynamic semantics.

Figure 10: Functions used in dynamic semantics

Ed. Note: MF : (Jan-15-2001) To define the sort expression completely, we need to
specify what basic sort operators are available.

ERROR

a in SimpleValue

n in Node

u in UnitValue = SimpleValue U Node

s in Sequence<SimpleValue | Node>

v in Values = Sequence<SimpleValue | Node> U {ERROR}

sc in SchemaComponent

append Construct a sequence from two or more sequences
empty-sequence Constructs the empty sequence.
empty Returns true if argument is empty sequence, otherwise false.
head Returns the first node in a non-empty sequence
tail Returns items in a sequence excluding its first item.
schema-componentReturns the schema component representing its type argument

XQuery 1.0 Formal Semantics Page 56 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

5.2 Environments

The value inference rules use an environment, defined in [Figure 11], comprised of a static
environment, a value environment, and a function environment.

Figure 11: Environments used in value-inference rules

The static environment ? is defined by the static type rules [4 Static Semantics : Type-Inference
Rules]. The value environment VE is a finite map from variables to values. The function environment
FE is a finite map from function names to pairs containing an expression that is the body of the
function and a list of free variables that are the function's formal arguments. An environment ? is a
tuple containing a static enviroment, a value environment, and a function environment.

In the value-inference rules, we use the same notation to select an environment and to lookup values
in an environment as used in [4 Static Semantics : Type-Inference Rules].

To select the static-environment component of an environment, we use the notation ? of ? ; similarly,
we use VE of ? to select the value environment and FE of ? for the function environment.

We look up the type of a variable by writing (? of ?)(Variable) = t, and we write (VE of ?)(Variable) = v
to look up the value of a variable or (FE of ?)(QName) = f to look up a function.

It is often necessary to modify an environment, for example, when defining variables or functions. The
modification of one environment ? by another ? ' is written ? , ? ' and it denotes:

The finite map f, g is the finite map with domain Dom f U Dom g, and values

 (f, g)(a) = if a in Dom g then g(a) else f(a)

This definition means that when ``looking up'' a variable in the environment ? , ? ', the environment ? ' will
always be searched first.

5.3 Expressions

Each rule of the dynamic semantics are inferences among sentences of the form: ? |- phrase => v,
where ? is an environment, phrase is a phrase in the core syntax [Figure 1], and v is a semantic
object.

As in [4 Static Semantics : Type-Inference Rules], when all judgements above the line of an
inference rule hold, then the judgement below the line holds as well. The following three rules state
that in any environment, a string, numeric, or boolean literal reduces to the value it denotes. The
XQuery/XPath 2.0 function library provides constructors for all simple-typed values. Those constructors
are used here:

? Static environment
VEinValueEnv = Variable -> Value Value environment
FE inFuncEnv = QName -> (Expr X Variable*)Function environment
? inEnv = StaticEnv X ValueEnv X FuncEnv

? , ? ' = ((? of ?), (? ' of ? '); (VE of ?), (VE' of ? '); (FE of ?), (FE' of ? '))

XQuery 1.0 Formal Semantics Page 57 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

The next rule determines the value of a variable, which is simply the variable's value in the current
value environment VE:

The next rule constructs an attribute node from its name and value sub-expressions. This is the first
rule that uses the static type environment: the run-time type schema-component(t) of the attribute is
obtained from the type environment ? .

The next rule constructs an empty element.

The following rule constructs an element from its name and children sub-expressions. The element
constructor in [XQuery 1.0 and XPath 2.0 Data Model] requires that all children be nodes, which
means that any simple-typed value in the element's sequence of child expressions must be converted
to a text node before applying the constructor. The auxilliary function simple-to-text-node defined
below performs this conversion.

define function simple-to-text-node(xs:AnyTree* $s) returns xs:AnyTree* {
 for $v in $s return
 typeswitch ($v)
 case xs:AnySimpleType return text-node(string-value($v))
 default return $v
}

? |- StringLiteral => xfo:string(StringLiteral)

? |- NumericLiteral => xfo:double(NumericLiteral)

? |- BooleanLiteral => xfo:boolean(BooleanLiteral)

(VE of ?)(Variable) = v

? |- Variable => v

(NS of ?)(NCName1) => v

? |- NCName1:NCName2 => xfo:expanded-QName(v, NCName2)

? |- Expr => v

? |- { Expr } => v

? |- NameSpec => v1 ? |- Expr => v2 (? of ?) |- ATTRIBUTE NameSpec (Expr) : t

? |- ATTRIBUTE NameSpec (Expr) => attribute-node(v1, v2, schema-component(t))

? |- NameSpec => v1 ? of ? |- <NameSpec/> : t

? |- <NameSpec/> => element-node(v1, empty-sequence(), empty-sequence(), empty-sequence(),

schema-component(t))

? |- NameSpec => v1 ? |- Expr => v2 ? of ? |- <NameSpec> { Expr } </NameSpec> : t

? |- <NameSpec> { Expr } </NameSpec> => element-node(v1, empty-sequence(), empty-sequence(),

simple-to-text-node(v2), schema-component(t))

XQuery 1.0 Formal Semantics Page 58 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

Ed. Note: PF: Do we need to concatenate consecutive text-nodes ? MF: The element
constructor should do this.

The next rule constructs a sequence.

We note here that in the [XQuery 1.0 and XPath 2.0 Data Model], sequences are always ``flat'', i.e.,
they do not contain other sequences.

The next three rules construct the union, difference, and intersection of two sequences. The order of
items in the resulting sequence is non-deterministic.

The next rule constructs the empty sequence.

The next rule evaluates a conditional expression. If the conditional's boolean expression Expr1

evaluates to true, Expr2 is evaluated and its value is produced. If the conditional's boolean expression

evaluates to false, Expr3 is evaluated and its value is produced.

The next rule evaluates a let expression: it evaluates the body of the expression Expr2 in the

environment ? extended with the variable Variable bound to the value v.

The next rule evaluates a function application. It evaluates all the function's arguments in the current
environment, then extracts the definition of the function's body from the function environment. It
constructs a new environment that contains the static and function environments of ? and a new value
environment that maps the function's formal arguments Variable1 · · · Variablen to the function's actual

? |- Expr1 => v1 ? |- Expr2 => v2

? |- Expr1, Expr2 => append(v1, v2)

? |- Expr1 => v1 ? |- Expr2 => v2

? |- Expr1 union Expr2 => xfo:union(v1, v2)

? |- Expr1 => v1 ? |- Expr2 => v2

? |- Expr1 except Expr2 => xfo:difference(v1, v2)

? |- Expr1 => v1 ? |- Expr2 => v2

? |- Expr1 intersect Expr2 => xfo:intersect(v1, v2)

? |- () => empty-sequence()

? |- Expr1 => true ? |- Expr2 => v2

? |- if Expr1 then Expr2 else Expr3 => v2

? |- Expr1 => false ? |- Expr3 => v3

? |- if Expr1 then Expr2 else Expr3 => v3

? |- Expr1 => v ? , { Variable |-> v } |- Expr2 => v2

? |- let Variable := Expr1 return Expr2 => v2

XQuery 1.0 Formal Semantics Page 59 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

arguments, and then it evaluates the body of the function in this new environment.

The next rule states that in any environment, the error expression evalutes to the ERROR value.

5.4 Operators

The [XQuery 1.0 and XPath 2.0 Data Model] defines two equality functions, xfo:node-equal and
xfo:value-equal, which correspond to XQuery's equality operators, '==' and '=', respectively. These
functions operate only on unit values, i.e., a singleton sequence containing a simple value or node.

The boolean operators and and or, and the boolean function not and defined in terms of if-then-
else expressions.

 E1 and E2 ==> if (E1) then (if (E2) then true else false) else false
 E1 or E2 ==> if (E1) then true else (if (E2) then true else false)
 not (E) ==> if (E) then false else true

We have not defined the semantics of all the arithmetic operators in XQuery. A joint task force on
operators with members from the [XSLT 99], XML Schema, and XML Query working groups is
chartered to define arithmetic operators. XQuery will adopt the decisions of that group (See [Issue-
0056: Operators on Simple Types]). In the following two rules, we assume that the binary and
unary operators are implemented by the apply function whose semantics are defined by the operator
task force and that this function only operates on simple values.

5.5 Built-in functions

There is a near one-to-one correspondence between XQuery expressions for constructing and
accessing data model values [Figure 2] and the data model constructors and accessors.

The next three rules construct comment, processing instruction, and reference nodes, respectively.

? |- Expr1 => v1 ··· ? |- Exprn => vn

(FE of ?)(QName) = (Expr; Variable1 ··· Variablen)

(? of ? ; { Variable1 |-> v1 }, · · · { Variablen |-> vn }; FE of ?) |- Expr => v

? |- QName(Expr1; · · · ;Exprn) => v

? |- error => ERROR

? |- Expr1 => u1 ? |- Expr2 => u2

? |- Expr1 == Expr2 => xfo:node-equal(u1, u2)

? |- Expr1 => u1 ? |- Expr2 => u2

? |- Expr1 = Expr2 => xfo:value-equal(u1, u2)

? |- Expr1 => a1 ? |- Expr2 => a2

? |- Expr1 Oparith Expr2 => apply(Oparith, a1, a2)

? |- Expr1 => v1 a2 = apply(Op, a1)

? |- Op Expr1 => a2

XQuery 1.0 Formal Semantics Page 60 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

The following rules define all of the accessor and other data-model functions. In the following rule, the
function name f denotes any one of the following accessors: nodes,

The sortby expression may return any permutation of its input. The easiest way to explain the
dynamic semantics of sortby is to assume the existence of a function stable-sort that takes a
sequence of pair elements, each of which contains a key value in its fst subelement and the sort
value in its snd subelement The pairs are sorted in ascending or descending order based on the value
in the fst subelement. The purpose of is stable-sort is to explain the semantics of the sortby
expression. An implementation may choose to implement the sortby expression as it chooses, as
long as it guarantees stability on sequences. Given a stable-sort function, the semantics of sortby
is defined in terms of a for expression, which constructs the key, value pairs, and the stable-sort
function.

 E1 sortby E2 ascending ==>
 let sorted-pairs :=
 stable-sort(
 for $dot in E1 return

? |- Expr => v

? |- comment(Expr) => comment-node(v)

? |- Expr1 => v1 ? |- Expr2 => v2

? |- processing-instruction(Expr1, Expr2) => processing-instruction-node(v1, v2)

? |- Expr => v

? |- ref(Expr) => reference-node(v)

? |- Expr => v

? |- deref(Expr) => dereference(v)

? |- Expr => v

? |- local-name(Expr) => local-name(v)

? |- Expr => v

? |- namespace-uri(Expr) => namespace-uri(v)

? |- Expr => v

? |- name(Expr) => name(v)

? |- Expr => v

? |- parent(Expr) => parent(v)

? |- Expr => v

? |- string-value(Expr) => string-value(v)

? |- Expr => v

? |- typed-value(Expr) => typed-value(v)

XQuery 1.0 Formal Semantics Page 61 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

 <q:pair><q:fst>E2</q:fst><q:snd>$dot</q:snd></q:pair>,
 "ascending")
 return sorted-pairs/q:snd/node()

 E1 sortby E2 descending ==>
 let sorted-pairs :=
 stable-sort(
 for $dot in E1 return
 <q:pair><q:fst>E2</q:fst><q:snd>$dot</q:snd></q:pair>,
 "descending")
 return sorted-pairs/q:snd/node()

5.6 Iteration expressions

The next two rules evaluate iteration expressions. If the iteration expression evaluates to the empty
sequence, then the entire expression evalutes to the empty sequence.

The next rule first evaluates the iteration expression Expr1, which produces the sequence u1, ..., un.

For each unit value ui in the sequence, it evaluates the body of the iteration expression in the

environment ? extended with the variable Variable bound to ui, which produces the value vi. All the vi

values are appended into the result sequence.

5.7 Typeswitch expressions

When evaluating a typeswitch expression, the variable Variable and the value v to match against
occurs on the left of the turnstile |-. Each case rule of a typeswitch expression is always evaluated
against this value. Alternative case rules are tried from left to right. The rule for the typeswitch
expression evaluates its expression and sets up the appropriate environment for the case rules:

If the value v is in the domain of the type expression Type, the next rule extends the environment by
binding the variable Variable to v and evaluates the body of the case rule. The domain of a type is the
possibly infinite set containing all values that are instances of that type. We can check whether a
value v is in the domain of a type by checking whether v's run-time type is a subsumed by Type. For
an element or attribute, the declaration accessor in [XQuery 1.0 and XPath 2.0 Data Model] returns its
run-time type. For a simple value, the type accessor returns its run-time type.

If the value v is not in the domain of the type expression Type, the next rule evaluates the case rules

? |- Expr1 => v empty(v)

? |- for Variable in Expr1 return Expr2 => empty-sequence()

? |- Expr1 => u1, ···, un

? , { Variable |-> u1 } |- Expr2 => v1

···
? , { Variable |-> un } |- Expr2 => vn

? |- for Variable in Expr1 return Expr2 => append(v1, ···, vn)

? |- Expr => v ? ; (Variable, v) |- CaseRules => v1

? |- typeswitch (Expr) as Variable CaseRules => v1

v in Dom(Type) ? , { Variable |-> v } |- Expr => v2

? ; (Variable, v) } |- case Type return Expr CaseRules => v2

XQuery 1.0 Formal Semantics Page 62 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

following the current one. The body of the given case rule is not evaluated if v is not in the domain of
the given type.

The next rule states that the else branch of a typeswitch expression always evaluates to its given
expression.

5.8 Top-level declarations and query expressions

The value-inference rules for top-level declarations and query expressions return a value. All top-level
declarations return the empty-sequence value.

Context declarations return the empty-sequence value.

We use the function dynamic-env to compute the initial environment for evaluating a query expression.

A function declaration extends the top-level environment ? by adding the mapping from the function's
QName to the expression that is the function's body, and the function's formal arguments, i.e., a
sequence of variables that are free in the function's body.

A top-level expression sequence has no effect on the environment and returns a value that may be
returned to the programming environment in which the XQuery expression is evaluated.

not (v in Dom(Type)) ? ; (Variable, v) |- CaseRules => v2

? ; (Variable, v) |- case Type return Expr CaseRules => v2

? |- Expr => v1

? ; (Variable, v) |- default return Expr => v1

? |- namespace NCName = StringLiteral => ()

? |- default namespace = StringLiteral => ()

? |- type NCName = t => ()

? |- define function QName (Type1 Variable1, · · ·, Typen Variablen) returns Type { Expr } => ()

dynamic-env (type x = t) = (static-env(type x = t); (); ())
dynamic-env (define function QName (Type1 Variable1, ···, Typen Variablen) returns Type { Expr } =

(static-env(define function QName (Type1 Variable1, ···, Typen Variablen) returns Type { Expr }); (); (

dynamic-env (namespace NCName = StringLiteral) = (static-env(namespace NCName = StringLiteral); (); ())
dynamic-env (default namespace = StringLiteral) = (static-env(default namespace = StringLiteral); (); ())

? |- Expr1 => v1

···
? |- Exprn => vn

? |- Expr1 ··· Exprn => append(v1, ···, v2)

XQuery 1.0 Formal Semantics Page 63 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

The expression sequence in a QueryModule is evaluated in the dynamic environment computed by
dynamic-env.

6 XQuery Mapping to Core

As explained in the introduction, the semantics of the full XQuery language is obtained by mapping full
XQuery expression (In the full XQuery grammar, see [XQuery 1.0: A Query Language for XML]) into the
core syntax (In the Core Xquery grammar, see [3 XQuery Core Syntax]). In [4 Static Semantics :
Type-Inference Rules] and [5 Dynamic Semantics : Value-Inference Rules] we have given the
complete static and dynamic semantics for the core. We now explain how the full XQuery syntax is
mapped into this core.

Please note: this mapping is still preliminary and contains inconsistencies. See [Issue-0099:
Incomplete/inconsistent mapping from XQuery to core]

In XQuery, a query is composed of a preamble (containing schema, namespace and function
declarations) and a body (containing a single XQuery expression). First, we give a mapping for XQuery
expressions into Core XQuery expressions, then we give a mapping for XQuery declarations into Core
XQuery declarations. This mapping is based on the XQuery grammar given in appendix B.

6.1 Notations

We will use the following notations.

E Expression
l Local Name (NCName)
n:l QName with namespace n and local name l
a Qualified name

$v variables
$dot Distinguished variable used to contain the current
 node.
$roots Distinguished variable that contains a sequence of
 document root nodes.

T Type

[[E]]_c ==> E' Given the context c, the XQuery expression E is mapped
 to the Core Xquery expression E'.

When the context is clear, we will write: [[E]] ==> E'.

6.2 Mapping for XQuery expressions

? |- dynamic-env (ContextDecl1),..., dynamic-env (ContextDeclk),

dynamic-env (TypeDecl1),..., dynamic-env (TypeDecll),

dynamic-env (FunctionDecl1),..., dynamic-env (FunctionDeclm)

? |- Expr1 => v1 ···, ? |- Exprn => vn

|- ContextDecl1, ···, ContextDeclk,

TypeDecl1, ···, TypeDecll,

FunctionDecl1, ···, FunctionDeclm,

Expr1, ···, Exprn => append(v1, ···, vn)

XQuery 1.0 Formal Semantics Page 64 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

We give a mapping for each class of XQuery expression. Each of these classes corresponds to some
specific productions in the full XQuery Grammar.

6.2.1 Path expressions

XQuery uses a fragment of XPath, plus two additional features: dereference and range predicates.
XQuery and the Core XQuery do not currently support all of the axis of XPath.

The mapping assumes that path steps are always given an explicit input expression. I.e., XPath
abreviations are resolved, for instance, name is already in the form ./name, /person[name = "John"] is
already in the form /person[./name = "John"], etc.

6.2.1.1 Current Node

In XQuery, '.' denotes the current node. The current node is a special node, whose value depends on
the context of the expression within which it is evaluated. Inside the XQuery core, we will use a
distinguished variable, called dot, to contain the value of the current node. Variable dot will always be
bound explicitly in the core (see for instance, navigation and SORTBY expressions).

[[.]] ==> $dot

6.2.1.2 Root node

In XQuery, '/' denotes a fixed set of input document roots, the mapping is:

[[/]] ==> $roots

Note that the value for variable $roots is defined in the environment, before compilation and evaluation
of the query. Therefore, it is fixed for the duration of query compilation and evaluation. There is no
operation in the language that can modify that value.

6.2.1.3 Simple Navigation

The XQuery Core does not contain path expressions. Instead, it uses a combination of access to
children, iteration and typeswitch in order to capture navigation in path expressions. The following
mapping applies when 'a' is a NameSet.

[[E/a]] ==> for $v1 in [[E]] return
 for $v2 in children($v1) return
 typeswitch ($v2) as $v3
 case ELEMENT a (AnyComplexType) return $v3
 default return ()

[[E/@a]] ==> for $v1 in [[E]] return
 for $v2 in attributes($v1) return
 typeswitch ($v2) as $v3
 case ATTRIBUTE a (AnyComplexType) return $v3
 default return ()

[[/a]] ==> [[$root/a]]

Projecting the simple-typed value of an element or attribute is equivalent to applying the typed-value
accessor in [XQuery 1.0 and XPath 2.0 Data Model].

XQuery 1.0 Formal Semantics Page 65 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

[[E/DATA()]] ==> for $v1 in [[E]] return
 typed-value([[E]])

6.2.1.4 Recursive Navigation

Recursive navigation uses the built-in function descendent-or-self that returns the current node as well
as all its descendents.

[[E//a]] ==> [[descendent-or-self([[E]])/a]]

[[//a]] ==> [[descendent-or-self($root)/a]]

6.2.1.5 Access to COMMENT, NODES, PIs, and TEXT

Again, access to specific nodes in path expressions is mapped to iteration and type matching.

[[E/COMMENT()]] ==> for $v1 in [[E]] return
 for $v2 in children($v1) return
 typeswitch ($v2) as $v3
 case Comment return $v3
 default return ()

[[E/PROCESSING-INSTRUCTION()]] ==> for $v1 in [[E]] return
 for $v2 in children($v1) return
 typeswitch ($v2) as $v3
 case PI return $v3
 default return ()

[[E/NODE()]] ==> for $v1 in [[E]] return
 children($v1)

[[E/TEXT()]] ==> string([[E]])

6.2.1.6 Dereference

This uses the support for dereference in the XQuery core. This assumes an agreement on what is a
reference and what is not (e.g., that ID/IDREF are converted to ref() in the data model).

[[E => a]] ==> for $v1 in [[E]] return
 for $v2 in deref($v1) return
 typeswitch ($v2) as $v3
 case ELEMENT a (AnyComplexType) return $v3
 default return ()

[[E => @a]] ==> for $v1 in [[E]] return
 for $v2 in deref($v1) return
 typeswitch ($v2) as $v3
 case ATTRIBUTE a (AnyComplexType) return $v3
 default return ()

6.2.1.7 Predicates

Local XPath predicates iterate over the nodes in a sequence, and selects only the nodes that verify
the predicate.

XQuery 1.0 Formal Semantics Page 66 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

There are three kinds of predicates. Predicates which take a boolean expression as a parameters
return only the nodes which for which that expression returns true. Predicates which take an integer
as a parameter return the nodes whose index in the sequence is equal to that integer. Finally, range
predicates select nodes whose index is between the bounds of the range expression.

[[E1[i]]] ==> [[E1[i to i]]]

[[E1[i1 to i2]]] ==> for $v in index([[E1]]) return
 if ([[$v/fst/data() >= i1]] and [[$v/fst/data() <= i2]])
 then [[$v/snd/deref()]] else ()

[[E1[E2]]] ==> for $v in [[E1]] return
 let $dot := $v return
 if [[E2]] then $v else ()

6.2.1.8 Parent

Parent navigation is mapped to the corresponding parent built-in function in the core.

[[E/..]] ==> parent([[E]])

6.2.2 Element and attribute constructors

Element constructors in XQuery can support full XML syntax. As a result the mapping give here is
more involved and requires collaboration with the XML parser. The content of elements is always
mapped to enclosed expressions with '{' '}' in the core. The mapping then takes content of element
constructors and generate appropriate node creation statements using the data model constructors.

In order to map element constructors, we will use the following additional mapping notations.

Ci's are allowed characters or entity references
Ni' are elementary components within the element content
[[]]_elemcontent is a specific mapping rule for the content of elements
[[]]_elem is a specific mapping rule for elementary
 components within the element content

The first rules assume that the parser can indicate 'breaking points' in the content of element
constructors in order to generate corresponding text nodes, subelements, etc

//text node creation
[[C1C2C3...]]_elem ==> text("C1C2C3...")

//{} are always produced from the embedding rule for the element
[[{ E }]]_elem ==> [[E]]

// cdata node creation
[["<![CDATA[" C1C2C3... "]]>"]]_elem ==> cdata("C1C2C3...")

// nested element are kept unchanged
[["<" X ">"]] ==> "<" X ">"

[[N1N2N3...]]_elemcontent ==> [[N1]]_elem[[N2]]_elem[[N3]]_elem...

Then the next rules convert the attribute specifications separately by embedding them within the
content of the element constructors.

XQuery 1.0 Formal Semantics Page 67 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

[[<a a1=E1 ... an=En> E]] ==>
 <a> {[ATTRIBUTE a1 [[E1]], ..., ATTRIBUTE an [[En]], [[E]]_elemcontent]} </>

[[<a a1=E1 ... an=En> E </>]] ==>
 <a> {[ATTRIBUTE a1 [[E1]], ..., ATTRIBUTE an [[En]], [[E]]]} </>

[[<{Et} a1=E1 ... an=En> E </>]] ==>
 <{ [[Et]] }> {[ATTRIBUTE a1 [[E1]], ..., ATTRIBUTE an [[En]], [[E]]]} </>

[[<a a1=E1 ... an=En />]] ==>
 <a> {[ATTRIBUTE a1 [[E1]], ..., ATTRIBUTE an [[En]], [[E]]]} </>

Note that if the Ei's do not return an attribute value, this will be detected by the Core XQuery type
system at compile time. Note also, that the expressions E or might return attributes, in which case
the element constructor will append them at the beginning along with the explicitely declared
attributes (see corresponding dynamic semantics).

6.2.3 FLWR expressions

6.2.3.1 FLWR normalization

In the full XQuery grammar, Flower expressions are defined using the following production:

FlwrExpr ::= (ForClause | LetClause)+ WhereClause? ReturnClause

This allows complex forms of FLWR expressions in the full XQuery syntax, where LET and FOR
clauses may have several variables. On the other hand, the XQuery core only allows elementary FOR
and LET clauses independant from each other and terminated by a RETURN.

The mapping from full XQuery to the Core XQuery performs the corresponding transformation by
separating multiple FOR and LET statements and adding RETURN clauses whenever necessary.

Let C be a FlwrClause. The mapping from XQuery to the core is defined using an auxiliary mapping
function noted [[]]_clause which processes FLWR clauses one at a time.

The first two rules are used to map each clause one at a time.

[[C return E]]
==>
[[C]]_clause([[E]])

[[C1 C2 ... Cn return E]]
==>
[[C1]]_clause([[C2 ... Cn return E]])

Then, the following rules are used for each individual clause in the full XQuery grammar, adding
appropriate return keywords.

[[for $v1 in E1
 ...,
 $vn in En]]_clause(E)
==>
for $v1 in [[E1]] return
...
for $vn in [[En]] return E

XQuery 1.0 Formal Semantics Page 68 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

[[let $v1 := E1
 ...,
 $vn := En]]_clause(E)
==>
let $v1 := [[E1]] return
...
let $vn := [[En]] return E

[[where E1]]_clause(E)
==>
if [[E1]] then E else ()

6.2.3.2 Sort by

The mapping for sortby transform the n-ary XQuery sort into a series of binary sorts in the Core. Like
for predicates, this mapping supposes that path expressions in the sort criterias are all given an
explicit input. This also assumes a stable sort in the Algebra.

[[E sortby E1 ASCENDING, ..., En ASCENDING]]

==>

(...((([[E]]) sortby [[En]] ASCENDING)
 sortby [[En-1]] ASCENDING)
 ...)
 sortby [[E1]] ASCENDING

6.2.4 Operators

Operators in XQuery are mapped to corresponding operators in the XQuery core.

6.2.4.1 Boolean operators

Mapping predicates from XQuery to the Core is not completely straightforward, as XQuery uses
implicit existential quantification (like XPath), while the Core XQuery does not. As a consequence,
existential quantification needs to be explicitly introduced by the mapping.

[[E1 = E2]] ==> [[not(empty(for $v1 in [[E1]] return
 for $v2 in [[E2]] return
 if eq($v1,$v2) then $v1 else ()))]]

[[E1 == E2]] ==> [[not(empty(for $v1 in [[E1]] return
 for $v2 in [[E2]] return
 if nodeeq($v1 = $v2) then $v1 else ()))]]

[[E1 < E2]] ==> [[not(empty(for $v1 in [[E1]] return
 for $v2 in [[E2]] return
 if lt($v1, $v2) then $v1 else ()))]]]]
[[E1 <= E2]] ==> [[not(empty(for $v1 in [[E1]] return
 for $v2 in [[E2]] return
 if lteq($v1, $v2) then $v1 else ()))]]
[[E1 >= E2]] ==> [[not(empty(for $v1 in [[E1]] return
 for $v2 in [[E2]] return
 if gteq($v1, $v2) then $v1 else ()))]]
[[E1 > E2]] ==> [[not(empty(for $v1 in [[E1]] return
 for $v2 in [[E2]] return
 if gt($v1, $v2) then $v1 else ()))]]

XQuery 1.0 Formal Semantics Page 69 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

[[E1 != E2]] ==> [[not(empty(for $v1 in [[E1]] return
 for $v2 in [[E2]] return
 if neq($v1, $v2) then $v1 else ()))]]

Note that these mapping use elementary built-in comparison operators in the Core (e.g., eq for
equality). Note also that as opposed to XPath 1.0, the current semantics does not perform any implicit
value conversions

6.2.4.2 Collection operators

The empty function can be mapped to value equality:

[[empty(E)]] ==> [[E]] = ()

All other collection operations in XQuery are based on node identity.

Union in XQuery corresponds to the Union over unordered collections and removes duplicates.

[[E1 UNION E2]] ==> distinct-node([[E1]], [[E2]])

Intersection and exception can be written in the algebra using existential quantification.

[[E1 INTERSECT E2]]
==>
for $v1 in [[E1]] return
 if not((for $v2 in [[E2]] return
 if node_equal($v2,$v1) then $v2 else ()) = ())
 then $v1
 else ()

[[E1 EXCEPT E2]]
==>
for $v1 in [[E1]] return
 if ((for $v2 in [[E2]] return
 if node_equal($v2,$v1) then $v2 else ()) = ())
 then $v1
 else ()

BEFORE and AFTER operators returns the subset of the element in the first expression which are
before or after one of the element in the second expression in document order. The mapping to the
algebra uses both existential quantification and built-in document order functions 'before()' and 'after()'.

[[E1 BEFORE E2]]
==>
for $v1 in [[E1]] return
 if not((for $v2 in [[E2]] return
 if before($v2,$v1) then $v2 else ()) = ())
 then $v1
 else ()

[[E1 AFTER E2]]
==>
for $v1 in [[E1]] return
 if not((for $v2 in [[E2]] return
 if after($v1,$v2) then $v2 else ()) = ())
 then $v1
 else ()

XQuery 1.0 Formal Semantics Page 70 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

6.2.5 Function application

Function application is mapped to equivalent function calls. According to the current XQuery
specification, this can imply implicit iteration over the parameters of the function.

if FunctionName(T1 $v1,..., Tn $vn) and Ti <: AnyTree for each i,
then:

[[FunctionName(E1,..., En)]]
 ==>
for $x1 in [[E1]] return
...
for $xn in [[En]] return
FunctionName($x1, ..., $xn)

Otherwise:

[[FunctionName(E1,..., En)]]
 ==> FunctionName([[E1]], ..., [[E2]])

The FILTER function will be treated in the next section

6.2.6 Quantification

Quantifiers are simply mapped to existential predicate and iteration in the Algebra.

[[some $v in E1 satisfies E2]]
==>
not((for $v in [[E1]] return
 if [[E2]] then $v else ()) = ())

[[every $v in E1 satisfies E2]]
==>
(for $v in [[E1]] return
 if not([[E2]]) then $v else ()) = ()

6.2.7 Type related operations

6.2.7.1 Typeswitch

Here are mappings for typeswitch short-cuts.

One might want to omit the else clause.

[[typeswitch (E0) as $v
 case $v1 : T1 return E1
 ...
 case $vn : Tn return En]]
==>

typeswitch ([[E0]]) as $v
 case T1 return [[E1]]
 ...
 case Tn return [[En]]
 default return ERROR

XQuery 1.0 Formal Semantics Page 71 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

6.2.7.2 TREAT

The TREAT operation changes the type of an expression and might raise an error at run-time.

[[(TREAT AS Type) E]]
==>
typeswitch ([[E]]) as $v
 case Type return $v
 default return ERROR

6.2.7.3 CAST

The CAST operation is left intact:

[[CAST AS Type (E)]]
==>
CAST AS Type ([[E]])

6.2.7.4 INSTANCEOF

The INSTANCEOF operation checks whether an expression is of a given type.

[[E INSTANCEOF Type]]
==>
typeswitch ([[E]]) as $v
 case Type return true
 default return false

The INSTANCEOF operations allows an optional 'ONLY' parameter. This is not clear what is its
semantics and how it can be supported.

6.3 Mapping of XQuery declarations to Algebra declarations

6.3.1 Mapping of type declarations

6.3.2 Mapping of function declarations

Each user defined function in XQuery is mapped to a corresponding function in the XQuery Core by
mapping the expression which defines that function.

[[DEFINE FUNCTION f(T1 v1, ..., Tn vn) RETURNS T' { E }]]
==>
DEFINE FUNCTION f(T1 v1, ..., Tn vn) RETURNS T' { [[E]] }

6.3.3 Predefined functions

In the above mapping, we used a number of functions, which are not part of the Core XQuery, but can
be expressed using the core. These functions need to be declared accordingly as part of the
preamble. Note that this means some of the preamble is extended on behalf of the user each time he
runs a query. We could think of adding these functions to XQuery itself as part of the native XQuery
function library (like filter).

6.3.3.1 root()

XQuery 1.0 Formal Semantics Page 72 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

The following function computes the root of the input node.

function root(AnyElement $x) returns AnyElement
 {
 let $p := parent($x) return
 if $p = () then $x else root($p)
 }

6.3.3.2 filter()

The following algebra functions implement the corresponding XQuery filter function. Note that this
definition lose all type information, see [XQuery Issue MAP-005: Typing for Filter].

function member(AnyNode $x, AnyType $y) returns Boolean =
 {
 not((for $v in $y return
 if $v == $y then $v else ()) = ())
 }

function filter1(AnyElement $x, AnyForest $y) returns AnyForest =
 {
 if (member($x,$y))
 then
 typeswitch ($x) as $x'
 case (Comment|PI|String|AnyAttribute) return $x
 default return
 let $tag := name($x) return
 <{tag}>
 { $x/@*,
 filter([[$x/node()]], $y) }
 </>
 else
 filter([[$x/node()]], $y)
 }

function filter(AnyType $x, AnyType $y) returns AnyType
 {
 for $x' in $x return filter1($x',$y)
 }

6.3.3.3 id()

The following function computes the node corresponding to a given IDREF. I assume that one can
compare ID and IDREF values using equality.

function contains_id(AnyElement $x, IDREF $i) returns Boolean
 {
 let $attr_val := (for $v1 in [[$x/@*]] return value($v1))
 return not((for $v2 in $attr_val return
 if eq($v2, $i) then $i else ()) = ())
 }

function find_id(AnyElement $x, IDREF $i) returns AnyElement
 {
 if contains_id($x, $i)
 then $x
 else for $v1 in children($x) return find_id($v1,$i)

XQuery 1.0 Formal Semantics Page 73 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

 }

function id(IDREF $i) returns AnyElement
 {
 let $r := root($i) return
 [[(TREAT AS AnyElement) find_id($r,$i)]]
// the treat should never fail as the schema validator enforces existence
// and uniqueness of the ID for a given IDREF
 }

6.3.3.4 Aggregation functions

The following functions compute aggregation by using head, tail and recursion. Note that these
functions rely on arithmetic and will be revisited by the operators task force.

function sum((Integer | Float)* $x)
 {
 if ($x = ())
 then 0
 else head($x) + sum(tail($x))
 }

function count(AnyType $x) returns Integer
 {
 if ($x = ())
 then 0
 else 1 + count(tail($x))
 }

function avg((Integer | Float)* $x) returns (Integer | Float)
 {
 sum($x) div count($x)
 }

function get_max((Integer | Float)* $x, (Integer | Float) $y) returns (Integer | Float)
 {
 if $x = ()
 then $y
 else
 let $first := tail($x) return
 if ($first > $y)
 then get_max(tail($x),$first)
 else get_max(tail($x),$y)
 }

function max((Integer | Float)* $x) returns (Integer | Float)
 {
 get_max($x, -Infinite)
 }

function get_min((Integer | Float)* $x, (Integer | Float) $y) returns (Integer | Float)
 {
 if $x = ()
 then $y
 else
 let $first := tail($x) return
 if ($first < $y)
 then get_min(tail($x),$first)
 else get_min(tail($x),$y)

XQuery 1.0 Formal Semantics Page 74 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

 }

function min((Integer | Float)* $x) returns (Integer | Float)
 {
 get_min($x, +Infinite)
 }

7 References

BFS00
P. Buneman, M. Fernandez, D. Suciu. UnQL: A query language and algebra for semistructured
data based on structural recursion. VLDB Journal, April, 2000, Vol 9, Number 1.

BK93
Catriel Beeri and Yoram Kornatzky. Algebraic Optimization of Object-Oriented Query
Languages. Theoretical Computer Science 116(1&2):59--94, August 1993.

BKD90
Francois Bancilhon, Paris Kanellakis, Claude Delobel. Building an Object-Oriented Database
System. Morgan Kaufmann, 1990.

BNTW95
Peter Buneman, Shamim Naqvi, Val Tannen, Limsoon Wong. Principles of programming with
complex object and collection types. Theoretical Computer Science 149(1):3--48, 1995.

Quilt
Don Chamberlin, Jonathan Robie, and Daniela Florescu. Quilt: An XML Query Language for
Heterogeneous Data Sources. International Workshop on the Web and Databases
(WebDB'2000), Dallas, Texas, May 2000.

CM93
S. Cluet and G. Moerkotte. Nested queries in object bases. Workshop on Database
Programming Languages, pages 226--242, New York, August 1993.

YAT99
S. Cluet, S. Jacqmin and J. Siméon The New YaTL: Design and Specifications. Technical
Report, INRIA, 1999.

Col90
L. S. Colby. A recursive algebra for nested relations. Information Systems 15(5):567-582, 1990.

Date97
Hugh Darwen (Contributor) and Chris J. Date. Guide to the SQL Standard : A User's Guide to
the Standard Database Language SQL Addison-Wesley, 1997.

XMLQL99
A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query language for XML. In
International World Wide Web Conference, 1999.

Graefe93
Goetz Graefe, Query Evaluation Techniques for Large Databases. In ACM Computing Surveys,
25(2):73--170, 1993.

LW97
Leonid Libkin and Limsoon Wong. Query languages for bags and aggregate functions. Journal
of Computer and Systems Sciences, 55(2):241--272, October 1997.

HP2000
Haruio Hosoya, Benjamin Pierce, XDuce : A Typed XML Processing Language (Preliminary
Report) WebDB Workshop 2000.

LMW96
Leonid Libkin, Rona Machlin, and Limsoon Wong. A query language for multi-dimensional
arrays: Design, implementation, and optimization techniques. SIGMOD 1996.

Milner
R. Milner, M. Tofte, R. Harper, D. MacQueen The Definition of Standard ML (Revise). MIT
Press, 1997.

Mitchell
John C. Mitchell Foundations for Programming Languages. MIT Press, 1998.

XQuery 1.0 Formal Semantics Page 75 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

Mog89
E. Moggi, Computational lambda-calculus and monads. In Symposium on Logic in Computer
Science Asilomar, California, IEEE, June 1989.

Mog91
E. Moggi, Notions of computation and monads. Information and Computation, 93(1), 1991.

OCaml
The Caml Language. See http://pauillac.inria.fr/caml/.

XQL99
J. Robie, editor. XQL '99 Proposal, 1999. See http://www.ibiblio.org/xql/xql-proposal.html.

Wad92
Philip Wadler. Comprehending monads. Mathematical Structures in Computer Science, 2:461-
493, 1992.

Wad93
P. Wadler, Monads for functional programming. In M. Broy, editor, Program Design Calculi,
NATO ASI Series, Springer Verlag, 1993. Also in J. Jeuring and E. Meijer, editors, Advanced
Functional Programming, LNCS 925, Springer Verlag, 1995.

Wad95
P. Wadler, How to declare an imperative. ACM Computing Surveys, 29(3):240--263, September
1997.

XML Names
World Wide Web Consortium. Namespaces in XML. W3C Recommendation. See
http://www.w3.org/TR/REC-xml-names/ .

XML
World-Wide Web Consortium Extensible Markup Language (XML) 1.0 (Second edition),
October, 2000 See http://www.w3.org/TR/REC-xml.

XML Query Algebra
World-Wide Web Consortium The XML Query Algebra, Working Draft, Feb 2001. See
http://www.w3.org/TR/query-algebra/.

XQuery 1.0: A Query Language for XML
World Wide Web Consortium, XQuery 1.0: A Query Language for XML, Working Draft, June
2001. Available at: http://www.w3.org/TR/xquery/

XQuery 1.0 and XPath 2.0 Data Model
World-Wide Web Consortium XQuery 1.0 and XPath 2.0 Data Model, Working Draft, June
2001. See http://www.w3.org/TR/query-datamodel/.

XPath
World-Wide Web Consortium XML Path Language (XPath) : Version 1.0. November, 1999. See
http://www.w3.org/TR/xpath.html.

XML Schema Part 1
World-Wide Web Consortium XML Schema Part 1 : Structures, Working Draft. April 2000. See
http://www.w3.org/TR/xmlschema-1/

XSLT 99
World-Wide Web Consortium XSL Transformations (XSLT), Version 1.0. W3C
Recommendation, November 1999. See http://www.w3.org/TR/xslt.

XML Schema Part 2
World-Wide Web Consortium XML Schema Part 2 : Datatypes, Working Draft, April 2000. See
http://www.w3.org/TR/xmlschema-2/.

XML Schema : Formal Description
World-Wide Web Consortium XML Schema: Formal Description, Working Draft, March 2001.
See http://www.w3.org/TR/xmlschema-formal/

A Equivalences

A.1 Relating projection to iteration

XQuery 1.0 Formal Semantics Page 76 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

The examples use the / operator liberally, but in fact we use / as a convenient abbreviation for
expressions built from lower-level operators: for expressions, the nodes function, and typeswitch
expressions.

For example, the expression:

 $book0/author

is equivalent to the expression:

 for $v in children($book0) return
 typeswitch ($v)
 case author[AnyComplexType] return $v
 default return ()

Here the children() function returns a sequence consisting of the content of the element book0,
namely, a title element and three author elements (the order is preserved). The for expression binds
the variable v successively to each of these elements. Then the typeswitch expression selects a
branch based on the type of v. If it is an author element then the first branch is evaluated, otherwise
the second branch. If the first branch is evaluated, it returns a. The variable a contains the same value
as v, but the type of a is author[xs:string], which is the intersection of the type of v and the type
author[AnyComplexType]. If the second branch is evaluated, then the branch returns (), the empty
sequence.

To compose several expressions using /, we again use for expressions. For example, the
expression:

 $bib0/book/author

is equivalent to the expression:

 for $b in children($bib0) return
 typeswitch ($b)
 case book[AnyComplexType] return
 (for $d in children($b) return
 typeswitch ($d)
 case author[AnyComplexType] return $d
 default return ())
 default return ()

The for expression iterates over all book elements in bib0 and binds the variable b to each such
element. For each element bound to b, the inner expression returns all the author elements in b, and
the resulting sequences are concatenated together in order.

In general, an expression of the form e / a is converted to the form

 for $v1 in e return
 for $v2 in children($v1) return
 typeswitch ($v2)
 case a[AnyComplexType] return $v2
 default return ()

where e is an expression, a is an element name, and v1 and v2 are fresh variables (ones that do not

appear in the expression being converted).

XQuery 1.0 Formal Semantics Page 77 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

According to this rule, the expression bib0/book translates to

 for $v1 in $bib0 return
 for $v2 in children($v1) return
 typeswitch ($v2)
 case book[AnyComplexType] return $v2
 default return ()

In [A Equivalences], we discuss laws which allow us to simplify this to the previous expression:

 for $v2 in children($bib0) return
 typeswitch ($v2)
 case book[AnyComplexType] return $v2
 default return ()

Similarly, the expression bib0/book/author translates to

 for $v4 in (for $v2 in children($bib0) return
 typeswitch ($v2)
 case book[AnyComplexType] return $v2
 default return ()) return
 for $v5 in children($v4) return
 typeswitch ($v5)
 case author[AnyComplexType] return $v5
 default return ()

Again, the laws will allow us to simplify this to the previous expression

 for $v2 in children($bib0) return
 typeswitch ($v2)
 case book[AnyComplexType] return
 (for $v5 in children($v2) return
 typeswitch ($v5)
 case author[AnyComplexType] return $v5
 default return ())
 default return ()

These examples illustrate an important feature of the Algebra: high-level operators may be defined in
terms of low-level operators, and the low-level operators may be subject to algebraic laws that can be
used to further simplify the expression.

A.2 Laws

In this section, we describe some laws that hold for the Algebra. These laws are important for defining
rules that simplify algebraic expressions, such as eliminating unnecessary for or typeswitch
expressions.

The iteration construct of the Algebra is closely related to an important mathematical object called a
monad. A monad, among other things, generalizes set, bag, and list types. In functional languages,
the comprehension construct is used to express iteration over set, bag, and list types [BNTW95],
[LW97]. A comprehension corresponds directly to a monad [Wad92], [Wad93], [Wad95].

The correspondence between the Algebra's iteration construct and a monad is close, but not exact.
Each monad is based on a unary type constructor, such as Set{t} or List{t}, representing a
homogenous set or list where all elements are of type t. In the Algebra, we have more complex and

XQuery 1.0 Formal Semantics Page 78 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

heterogenous types, such as a sequence consisting of a title, a year, and a sequence of one or more
authors. Also, one important component of a monad is the unit operator, which converts an element to
a set or list. If x has type t, then set{x} is a unit set of type Set{t} or [x] is a unit list of type List{t}. In
the Algebra, we simply write, say, author["Buneman"], which stands for both a tree and for the unit
sequence containing that tree.

Monads satisfy three laws, and three corresponding laws are satisfied by the the Algebra's for
expression.

First, iteration over a unit sequence can be replaced by substition. This is called the left unit law.

for v in e1 return e2 = e2{v := e1}

provided that e1 is a unit type (e.g., is an element or a scalar constant). We write e2{v := e1} to denote

the result of taking expression e2 and replacing occurrences of the variable v by the expression e1. For

example,

for v in author["Buneman"] return auth[v/data()] = auth["Buneman"]

The iteration over a sequence of one item can always be eliminated using variable substitution.

Second, an iteration that returns the iteration variable is equivalent to the identity. This is called the
right unit law.

for v in e return v = e

For example

for $v in $book0 return $v == $book0

An important feature of the type system described here is that the left side of the above equation
always has the same type as the right side.

Third, there are two ways of writing an iteration over an iteration, both of which are equivalent. This is
called the associative law.

for $v2 in (for $v1 in e1 return e2) return e3
= for $v1 in e1 return (for $v2 in e2 return e3)

For example, a projection over a sequence includes an implicit iteration, so e / a = for v in e return
v / a. Say we define a sequence of bibliographies, bib1 = bib0, bib0. Then bib1/book/author is
equivalent to the first expression below, which in turn is equivalent to the second.

for $b in (for $a in bib1 return $a/book) return $b/author
= for $a in $bib1 return (for $b in $a/book return $b/author)

With nested relational algebra, the monad laws play a key role in optimizing queries. Similarly, the
monad laws can also be exploited for optimization in this context.

For example, if $b is a book, the following finds all authors of the book that are not Buneman:

 for $a in $b return
 where $a/data() != Buneman return

XQuery 1.0 Formal Semantics Page 79 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

 $a

If $l is a list of authors, the following renames all author elements to auth elements:

 for $a' in $l return
 auth[$a'/data()]

Combining these, we select all authors that are not Buneman, and rename the elements:

 for $a' in (for $a in $b
 where $a/data() != Buneman return
 $a) return
 auth[$a'/data()]

Applying the associative law for a monad, we get:

 for $a in $b,
 $a' in (where $a/data() != Buneman return $a) return
 auth[$a'/data()]

Expanding the where clause to a conditional, we get:

 for $a in $b
 $a' in (if $a/data() != Buneman then $a else ()) return
 auth[$a'/data()]

Applying a standard law for distributing loops over conditionals gives:

 for $a in $b return
 if $a/data() != Buneman then
 for $a' in $a return
 auth[$a'/data()]
 else ()

Applying the left unit law for a monad, we get:

 for $a in $b return
 if $a/data() != Buneman then
 auth[$a/data()]
 else ()

And replacing the conditional by a where clause, we get:

 for $a in $b return
 where $a/data() != Buneman do
 auth[$a/data()]

Thus, simple manipulations, including the monad laws, fuse the two loops.

[A.1 Relating projection to iteration] ended with two examples of simplification. Returning to these,
we can now see that the simplifications are achieved by application of the left unit and associative
monad laws.

[Figure 12] contains a dozen algebraic simplification laws. In a relational query engine, algebraic
simplifications are often applied by a query optimizer before a physical execution plan is generated;

XQuery 1.0 Formal Semantics Page 80 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

algebraic simplification can often reduce the size of the intermediate results computed by a query
evaluator. The purpose of our laws is similar -- they eliminate unnecessary for or typeswitch
expressions, or they enable other optimizations by reordering or distributing computations. The set of
laws given is suggestive, rather than complete.

E ::= if [] then e1 else e2

 | let v = [] in e
 | for v in [] return e
 | typeswitch []
 case v : t return e
 ...
 case v : t return e
 else e

for v in () return e=> () (8)

for v in (e1, e2) return e3 => (for v in e1 return e3), (for v in e2 return e3) (9)

for v in e1 return e2 => e2{e1/ v}, if e1 : u (10)

for v in e return v=> e (11)

if e has a prime type
unordered(e)

=> e (12)

unordered(unordered(e))=> unordered(e) (13)

unordered(for $x in e1 return e2)=> for $x in unordered(e1) return unordered(e2) (14)

unordered(e1 sortby e2)=> unordered(e1) sortby e2 (15)

unordered(distinct(e))=> distinct(unordered(e)) (16)

unordered(if e1 then e2 else e3)=> if e1 then unordered(e2) else unordered(e3) (17)

if $x free in e1 and $y free in e2

for $x in unordered(e1) return

for $y in unordered(e2) return e3

=>

for $y in unordered(e2) return

for $x in unordered(e1) return e3

(18)

E[if e1 then e2 else e3] => if e1 then E[e2] else E[e3] (19)

E[let v = e1 return e2] => let v = e1 return E[e2] (20)

E[for v in e1 return e2] => for v in e1 return E[e2] (21)

E[typeswitch e1

case v : t return e2

casev : t return e =>

typeswitch e1

case v : t return E[e2]

... (22)

XQuery 1.0 Formal Semantics Page 81 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

Figure 12: Optimization Laws

Rules 8, 9, and 10 simplify iterations. Rule 8 rewrites an iteration over the empty sequence as the
empty sequence. Rule 9 distributes iteration through sequence: iterating over the sequence (e1, e2) is

equivalent to the sequence of two iterations, one over e1 and one over e2. Rule 10 eliminates an

iteration over a single element or scalar. If e1 is a unit type, then e1 can be substituted for occurrences

of v in e2.

Ed. Note: MF (Oct-18-2000) The rules for eliminating trivial typeswitch expressions
need to be written. They are more complex than those for the old case expressions.

Rule 11 eliminates an iteration when the result expression is simply the iteration variable v.

Rule 12 eliminates unordered for expressions with a primetype, i.e., exressions that return a
singleton sequence. Rule 13 shows that unordered is idempotent. Rules 14--17 show that unordered
distributes with for, sortby, distinct, and if. Rule 18 commutes a nested iteration over unordered
sequences. This equivalence does not hold for so called dependent joins, where the outer iteration
variable $x is bound in the inner expression $y.

Rules 19--22 are used to commute expressions. Each rule actually abbreviates a number of other
rules, since the context variable E stands for a number of different expressions. The notation E[e]
stands for one of the four expressions given with expression e replacing the hole [] that appears in
each of the alternatives. For instance, one of the expansions of Rule 21 is the following, when e is
taken to be for v in [] return e :

B Issues

B.1 Introduction

The issues in [B.2 Issues list] serve as a design history for this document. The ordering of issues is
irrelevant. Each issue has a unique id of the form Issue-<dddd> (where d is a digit). This can be used
for referring to the issue by <url-of-this-document>#Issue-<dddd>. Furthermore, each issue has a
mnemonic header, a date, an optional description, and an optional resolution. For convenience,
resolved issues are displayed in green. Some of the issues contain references to W3C internal
archives. These are marked with "W3C-members only". Some of the descriptions of the resolved
issues are obsolete w.r.t. to the current version of the document.

Ed. Note: PF (Aug-05-2000): For the sake of archival, there are some duplicate issues
raised in multiple instances. Duplicate issues are marked as "resolved" with reference to
the representative issue.

B.2 Issues list

Unless stated explicitly otherwise, [Issue-0001: Attributes] through [Issue-0039: Dereferencing

casev : t return en-1

...
else en]

=> ...
case v : t return E[en-1]

else E[en]

(22)

for v2 in (for v1 in e1 return e2) return e3 => for v1 in e1 return (for v2 in e2 return e3)

XQuery 1.0 Formal Semantics Page 82 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

semantics] have been raised in http://lists.w3.org/Archives/Member/w3c-xml-query-
wg/2000Jul/0142.html (W3C-members only).

Issue-0001: Attributes

Date: Jul-26-2000

Description: One example of the need for support of [Issue-0049: Unordered
Collections], but also: Attributes need to be constrained to contain white space
separated lists of simple types only.

Resolution Attributes are represented by @attribute-name[content]. See [3.5 Types]
for the constraint on white space seperated lists of simple types, and [3.1 Expressions]
for selecting and constructing attributes.

Issue-0002: Namespaces

Date: Jul-26-2000

Resolution Namespaces are represented by {uri-of-namespace}localname. See [3.5
Types].

Issue-0003: Global Order

Date: Jul-26-2000

Description: The data model and algebra do not define a global order on documents.
Querying global order is often required in document-oriented queries.

See the thread starting at http://lists.w3.org/Archives/Member/w3c-xml-query-
wg/2000Sep/0179.html (W3C-members only).

Resolution Resolved by adding < operator defined on nodes in same document. See
[2.12 Querying order]. See [Issue-0079: Global order between nodes in different
documents] for order between nodes in different documents.

Issue-0004: References vs containment

Date: Jul-26-2000

Description: The query-algebra datamodel currently does not explicitly model children-
elements by references (other than the XML-Query Datamodel. This facilitates
presentation, but may be an oversimplification with regard to [Issue-0005: Element
identity].

Resolution This issue is resolved by subsumption as follows: (1) As [5 Dynamic
Semantics : Value-Inference Rules] points out, all child-elements are (implicit)
references to nodes. (2) Thus, having resolved [Issue-0005: Element identity] this
issue is resolved too.

Issue-0005: Element identity

Date: Jul-26-2000

XQuery 1.0 Formal Semantics Page 83 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

Description: Do expressions preserve element identity or don't they? And does "=" and
distinct use comparison by reference or comparison by value?

Resolution The first part of the question has been resolved by resolution of [Issue-
0010: Construct values by copy]. The second part raises a more specific issue [Issue-
0066: Shallow or Deep Equality?].

Issue-0006: Source and join syntax instead of "for"

Date: Jul-26-2000

Description: Another term for "source and join syntax" is "comprehension". See [A
Equivalences] for a discussion of the relationship between iteration by for and
comprehension syntax.

Resolution This issue is resolved by subsumption under [Issue-0021: Syntax]. List
comprehension is a syntactic alternative to "for v in e1 do e2", which has been favored by
the WG in the resolution of [Issue-0021: Syntax].

Issue-0007: References: IDREFS, Keyrefs, Joins

Date: Jul-26-2000

Description: Currently, the Algebra does not support reference values, such as IDREF,
or Keyref (not to be mixed up with "node-references" - see [Issue-0005: Element
identity], which are defined in the XML Query Data Model. The Algebra's type system
should be extended to support reference types and the data model operators ref, and
deref should be supported (similar to id() in XPath).

Resolution Delegated to XPath 2.0. Algebra should adopt solutions (e.g., id()/keyref()
functions) provided in XPath 2.0. There may be an interaction between IDREFs and
RefNodes, but we're not going to cover that now.

Issue-0008: Fixed point operator or recursive functions

Date: Jul-26-2000

Description: It may be useful to add a fixed-point operator, which can be used in lieu of
recursive functions to compute, for example, the transitive closure of a collection.

Currently, the Algebra does not guarantee termination of recursive expressions. In order
to ensure termination, we might require that a recursive function take one argument that
is a singleton element, and any recursive invocation should be on a descendent of that
element; since any element has a finite number of descendents, this avoids infinite
regress. (Ideally, we should have a simple syntactic rule that enforces this restriction,
but we have not yet devised such a rule.)

Impacts optimization; hard to do static type inference; current algebra is first-order

See for the subproblem of typing "//" or desc() http://lists.w3.org/Archives/Member/w3c-
xml-query-wg/2000Sep/0187.html (W3C-members only).

XQuery 1.0 Formal Semantics Page 84 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

Issue-0009: Externally defined functions

Date: Jul-26-2000

Description: There is no explicit support for externally defined functions.

The set of built-in functions may be extended to support other important operators.

See also http://lists.w3.org/Archives/Member/w3c-xml-query-wg/2000Sep/0003.html
(W3C-members only).

Resolution Algebra editors endorse a solution that uses XP for specifying signatures of
external functions. Algebra will adopt solution provided by XQuery.

Issue-0010: Construct values by copy

Date: Jul-26-2000

Description: Need to be able to construct new types from bits of old types by reference
and by copy. Related to [Issue-0005: Element identity].

Resolution The WG wishes to support both: construction of values by copy, as well as
references to original nodes (http://www.w3.org/XML/Group/2000/09/ql/unedited-minutes-
day1.txt (W3C-members only) (W3C-members only)) See also
http://lists.w3.org/Archives/Member/w3c-xml-query-wg/2000Sep/0155.html (W3C-
members only) (W3C-members only). This needs some further investigation to sort out
all technical difficulties (see [Issue-0062: Open questions for constructing elements
by reference]) so the change has not yet been reflected in the Algebra document.

Issue-0011: XPath tumbler syntax instead of index?

Date: Jul-26-2000

Description: XPath provides as a shorthand syntax [integer] to select child-elements by
their position on the sibling axes, whereas the xml-query algebra uses a combination of
a built-in function index() and iteration. See http://lists.w3.org/Archives/Member/w3c-
archive/2000Sep/0168.html (W3C-members only) for a suggestion to to support indexed
iteration in the form "for v sub i in e1 do e2", and to express index() as a function (or
macro).

Addendum by JS (submitted by MF) Dec 19/2000: The typing of index is lossy : it
produces a factored type. Jerome suggests the more precise range operator:

e : q min m max n n' - (m'-1) = r m' >= m n' <= n

 range(e;m';n') : q min r max r

nth(e;n) == range(e;n;n)

The range operator takes a repetition of prime types and those values in the range m' to n'; if the
repetition does not include that range, a run-time error is raised. The range and nth operators could
also be defined in terms of head and tail and polymorphic recursive functions. In the absence of
parameteric polymorphism, it is not possible to define range and nth with precise types.

XQuery 1.0 Formal Semantics Page 85 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

Here are Peter's rules:

e : p min m max n n!=*

range(e;m';n') : p{n'-max(m,m')+1,min(n',n)-m'+1}

For example:
let v1 = a[] min 2 max 4

range(v1;3;3): a[] min 1 max 1
range(v1;1;3): a[] min 2 max 3
range(v1;3;5): a[] min 1 max 2
range(v1;1;5): a[] min 2 max 4

e : p min m max *

range(e;m';n') : p min 0 max n'-m'+1

let v2 = a[] min 0 max *

range(v2;1;3): a[] min 0 max 2

this follows the typical semantics for head() and tail():
head(()) = tail(()) = ()
and the semantics behind
range(e;m',n') = tail o ...(m' times) ... o tail o head,
 tail o ...(m'+1 times) ... o tail o head,
 ...
 tail o ...(n' times) ... o tail o head

I would have no troubles in restricting ourselves to nth() instead of range() in the algebra
(range can always be enumerated by nth()). Furthermore, we should consider whether
m',n' can be computed numbers.

Issue-0012: GroupBy - needs second order functions?

Date: Jul-26-2000

Description: The type system is currently first order: it does not support function types
nor higher-order functions. Higher-order functions are useful for specifying, for example,
sorting and grouping operators, which take other functions as arguments.

Resolution The WG has decided to express groupBy by a combination of for and
distinct (see also http://www.w3.org/XML/Group/2000/09/ql/unedited-minutes-day1.txt
(W3C-members only) (W3C-members only) and [Issue-0042: GroupBy]):. Thus w.r.t. to
GroupBy this Issue is resolved. Because GroupBy is not the only use case for higher
order functions, a new issue [Issue-0063: Do we need (user defined) higher order
functions?] is raised.

Issue-0013: Collations

Date: Jul-26-2000

Description: Collations identify the ordering to be applied for sorting strings. Currently,
it is considered to have an (optional parameter) collation "name" as follows: "SORT

XQuery 1.0 Formal Semantics Page 86 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

variable IN exp BY +(expression {ASCENDING|DESCENDING} {COLLATION name}) (see
http://www.w3.org/XML/Group/2000/09/ql/unedited-minutes-day1.txt (W3C-members
only) (W3C-members only)). An alternative would be to model a collation as a simple
type derived from string, and use type-level casting, i.e. expression :collationtype (which
is already supported in the XML Query Algebra), for specifying the collation. That would
make: "SORT variable IN exp BY +(expression:collationname
{ASCENDING|DESCENDING}). But that requires some support from XML-Schema.

More generally, collations are important for any operator in the Algebra that involves
string comparison, among them: sort, distinct, "=" and "<".

Resolution Formal semantics will adopt solution provided by Operators.

Issue-0014: Polymorphic types

Date: Jul-26-2000

Description: The type system is currently monomorphic: it does not permit the
definition of a function over generalized types. Polymorphic functions are useful for
factoring equivalent functions, each of which operate on a fixed type.

The current type system has already a built-in polymorphic type (lists) and is likely to
have more (unordered collections). The question is, whether to allow for user-defined
polymorphic types and user defined polymorphic functions.

See also thread around http://lists.w3.org/Archives/Member/w3c-xml-query-
wg/2000Sep/0111.html (W3C-members only) (W3C-members only).

Issue-0015: 3-valued logic to support NULLs

Date: Jul-26-2000

Issue-0016: Mixed content

Date: Jul-26-2000

Description: The XML-Query Algebra allows to generate elements with an arbitrary
mixture of data (of simple type) and elements. XML-Schema only allows for a
combination of strings interspersed with elements (aka mixed content). We need to
figure out whether and how to constrain the XML-Query Algebra accordingly (e.g. by
typing rules?)

Resolution The type system has been extended to support the interleaving operator & -
see [3.5 Types]. Mixed content is defined in terms of &.

Issue-0017: Unordered content

Date: Jul-26-2000

Description: All-groups in XML-Schema, not to be mixed up with [Issue-0049:
Unordered Collections]

Resolution The type system has been extended with the support of all-groups - see

XQuery 1.0 Formal Semantics Page 87 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

[3.5 Types].

Issue-0018: Align algebra types with schema

Date: Jul-26-2000

Description: The Algebra's internal type system is the type system of XDuce. A
potentially significant problem is that the Algebra's types may lose information when
converted into XML Schema types, for example, when a result is serialized into an XML
document and XML Schema.

James Clark points out : "The definition of AnyComplexType doesn't match the concrete
syntax for types since it applies unbounded repetition to AnyTree and one alternative for
AnyTree is AnyAttribute." This is another example of an alignment issue.

This issue comprises also issues [Issue-0016: Mixed content], [Issue-0017:
Unordered content], [Issue-0053: Global vs. local elements], [Issue-0054: Global
vs. local complex types], [Issue-0019: Support derived types], substitution groups.

Issue-0019: Support derived types

Date: Jul-26-2000

Description: The current type system does not support user defined type hierarchies
(by extension or by restriction).

Issue-0020: Structural vs. name equivalence

Date: Jul-26-2000

Description: The subtyping rules in [4.1 Relating data to types] only define structural
subtyping. We need to extend this with support for subtyping via user defined type
hierarchies - this is related to [Issue-0019: Support derived types].

Issue-0021: Syntax

Date: Jul-26-2000

Description: (e.g. for.<-.in vs for.in.do)

Resolution The WG has voted for several syntax changes (see also
http://www.w3.org/XML/Group/2000/09/ql/unedited-minutes-day1.txt(W3C-members only)
(W3C-members only), [3.1 Expressions]: "for v in e do e", "let v = e do", "sort v in e by
e ...", "distinct", "match case v:t e ... else e".

Issue-0022: Indentation, Whitespaces

Date: Jul-26-2000

Description: Is indentation significant?

Resolution The WG has consensus that indentation is not significant (see
http://lists.w3.org/Archives/Member/w3c-xml-query-wg/2000Aug/0043.html (W3C-

XQuery 1.0 Formal Semantics Page 88 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

members only) (W3C-members only)), i.e., all documents are white space normalized.

Issue-0023: Catch exceptions and process in algebra?

Date: Jul-26-2000

Description: Does the Algebra give explicit support for catching exceptions and
processing them?

Resolution Subsumed by new issue [Issue-0064: Error code handling in Query
Algebra].

Issue-0024: Value for empty sequences

Date: Jul-26-2000

Description: What does "value" do with empty sequences?

Resolution The definition of value(e) has changed to:

value(e) = typeswitch children(e)
 case v: AnyScalar do v
 else()

Furthermore, the typing rules for "for v in e1 do e2" have been changed such that the
variable v is typed-checked seperately for each unit-type occuring in expression e1.

Consequently the example in http://lists.w3.org/Archives/Member/w3c-xml-query-
wg/2000Jul/0138.html (W3C-members only) (W3C-members only) would be typed as
follows:

query for b in b0/book do
 value(b/year): xs:integer min 0 max *

rather than leading to an error.

Issue-0025: Treatment of empty results at type level

Date: Jul-26-2000

Description: According to http://lists.w3.org/Archives/Member/w3c-xml-query-
wg/2000Jul/0138.html(W3C-members only) (W3C-members only) this is closely related
to [Issue-0024: Value for empty sequences].

Resolution Resolved by resolution of [Issue-0025: Treatment of empty results at
type level].

Issue-0026: Project - one tag only

Date: Jul-26-2000

Description: Project is only parameterized by one tag. How can we translate a0/(b | c)?

XQuery 1.0 Formal Semantics Page 89 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

Resolution With the new syntax (and type system) a0/(b | c) can be translated to "for v
in a0 do typeswitch case v1:b[AnyType] do v1 case v2:c[AnyType] do c else ()" - see
also [A.1 Relating projection to iteration].

Issue-0027: Case syntax

Date: Jul-26-2000

Description: N-ary case can be realized by nested binary cases. For design
alternatives of case see: http://lists.w3.org/Archives/Member/w3c-xml-query-
wg/2000Aug/0017.html (W3C-members only) (W3C-members only)

Resolution New (n-ary) case syntax is introduced in [3.1 Expressions].

Issue-0028: Fusion

Date: Jul-26-2000

Description: Does the Algebra support fusion as introduced by query languages such
as LOREL? This is related to [Issue-0005: Element identity], because fusion only
makes sense with support of element identity.

Resolution Fusion is equivalent to 'natural full-outer join'. XQuery can reraise issue if
desired. If added, the Algebra editors should review any solution w.r.t typing.

Issue-0029: Views

Date: Jul-26-2000

Description: One of the problems in views: Can we undeclare/hide things in
environment? For example, if we support element-identity, can we explicitly discard a
parent, and/or children from an element in the result-set? Related to [Issue-0005:
Element identity]. See also description in http://lists.w3.org/Archives/Member/w3c-xml-
query-wg/2000Sep/0047.html (W3C-members only) (W3C-members only).

Resolution XQuery can reraise issue if desired. If added, the Algebra editors should
review any solution w.r.t typing.

Issue-0030: Automatic type coercion

Date: Jul-26-2000

Description: What do we do if a value does not have a type or a different type from what
is required? See also thread around http://lists.w3.org/Archives/Member/w3c-xml-query-
wg/2000Oct/0071.html (W3C-members only) (W3C-members only). This link also
contains a recommendation, which has been agreed as the general direction to go in
http://lists.w3.org/Archives/Member/w3c-xml-query-wg/2000Oct/0196.html (W3C-
members only) (W3C-members only):

Suggested Resolution: We believe that the XML Query Language should specify
default type coercions for mixed mode arithmetic should be performed according to a
fixed precedence hierarchy of types, specifically integer to fixed decimal, fixed decimal

XQuery 1.0 Formal Semantics Page 90 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

to float, float to double. This policy has the advantage of simplicity, tradition, and static
type inference. Programmers could explicitly specify alternative type coercions when
desirable.

Resolution Delegation to XPath 2.0, XQuery, and/or Operators.

Issue-0031: Recursive functions

Date: Jul-26-2000

Resolution subsumed by [Issue-0008: Fixed point operator or recursive functions]

Issue-0032: Full regular path expressions

Date: Jul-26-2000

Description: Full regular path expressions allow to constrain recursive navigation along
paths by means of regular expressions, e.g. a/b*/c denotes all paths starting with an a,
proceeding with arbitrarily many b's and ending in a c. Currently the XML-Query Algebra
can express this by means of (structurally) recursive functions. An alternative may be the
introduction of a fixpoint operator [Issue-0008: Fixed point operator or recursive
functions].

Resolution XPath 2.0 can raise issue if desired. The Algebra editors should review any
solution w.r.t typing.

Issue-0033: Metadata Queries

Date: Jul-26-2000

Description: Metadata queries are queries that require runtime access to type
information. See also discussion starting at http://lists.w3.org/Archives/Member/w3c-
xml-query-wg/2000Oct/0087.html (W3C-members only) (W3C-members only).

Issue-0034: Fusion

Date: Jul-26-2000

Resolution Identical with [Issue-0028: Fusion]

Issue-0035: Exception handling

Date: Jul-26-2000

Resolution Subsumed by [Issue-0023: Catch exceptions and process in algebra?]
and [Issue-0064: Error code handling in Query Algebra].

Issue-0036: Global-order based operators

Date: Jul-26-2000

Resolution Subsumed by [Issue-0003: Global Order]

XQuery 1.0 Formal Semantics Page 91 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

Issue-0037: Copy vs identity semantics

Date: Jul-26-2000

Resolution subsumed by [Issue-0005: Element identity]

Issue-0038: Copy by reachability

Date: Jul-26-2000

Description: Is it possible to copy children as well as IDREFs, Links, etc.? Related to
[Issue-0005: Element identity] and [Issue-0008: Fixed point operator or recursive
functions]

Resolution Resolved by addition of "deep" copy operator in [XQuery 1.0 and XPath 2.0
Data Model].

Issue-0039: Dereferencing semantics

Date: Jul-26-2000

Resolution subsumed by [Issue-0005: Element identity]

[Issue-0040: Case Syntax] through [Issue-0047: Attributes] are raised in
http://lists.w3.org/Archives/Member/w3c-xml-query-wg/2000Aug/0010.html (W3C-members only)
(W3C-members only)

Issue-0040: Case Syntax

Date: Aug-01-2000

Description: We suggest that the syntax for "case" be made more regular. At present,
it takes only two branches, the first labelled with a tag-name and the second labelled
with a variable. A more traditional syntax for "case" would have multiple branches and
label them in a uniform way. If the algebra is intended only for semantic specification,
"case" may not even be necessary.

Resolution subsumed by [Issue-0027: Case syntax]

Issue-0041: Sorting

Date: Aug-01-2000

Description: We are not happy about the three-step sorting process in the Algebra. We
would prefer a one-step sorting operator such as the one illustrated below, which handles
multiple sort keys and mixed sorting directions: SORT emp <- employees BY
emp/deptno ASCENDING emp/salary DESCENDING

Resolution The WG has decided to go for the above syntax, with an (optional)
indication of COLLATION. (see http://www.w3.org/XML/Group/2000/09/ql/unedited-
minutes-day1.txt (W3C-members only) (W3C-members only), [2.13 Sorting]).

XQuery 1.0 Formal Semantics Page 92 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

Issue-0042: GroupBy

Date: Aug-01-2000

Description: We do not think the algebra needs an explicit grouping operator. Quilt and
other high-level languages perform grouping by nested iteration. The algebra can do the
same.

related to [Issue-0012: GroupBy - needs second order functions?]

Resolution The WG has decided (see
http://www.w3.org/XML/Group/2000/09/ql/unedited-minutes-day1.txt (W3C-members
only) (W3C-members only)) to skip groupBy for the time being (see also revised [2.11
Restructuring and grouping] and raise [Issue-0069: Organization of Document] for
a possible future revision of this resolution.

Issue-0043: Recursive Descent for XPath

Date: Aug-01-2000

Description: The very important XPath operator "//" is supported in the Algebra only by
writing a recursive function. This is adequate for a semantic specification, but if the
Algebra is intended as an optimizable target language it will need better support for
"//" (possibly in the form of a fix-point operator.)

Resolution Resolved by subsumption under [Issue-0043: Recursive Descent for
XPath] (see http://www.w3.org/XML/Group/2000/09/ql/unedited-minutes-day1.txt(W3C-
members only) (W3C-members only)).

Issue-0044: Keys and IDREF

Date: Aug-01-2000

Description: We think the algebra needs some facility for dereferencing keys and
IDREFs (exploiting information in the schema.)

Resolution Subsumed by [Issue-0007: References: IDREFS, Keyrefs, Joins]

Issue-0045: Global Order

Date: Aug-01-2000

Description: We are concerned about absence of support for operators based on global
document ordering such as BEFORE and AFTER.

Resolution subsumed by [Issue-0003: Global Order]

Issue-0046: FOR Syntax

Date: Aug-01-2000

Description: We agree with comments made in the face-to-face meeting about the

XQuery 1.0 Formal Semantics Page 93 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

aesthetics of the Algebra's syntax for iteration. For example, the following syntax is
relatively easy to understand: FOR x IN some_expr EVAL f(x) whereas we find the
current algebra equivalent to be confusing and misleading: FOR x <- some_expr IN f(x)
This syntax appears to assign the result of some_expr to variable x, and uses the word
IN in a non-intuitive way.

Resolution subsumed by [Issue-0021: Syntax]

Issue-0047: Attributes

Date: Aug-01-2000

Description: See [Issue-0001: Attributes].

Resolution subsumed by [Issue-0001: Attributes]

[Issue-0048: Explicit Type Declarations] through [Issue-0050: Recursive Descent for XPath] are
raised in http://lists.w3.org/Archives/Member/w3c-xml-query-wg/2000Jul/0148.html (W3C-members
only) (W3C-members only)

Issue-0048: Explicit Type Declarations

Date: Jul-27-2000

Description: Type Declaration for the results of a query: The issue is whether to auto
construct the result type from a query or to pre-declare the type of the result from a
query and check for correct type on the return value. Suggestion: Support for pre-
declared result data type and as well as to coerce the output to a new type is desirable.
Runtime or compile time type checking is to be resolved? Once you attach a name to a
type, it is preserved during the query processing.

Resolution W.r.t. compile time type casts this is already possible with e:t (see [3.1
Expressions]). For run-time casts an issue has been raised in [Issue-0062: Open
questions for constructing elements by reference].

Issue-0049: Unordered Collections

Date: Jul-27-2000

Description: Currently, all sequences in the data model are ordered. It may be useful to
have unordered forests. The distinct-node function, for example, produces an
inherently unordered forest. Unordered forests can benefit from many optimizations for
the relational algebra, such as commutable joins.

Handling of collection of attributes is easy but the collection of elements is complex due
to complex type support for the elements. It makes sense to allow casting from
unordered to ordered collection and vice versa. It is not clear whether the new ordered or
unordered collection is a new type or not. It affects function resolution, optimization.

See also thread around http://lists.w3.org/Archives/Member/w3c-xml-query-
wg/2000Oct/0135.html (W3C-members only) (W3C-members only).

Our request to Schema to represent insignificance of ordering at schema level has not
been fulfilled - see http://lists.w3.org/Archives/Member/w3c-xml-query-

XQuery 1.0 Formal Semantics Page 94 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

wg/2000Sep/0136.html (W3C-members only) (W3C-members only). Thus we need to be
aware that this information may get lost, when mapping to schema.

Resolution Unordered collections are described by {t} see [3.5 Types], some operators
(sort, distinct-node, for, and sequence) are overloaded, and some operators (difference,
intersection) are added). A new issue [Issue-0076: Unordered types] is raised.

Issue-0050: Recursive Descent for XPath

Date: Jul-27-2000

Description: Suggestion: The group likes to add a support for fixed-point operator in the
query language that will allow us to express the semantics of the // operator in an xpath
expression. A path expression of the form a//b may be represented by a fixed-point
operator fp(a, "/.")/b.

Resolution subsumed by [Issue-0043: Recursive Descent for XPath]

Issue-0051: Project redundant?

Date: Aug-05-2000

Description: It appears that project a e could be reduced to sth. like

for v <- e in
 case v of a[v1] => a[v1]
 | v2 => ()

... or would that generate a less precise type?

Resolution With the new type system and handling of the for operator, project is indeed
redundant. See [A.1 Relating projection to iteration].

Issue-0052: Axes of XPath

Date: Aug-05-2000

Description: The current algebra makes navigation to parents difficult to impossible.
With support of Element Identity [Issue-0005: Element identity] and recursive functions
[Issue-0008: Fixed point operator or recursive functions] one can express parent()
by a recursive function via the document root. More direct support needs to be
investigated w.r.t its effect on the type system.

The WG wishes to support a built-in operator parent() (see
http://www.w3.org/XML/Group/2000/09/ql/unedited-minutes-day1.txt (W3C-members
only) (W3C-members only)). For the current state of affairs see thread around
http://lists.w3.org/Archives/Member/w3c-xml-query-wg/2000Sep/0074.html (W3C-
members only) (W3C-members only). For some use-cases see
http://lists.w3.org/Archives/Member/w3c-xml-query-wg/2000Oct/0011.html (W3C-
members only) (W3C-members only).

Resolution XPath 2.0 and XQuery can reraise issue if desired. Algebra should review
any solution w.r.t typing. Question: whether namespace axis (i.e., access namespace
nodes) will be included in XQuery. Algebra currently has issues related to typing of

XQuery 1.0 Formal Semantics Page 95 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

parent() and descendent(). If sibling axes are included in XQuery, then Algebra should
review w.r.t. typing.

Issue-0053: Global vs. local elements

Date: Aug-05-2000

Description: The current type system cannot represent global element-declarations of
XML-Schema. All element declarations are local.

Issue-0054: Global vs. local complex types

Date: Aug-05-2000

Description: The current type system does not distinguish between global and local
types as XML-Schema does. All types appear to be fully nested (i.e. local types)

Issue-0055: Types with non-wellformed instances

Date: Aug-05-2000

Description: The type system and algebra allows for sequences of simple types, which
can usually be not represented as a well-formed document. How shall we constrain this?
Related to [Issue-0016: Mixed content].

Issue-0056: Operators on Simple Types

Date: Jul-15-2000

Description: We intentionally did not define equality or relational operators on element
and simple type. These operators should be defined by consensus.

See also first designs for support of arithmetic operators
http://lists.w3.org/Archives/Member/w3c-xml-query-wg/2000Sep/0138.html (W3C-
members only) (W3C-members only) and for support of operators for date/time
http://lists.w3.org/Archives/Member/w3c-xml-query-wg/2000Sep/0113.html (W3C-
members only) (W3C-members only).

Ed. Note: MF, 15-Jan-2001 A joint task force on operators with members from the
XSLT, XML Schema, and XML Query working groups is chartered to define arithmetic
operators.

Resolution XQuery formal semantics adopts solution provided by Operators task force.

Issue-0057: More precise type system; choice in path

Date: Aug-07-2000

Description: (This subsumes [Issue-0051: Project redundant?]). If the type system
were more precise, then (project a e) could be replaced by:

for v <- e in
 case v of

XQuery 1.0 Formal Semantics Page 96 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

 a[v1] => a[v1]
 | v2 => ()

One could also represent (e/(a|b)) directly in a similar style.

for v <- e in
 case v of
 a[v1] => a[v1]
 | v2 => case v2 of
 b[v3] => b[v3]
 | v4 => ()

Currently, there is no way to represent (e/(a|b)) without loss of precision, so if we do not
change the type system, we may need to have some way to represent (e/(a|b)) and
similar terms without losing precision. (The LA team has a design for this more precise
type system, but it is too large to fit in the margin of this web page!)

Resolution See resolution of [Issue-0051: Project redundant?]

Issue-0058: Downward Navigation only?

Date: Aug-07-2000

Description: Related to [Issue-0052: Axes of XPath]. The current type system (and
the more precise system alluded to in [Issue-0057: More precise type system; choice
in path]) seems well suited for handling XPath children and descendent axes, but not
parent, ancestor, sibling, preceding, or following axes. Is this limitation one we can live
with?

Resolution Subsumed by [Issue-0052: Axes of XPath]

Issue-0059: Testing Subtyping

Date: Aug-07-2000

Description: One operation required in the Algebra is to test whether XML type t1 is a
subtype of XML type t2, indicated by writing t1 <: t2. There is a well-known algorithm for
this, based on tree automata, which is a straightforward variant of the well-known
algorithm for testing whether the language generated by one regular-expression is a
subset of the language generated by another. (The algorithm involves generating
deterministic automata for both regular expressions or types.)

However, the naive implementation of the algorithm for comparing XML types can be slow
in practice, whereas the naive algorithm for regular expressions is tolerably fast. The only
acceptably fast implementation of a comparison for XML types that the LA team knows
of has been implemented by Haruo Hasoya, Jerome Voullion, and Benjamin Pierce at
the University of Pennsylvania, for their implementation of Xduce. (Our implementation of
the Algebra re-uses their code, with permission.)

So, should we adopt a simpler definition of subtyping which is easier to test? One
possibility is to adopt the sibling restriction from Schema, which requires that any two
elements which appear a siblings in the same content model must themselves have
contents of the same type. Jerome Simeon and Philip Wadler discovered that adopting
the sibling restriction reduces the problem of checking subtyping of XML types to that of
checking regular languages for inclusion, so it may be worth adopting the restriction for

XQuery 1.0 Formal Semantics Page 97 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

that reason.

Issue-0060: Internationalization aspects for strings

Date: Jun-26-2000

Description: These issues are taken from the comments on the Requirements
Document by I18N (http://lists.w3.org/Archives/Member/w3c-xml-query-
wg/2000Jun/0137.html (W3C-members only) (W3C-members only)).

Further information can be found at http://www.w3.org/TR/WD-charreq.

It is a goal of i18n that queries involving string matching ("select x where
x='some_constant'") treat canonically equivalent strings (in the Unicode sense) as
matching. If the query and the target are both XML, early normalization (as per the
Character Model) is assumed and binary comparison ensures that the equivalence
requirement is satisfied. However, if the target is originally a legacy database which
logically has a layer that exports the data as XML, that XML must be exported in
normalized form. The XML Query spec must impose the normalization requirement upon
such layers.

Similarly, the query may come from a user-interface layer that creates the XML query.
The XML Query spec must impose the normalization requirement upon such layers.

Provided that the query and the target are in normalized form C, the output of the query
must itself be in normalized form C.

Queries involving string matching should support various kinds of loose matching (such
as case-insensitivity, katakana-hiragana equivalence, accent-accentless equivalence,
etc.)

If such features as case-insensitivity are present in queries involving string matching,
these features must be properly internationalized (e.g. case folding works for accented
letters) and language-dependence must be taken into account (e.g. Turkish dotless-i).

Queries involving character counting and indexing must take into account the Character
Model. Specifically, they should follow Layer 3 (locale-independent graphemes).
Additional details can be found in The Unicode Standard 3.0 and UTR#18. Queries
involving word counting and indexing should similarly follow the recommendations in
these references.

Resolution XQuery formal semantics adopts solution provided by Operators task force.

Issue-0061: Model for References

Date: Aug-16-2000

Description: Raised in: http://lists.w3.org/Archives/Member/w3c-xml-query-
wg/2000Aug/0063.html (W3C-members only) (W3C-members only). Related to a number
of issues around [Issue-0005: Element identity].

? Use Cases

Table of Contents

XQuery 1.0 Formal Semantics Page 98 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

REF *could* do this well if it were restructured - it does not maintain unforeseen
relationships or use them...

Bibliographies

Recursive parts

RDF assertions

Inversion of simple parent/child references (related to [Issue-0058: Downward
Navigation only?]).

? What can we leave out?

can we leave out transitive closure?

can we limit recursion?

can we leave out fixed point recursion?

related to [Issue-0008: Fixed point operator or recursive functions]

? Do we need to be able to...

a. Find the person with the maximum number of descendents?

b. Airplane routes: how can I get from RDU to Raleigh? (fixed point: guaranteeing
termination in reasonable time...)

c. Given children and their mothers, can I get mothers and their children? (without
respect to the form of the original reference...)

related to [Issue-0008: Fixed point operator or recursive functions].

? Should we abstract out the difference between different kinds of references? If so,
should we be able to cast to a particular kind of reference in the output?

a. abstracting out the differences is cheaper, which is kewl...

b. the kind of reference gives me useful information about: locality (same
document, same repository, big bad internet...) static vs. dynamic (xpointer *may*
be resolved dynamically, or *may* be resolved at run time, ID/IDREF is static).

related to [Issue-0007: References: IDREFS, Keyrefs, Joins].

? do we need to be able to generate ids, e.g. using skolem functions?

for a document in RAM, or in a persistent tree, identity may be present, implicit,
system dependent, and cheap - it's nice to have an abstraction that requires no
more than the implicit identity

XQuery 1.0 Formal Semantics Page 99 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

persistable ID is more expensive, may want to be able to serialize with ID/IDREF
to instantiate references in the data model

can use XPath instead of generating ID/IDREF, but these references are fragile,
and one reason for queries is to create data that may be processed further

persistable ID unique within a repository context

persistable ID that is globally unique

related to [Issue-0005: Element identity].

? copy vs. reference semantics

"MUST not preclude updates..."

in a pure query environment, sans update, we do not need to distinguish these

if we have update, we may need to distinguish, perhaps in a manner similar to
"updatable cursors" in SQL

programs may do queries to get DOM nodes that can that be modified. It is
essential to be able to distinguish copies of nodes from the nodes themselves.

copy semantics - what does it mean?

copy the descendent hierarchy?

copy the reachability tree? (to avoid dangling references)

related to [Issue-0038: Copy by reachability].

Resolution Handled in current data model and algebra

The following issues have been raised since Sep-25-2000.

Issue-0062: Open questions for constructing elements by reference

Date: Sep-25-2000

Description: (1) What is the value of parent() when constructing new elements with
children refering to original nodes? See also discussion at
http://lists.w3.org/Archives/Member/w3c-xml-query-wg/2000Sep/0155.html (W3C-
members only) (W3C-members only).

(2) Is an approach to either make copies for all children or provide references to all
children, or should we allow for a more flexible combination of copies and references?

Resolution Operational semantics specifies that element node constructor creates
copies of all its children. Addition of RefNode in [XQuery 1.0 and XPath 2.0 Data Model]
supports explicit reference value.

XQuery 1.0 Formal Semantics Page 100 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

Issue-0063: Do we need (user defined) higher order functions?

Date: Oct-16-2000

Description: The current XML-Query-Algebra does not allow functions to be parameters
of another function - so called higher order functions. However, most of the Algebra
operators are (built-in) higher functions, taking expressions as an argument ("sort", "for",
"case" to name a few). Even a fixpoint operator, "fun f(x)=e, fix f(x) in e" (see also [Issue-
0008: Fixed point operator or recursive functions]), would be a built-in higher order
function.

Resolution As agreed in http://lists.w3.org/Archives/Member/w3c-xml-query-
wg/2000Oct/0196.html (W3C-members only) (W3C-members only) the XML Query
Algebra will not support user defined higher order functions. It does support a number of
built-in higher order functions.

Issue-0064: Error code handling in Query Algebra

Date: Oct-04-2000

Description: How do we return an error code from a function defined in current Query
algebra. Do we need to create an array (or a structure) to merge the return value and
error code to do this. If that is true, it may be inefficient to implement. In order for cleaner
and efficient implementation, it may be necessary to allow a function declaration to take
a parameter of type "output" and allow it to return an error code as part of the function
definition. See also thread starting with http://lists.w3.org/Archives/Member/w3c-xml-
query-wg/2000Oct/0051.html(W3C-members only) (W3C-members only).

Resolution One does not need to create a structure to combine return values with error
codes, provided each operator or function /either/ returns a value /or/ raises an error. The
XML-Query Algebra supports means to raise errors, but does not define standard means
to catch errors. Raising errors is accomplished by the expression "error" of type Ø
(empty choice). Because Ø | t = t, such runtype errors do not influence static typing. The
surface syntax and/or detailed specification of operators on simple types (see [Issue-
0056: Operators on Simple Types]) may choose to differentiate errors into several
error-codes.

Issue-0065: Built-In GroupBy?

Date: Oct-16-2000

Description: As discussed in http://www.w3.org/XML/Group/2000/09/ql/unedited-
minutes-day1.txt (W3C-members only) (W3C-members only), we may revisit the
resolution of [Issue-0042: GroupBy] and reintroduce GroupBy along the lines of sort:
"group v in e1 by [e2 {collation}]". One reason for this may be that this allows to use
collation for deciding about the equality of strings.

Resolution In http://lists.w3.org/Archives/Member/w3c-xml-query-
wg/2000Oct/0196.html (W3C-members only) (W3C-members only) the WG has decided
to close this issue, and for the time being not consider GroupBy as a built-in operator.
Furthermore, [Issue-0013: Collations] is ammended to deal with collations for all
operators involving a comparison of strings.

XQuery 1.0 Formal Semantics Page 101 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

Issue-0066: Shallow or Deep Equality?

Date: Oct-16-2000

Description: What is the meaning of "=" and "distinct"? Equality of references to nodes
or deep equality of data?

Resolution [XQuery 1.0 and XPath 2.0 Data Model] defines "=" (value equality) and
"==" (identity equality) operators. Description of distinct states that it uses "==".

Issue-0067: Runtime Casts

Date: Sep-21-2000

Description: In some contexts it may be desirable to cast values at runtime. Such
runtime casts lead to an error if a value cannot be cast to a given type. See also
http://www.w3.org/XML/Group/2000/09/ql/unedited-minutes-day1.txt (W3C-members
only) (W3C-members only), where the Algebra team has been put in charge of
introducing run-time casts into the Algebra.

Resolution cast e : t has been introduced as a reducible operator expressed in terms
of typeswitch.

Issue-0068: Document Collections

Date: Oct-16-2000

Description: Per our requirements document we are chartered to support document
collections. The current XML-Query Algebra deals with single documents only. There are
a number of subissues:

(a) Do we need a more elaborate notion of node-references? E.g. pair of (URI of root-
node, local node-ref)

(b) Does the namespace mechanism suffice to type collections of nodes from different
documents? Probably yes.

(c) Provided (a) and (b) can be settled, will the approach taken for [Issue-0049:
Unordered Collections] do the rest?

Issue-0069: Organization of Document

Date: Oct-16-2000

Description: The current document belongs more to the genre (scientific) paper than to
the genre specification. One may consider the following modifications: (a) reorganize
intro to give a short overview and then state the purpose (strongly typed, neutral syntax
with formal semantics as a basis for possibly multiple syntaxes, etc.) (compared to
version Aug-23, this version has already gone a good deal in this direction). (b) Equip
various definitions and type rules with id's. (c) Elaborate appendices on mapping XML-
Query-Algebra Model vs. XML-Query-Datamodel, XML-Query-Type System vs. XML-
Schema-Type System. (d) Maybe add an appendix on use-case-solutions. The problem

XQuery 1.0 Formal Semantics Page 102 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

is of course: Part of this is a lot of work, and we may not achieve all for the first release.

Resolution At http://lists.w3.org/Archives/Member/w3c-xml-query-
wg/2000Oct/0196.html (W3C-members only) (W3C-members only) the WG decided to
dispose of this issue. The current overall organization of the document is quite adequate,
but of course editorial decisions will have to made all the time.

Issue-0070: Stable vs. Unstable Sort/Distinct

Date: Oct-02-2000

Description: Should sort (and distinct) be stable on ordered collections, i.e. lists, and
unstable on unordered collections (see [Issue-0049: Unordered Collections])? For
more details see thread around http://lists.w3.org/Archives/Member/w3c-xml-query-
wg/2000Oct/0007.html (W3C-members only) (W3C-members only).

Resolution sort and distinct are stable on ordered collections, and unstable on
unordered collections - see [4.7 Typing unordered expressions].

Issue-0071: Alignment with the XML Query Datamodel

Date: Sep-26-2000

Description: Currently, the XML Query Algebra Datamodel does not model PI's and
comments. For more details see thread starting with
http://lists.w3.org/Archives/Member/w3c-xml-query-wg/2000Sep/0167.html (W3C-
members only) (W3C-members only).

Resolution Addition of operational semantics defines relationship of Algebra to Data
Model.

Issue-0072: Facet value access in Query Algebra

Date: Oct-04-2000

Description: Each of the date-time data types have facet values as defined by the
schema data types draft spec. This problem is general enough to be applied to other
simple data types.

The question is : Should we provide access to these facet values on an instance of a
particular data types? If so, what type of access? My take is the facets are to be treated
like read-only attributes of a data instance and one should have a read access to them.
See also thread starting at http://lists.w3.org/Archives/Member/w3c-xml-query-
wg/2000Oct/0044.html (W3C-members only) (W3C-members only).

Issue-0073: Facets for simple types and their role for typechecking

Date: Oct-16-2000

Description: XML-Schema introduces a number of constraining facets
http://www.w3.org/TR/xmlschema-2/ for simple types (among them: length, pattern,
enumeration, ...). We need to figure out whether and how to use these constraining
facets for type-checking. See also thread starting at
http://lists.w3.org/Archives/Member/w3c-xml-query-wg/2000Oct/0146.html(W3C-

XQuery 1.0 Formal Semantics Page 103 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

members only) (W3C-members only).

Issue-0074: Operational semantics for expressions

Date: Nov-16-2000

Description: It is necessary to add an operational semantics that formally defines each
operator in the Algebra.

Resolution Added in [5 Dynamic Semantics : Value-Inference Rules]

Issue-0075: Overloading user defined functions

Date: Nov-17-2000

Description: User defined functions can not be overloaded in the XML Query Algebra,
i.e., a function is exclusively identified by its name, and not by its signature. Should this
restriction be relaxed and if so - to which extent?

Resolution No overloading in Query 1.0

Issue-0076: Unordered types

Date: Dec-11-2000

Description: Currently unorderedness is represented at type level by {t}, and some
(built-in) operators are overloaded such they have different semantics (and potentially
different return type) depending on their input type. An alternative is to not represent
unorderedness at type level, but rather support unordered for, unordered (unstable) sort,
unordered (unstable) distinct.

Resolution Removed unordered types from type system. Added support for unordered
operator.

Issue-0077: Interleaved repetition and closure

Date: Dec-12-2000

Description: Regular Languages are closed w.r.t. to the interleaved product. However,
they are not closed w.r.t. to interleaved repetition, which can (e.g) generate the 1 degree
Dyck language D[1] = () | a D[1] b | D[1] D[1] = (a,b)^{0,*}, and more generally, any
language that coordinates cardinalities of individual members from an alphabeth: E.g. (a ^
b)^ min 0 max * = all strings with equally many a's and b's. These are beyond regular
languages. Should we thus try to do without interleaved repetition?

Resolution if we use interleaved repetition (which we will because it is in MSL), they will
be restricted to prime types.

Issue-0078: Generation of ambiguous types

Date: Dec-12-2000

Description: Unambiguous content-models in XML 1.0 and XML Schema are not closed

XQuery 1.0 Formal Semantics Page 104 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

w.r.t. union. It appears that the XML Query-Algebra can generate result types which can
not be transformed to an unambiguous content-model.

Issue-0079: Global order between nodes in different documents

Date: Dec-16-2000

Description: The global order operator < is defined on nodes in the same document, but
not between nodes in different documents.

Issue-0080: Typing of parent

Date: Dec-16-2000

Description: Currently, the parent operator yields an imprecise type : AnyElement min
0 max 1. It might be possible to type parent more precisely, for example, by using the
normalized names in MSL, which encode containment of types.

Issue-0081: Lexical representation of Schema simple types

Date: Jan-17-2001

Description: Schema simple types must be defined for the Algebra and XQuery.

Resolution Algebra will adopt lexical reps supported by XQuery.

Issue-0082: Type and expression operator precedence

Date: Jan-17-2001

Description: The precedence of expression operators and type operators is not defined.

Resolution For expression operators, Algebra adopts solution given in XQuery. For type
operators, Algebra specifies precidence.

Issue-0083: Expressive power and complexity of typeswitch expression

Date: Jan-17-2001

Description: When processing an XML document without schema information, i.e., the
type of the document is AnyComplexType, then match expressions may be very
expensive to evaluate:

 typeswitch x
 case t1 : AnyTree do 1
 case t2 : AnyTree min 0 max 2 do 2
 case t3 : *[*[*[*[* ... [AnyAttribute]]]]] do 3
 else ERROR

typeswitch itself is not the issue. The real problem is having very liberal type patterns. We could
restrict the kinds of type patterns that we permit.

XQuery 1.0 Formal Semantics Page 105 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

Issue-0084: Execution model

Date: Jan-17-2001

Description: Need prose describing execution model scenarios : interpretor vs.
compile/runtime vs. translation into another query language. Explain relationship between
static and dynamic semantics.

Issue-0085: Semantics of Wildcard type

Date: Jan-17-2001

Description: Cite: wildcard types cannot be implemented (Section 2.12: Expanded
names, paragraph 11 http://www.w3.org/XML/Group/2000/12/xmlquery-
algebra20001204.html; critical, core) If x!y means any name in x except names in y,
what does x!y!z mean? In general, how do ! and | operate (precedence, associativity)?
Parentheses are required to force the desired grouping of these two operators. Also,
what does x!* mean? (There's an infinite family of such examples.)

Issue-0086: Syntactic rules

Date: Jan-17-2001

Description: Need rules for specifying syntactic correctness of query: symbol spaces;
variable def'ns precede uses; list of keywords, etc.

Resolution Syntactic rules should be dealt with in XQuery document

Issue-0087: More examples of Joins

Date: Jan-17-2001

Description: Cite: no join operator; wants example of many-to-many joins, inner join,
left and full outer joins.

Issue-0088: Align XQuery types with XML Schema : Formal Description.

Date: 02-Apr-2001

Description: Sources of misalignment: XQuery types include comment and processing
instruction; [XML Schema : Formal Description] does not. XQuery uses () for empty
sequence; MSL uses the epsilon character. XQuery permits the names of attribute and
element components to be wildcard expressions. MSL only permits literal names for
attributes and elements, but permits stand-alone wildcard expressions. XQuery types
call '&' interleaved repetition, but MSL says it means 'all g1 and g2 in either order'. Does
MSL mean interleaved repetition?

Issue-0089: Syntax for types in XQuery

Date: 30-Apr-2001

Description: Formalism document gives a particular syntax for type expressions that is

XQuery 1.0 Formal Semantics Page 106 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

not supported in the XQuery surface syntax.

Issue-0090: Static type-assertion expression

Date: 30-Apr-2001

Description: Formalism document uses a static type-assertion expression that is not
supported in the XQuery surface syntax. See http://lists.w3.org/Archives/Member/w3c-
query-editors/2001Apr/0021.html.

Issue-0091: Attribute expression

Date: 30-Apr-2001

Description: XQuery formal semantics has stand-alone attribute constructor/expression
ATTRIBUTE QName (Exp) that is not supported in XQuery surface syntax.

Issue-0092: Error expression

Date: 11-May-2001

Description: XQuery formal semantics has an error expression Error that is not
supported in XQuery surface syntax.

Issue-0093: Representation of Text Nodes in type system

Date: 11-May-2001

Description: The data model distinguished between text nodes and strings, which are
simple-typed values. Text nodes have identity, parents, and siblings. Strings do not. Text
nodes are accessed by the children() accessor; strings and other simple-typed values
are accessed by the typed-value() accessor. The distinction between text nodes and
simple-typed values should exist in type system as well. well.

Issue-0094: Static type errors and warnings

Date: 31-May-2001

Description: Static type errors and warnings are not specified. We need to enumerate
in both the XQuery and formal semantics documents what kinds of static type errors and
warnings are produced by the type system. See thread beginning:
http://lists.w3.org/Archives/Member/w3c-xml-query-wg/2001May/0405.html See also
[Issue-0090: Static type-assertion expression].

Issue-0095: Importing Schemas and DTDs into query

Date: 31-May-2001

Description: We do not specify how a Schema or DTD is 'imported' into a query so that
its information is available during type checking. Schema and DTDs can either be named
explicitly (e.g., by an 'IMPORT SCHEMA' clause in a query) or implicitly, by accessing
documents that refer to a Schema or DTD. The mechanism for statically accessing a
Schema or DTD is unspecified.

XQuery 1.0 Formal Semantics Page 107 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

Issue-0096: Support for schema-less and incompletely validated documents

Date: 31-May-2001

Description: This is related to [Issue-0095: Importing Schemas and DTDs into
query]. We do not specify what is the effect of type checking a query that is applied to a
document without a DTD or Schema. In general, a schema-less document has type
xs:AnyType and type checking can proceed under that assumption. A related issue is
what is the effect of type checking a query that is applied to an incompletely validated
document. As above, we can make *no* assumptions about the static type of an
incompletely validated document and must assume its static type is xs:AnyType.

See also: http://lists.w3.org/Archives/Member/w3c-xml-query-wg/2001May/0408.html

Issue-0097: Static type-checking vs. Schema validation

Date: 31-May-2001

Description: Static type checking and schema validation are not equivalent, but we
might want to do both in a query. For example, we might want to assert statically that an
expression has a particular type and also validate dynamically the value of an expression
w.r.t a particular schema.

The differences between static type checking and schema validation must be
enumerated clearly (the XSFD people should help us with this).

Issue-0098: Implementation of and conformance levels for static type checking

Date: 31-May-2001

Description: This issue is related to [Issue-0059: Testing Subtyping] Static type
checking may be difficult and/or expensive to implement. Some discussion of algorithmic
issues of type checking are needed. In addition, we may want to define "conformance
levels" for XQuery, in which some processors (or some processing modes) are more
permissive about types. This would allow XQuery implementations that do not
understand all of Schema, and it would allow customers some control over the
cost/benefit tradeoff of type checking.

Issue-0099: Incomplete/inconsistent mapping from XQuery to core

Date: 06-June-2001

Description: This mapping is still preliminary and contains inconsistencies. These
inconsistencies will be addressed in detail in the next draft of the document.

B.3 Alphabetic list of issues

B.3.1 Open Issues

Number: 34

[Issue-0015: 3-valued logic to support NULLs]

XQuery 1.0 Formal Semantics Page 108 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

[Issue-0018: Align algebra types with schema]
[Issue-0088: Align XQuery types with XML Schema : Formal Description.]
[Issue-0091: Attribute expression]
[Issue-0068: Document Collections]
[Issue-0092: Error expression]
[Issue-0084: Execution model]
[Issue-0083: Expressive power and complexity of typeswitch expression]
[Issue-0073: Facets for simple types and their role for typechecking]
[Issue-0072: Facet value access in Query Algebra]
[Issue-0008: Fixed point operator or recursive functions]
[Issue-0078: Generation of ambiguous types]
[Issue-0079: Global order between nodes in different documents]
[Issue-0054: Global vs. local complex types]
[Issue-0053: Global vs. local elements]
[Issue-0098: Implementation of and conformance levels for static type checking]
[Issue-0095: Importing Schemas and DTDs into query]
[Issue-0099: Incomplete/inconsistent mapping from XQuery to core]
[Issue-0033: Metadata Queries]
[Issue-0087: More examples of Joins]
[Issue-0014: Polymorphic types]
[Issue-0093: Representation of Text Nodes in type system]
[Issue-0085: Semantics of Wildcard type]
[Issue-0090: Static type-assertion expression]
[Issue-0097: Static type-checking vs. Schema validation]
[Issue-0094: Static type errors and warnings]
[Issue-0020: Structural vs. name equivalence]
[Issue-0019: Support derived types]
[Issue-0096: Support for schema-less and incompletely validated documents]
[Issue-0089: Syntax for types in XQuery]
[Issue-0059: Testing Subtyping]
[Issue-0055: Types with non-wellformed instances]
[Issue-0080: Typing of parent]
[Issue-0011: XPath tumbler syntax instead of index?]

B.3.2 Resolved (or redundant) Issues

Number: 65

[Issue-0071: Alignment with the XML Query Datamodel]
[Issue-0001: Attributes]
[Issue-0047: Attributes]
[Issue-0030: Automatic type coercion]
[Issue-0052: Axes of XPath]
[Issue-0065: Built-In GroupBy?]
[Issue-0027: Case syntax]
[Issue-0040: Case Syntax]
[Issue-0023: Catch exceptions and process in algebra?]
[Issue-0013: Collations]
[Issue-0010: Construct values by copy]
[Issue-0038: Copy by reachability]
[Issue-0037: Copy vs identity semantics]
[Issue-0039: Dereferencing semantics]
[Issue-0063: Do we need (user defined) higher order functions?]
[Issue-0058: Downward Navigation only?]
[Issue-0005: Element identity]
[Issue-0064: Error code handling in Query Algebra]

XQuery 1.0 Formal Semantics Page 109 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

[Issue-0035: Exception handling]
[Issue-0048: Explicit Type Declarations]
[Issue-0009: Externally defined functions]
[Issue-0046: FOR Syntax]
[Issue-0032: Full regular path expressions]
[Issue-0028: Fusion]
[Issue-0034: Fusion]
[Issue-0003: Global Order]
[Issue-0045: Global Order]
[Issue-0036: Global-order based operators]
[Issue-0042: GroupBy]
[Issue-0012: GroupBy - needs second order functions?]
[Issue-0022: Indentation, Whitespaces]
[Issue-0077: Interleaved repetition and closure]
[Issue-0060: Internationalization aspects for strings]
[Issue-0044: Keys and IDREF]
[Issue-0081: Lexical representation of Schema simple types]
[Issue-0016: Mixed content]
[Issue-0061: Model for References]
[Issue-0057: More precise type system; choice in path]
[Issue-0002: Namespaces]
[Issue-0062: Open questions for constructing elements by reference]
[Issue-0074: Operational semantics for expressions]
[Issue-0056: Operators on Simple Types]
[Issue-0069: Organization of Document]
[Issue-0075: Overloading user defined functions]
[Issue-0026: Project - one tag only]
[Issue-0051: Project redundant?]
[Issue-0043: Recursive Descent for XPath]
[Issue-0050: Recursive Descent for XPath]
[Issue-0031: Recursive functions]
[Issue-0007: References: IDREFS, Keyrefs, Joins]
[Issue-0004: References vs containment]
[Issue-0067: Runtime Casts]
[Issue-0066: Shallow or Deep Equality?]
[Issue-0041: Sorting]
[Issue-0006: Source and join syntax instead of "for"]
[Issue-0070: Stable vs. Unstable Sort/Distinct]
[Issue-0086: Syntactic rules]
[Issue-0021: Syntax]
[Issue-0025: Treatment of empty results at type level]
[Issue-0082: Type and expression operator precedence]
[Issue-0049: Unordered Collections]
[Issue-0017: Unordered content]
[Issue-0076: Unordered types]
[Issue-0024: Value for empty sequences]
[Issue-0029: Views]

B.4 Delegated Issues

B.4.1 XPath 2.0

The following issues are delegated to XPath 2.0: [Issue-0007: References: IDREFS, Keyrefs,
Joins], [Issue-0030: Automatic type coercion], [Issue-0032: Full regular path expressions],
[Issue-0052: Axes of XPath].

XQuery 1.0 Formal Semantics Page 110 of 110

http://www.w3.org/TR/query-semantics/ 8/9/2001

B.4.2 XQuery

The following issues are delegated to XQuery: [Issue-0009: Externally defined functions], [Issue-
0028: Fusion], [Issue-0029: Views], [Issue-0030: Automatic type coercion], [Issue-0052: Axes
of XPath], [Issue-0081: Lexical representation of Schema simple types], [Issue-0082: Type
and expression operator precedence], [Issue-0086: Syntactic rules].

B.4.3 Operators

The following issues are delegated to XPath 2.0: [Issue-0013: Collations], [Issue-0030: Automatic
type coercion], [Issue-0056: Operators on Simple Types], [Issue-0060: Internationalization
aspects for strings].

