

XML Schema Part 2: Datatypes
W3C Working Draft 22 September 2000
This version:

http://www.w3.org/TR/2000/WD-xmlschema-2-20000922/
(in XML and HTML, with a schema and DTD including datatype definitions, as well as a
schema for built-in datatypes only, in a separate namespace.)

Latest version:
http://www.w3.org/TR/xmlschema-2/

Previous version:
http://www.w3.org/TR/2000/WD-xmlschema-2-20000407/

Editors:
Paul V. Biron (Kaiser Permanente, for Health Level Seven) <Paul.V.Biron@kp.org>
Ashok Malhotra (IBM) <petsa@us.ibm.com>

Copyright ©1999-2000 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark, document use and
software licensing rules apply.

Abstract
XML Schema: Datatypes is part 2 of a two-part draft of the specification for the XML Schema
definition language. This document proposes facilities for defining datatypes to be used in XML
Schemas as well as other XML specifications. The datatype language, which is itself represented in
XML 1.0, provides a superset of the capabilities found in XML 1.0 document type definitions (DTDs)
for specifying datatypes on elements and attributes.

Status of this document
This is an internal working draft for review by members of the Working Group.

It has not been reviewed by the XML Schema Working Group and the Working Group has not
agreed to its publication. Note that not that all sections of the draft represent the current consensus
of the WG. Different sections of the specification may well command different levels of consensus in
the WG. Public comments on this draft will be instrumental in the WG's deliberations.

This working draft incorporates all WG decisions through 2000-08-02, and some decisions taken
since then.

Although the Working Group does not anticipate further changes to the functionality described here,
this is still a working draft, subject to change. The present version should be implemented only by
those interested in providing a check on its design or by those preparing for an implementation of the
Candidate Recommendation. The Schema WG will not allow early implementation to constrain its

1 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

ability to make changes to this specification prior to final release.

During the Candidate Recommendation phase, although feedback based on implementation
experience is welcome, there are certain aspects of the design presented herein where the Working
Group is particularly interested in feedback. These are designated priority feedback aspects of the
design, and identified as such in editorial notes throughout this draft.

A list of current W3C working drafts can be found at http://www.w3.org/TR/. They may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use W3C Working
Drafts as reference material or to cite them as other than "work in progress".

Several "note types" are used throughout this draft:

issue [Issue (issue-name):]
something on which the editors are seeking comment.

editorial note [Ed. Note:]
something the editors wish to call to the attention of the reader. To be removed prior to the
recommendation becoming final.

note [Note:]
something the editors wish to call to the attention of the reader. To remain in the final
recommendation.

Table of contents
1 Introduction
 1.1 Purpose
 1.2 Requirements
 1.3 Scope
 1.4 Terminology
 1.5 Constraints and Contributions
2 Type System
 2.1 Datatype
 2.2 Value space
 2.3 Lexical space
 2.4 Canonical Lexical Representation
 2.5 Facets
 2.5.1 Fundamental facets
 2.5.2 Constraining or Non-fundamental facets
 2.6 Datatype dichotomies
 2.6.1 Atomic vs. list vs. union datatypes
 2.6.2 Primitive vs. derived datatypes
 2.6.3 Built-in vs. user-derived datatypes
3 Built-in datatypes
 3.1 Namespace considerations
 3.2 Primitive datatypes
 3.2.1 string
 3.2.2 boolean
 3.2.3 float
 3.2.4 double
 3.2.5 decimal
 3.2.6 timeDuration

2 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

 3.2.7 recurringDuration
 3.2.8 binary
 3.2.9 uriReference
 3.2.10 ID
 3.2.11 IDREF
 3.2.12 ENTITY
 3.2.13 NOTATION
 3.2.14 QName
 3.3 Derived datatypes
 3.3.1 language
 3.3.2 IDREFS
 3.3.3 ENTITIES
 3.3.4 NMTOKEN
 3.3.5 NMTOKENS
 3.3.6 Name
 3.3.7 NCName
 3.3.8 integer
 3.3.9 nonPositiveInteger
 3.3.10 negativeInteger
 3.3.11 long
 3.3.12 int
 3.3.13 short
 3.3.14 byte
 3.3.15 nonNegativeInteger
 3.3.16 unsignedLong
 3.3.17 unsignedInt
 3.3.18 unsignedShort
 3.3.19 unsignedByte
 3.3.20 positiveInteger
 3.3.21 timeInstant
 3.3.22 time
 3.3.23 timePeriod
 3.3.24 date
 3.3.25 month
 3.3.26 year
 3.3.27 century
 3.3.28 recurringDate
 3.3.29 recurringDay
4 Datatype components
 4.1 Datatype definition
 4.2 Constraining facets
 4.2.1 length
 4.2.2 minLength
 4.2.3 maxLength
 4.2.4 pattern
 4.2.5 enumeration
 4.2.6 maxInclusive
 4.2.7 maxExclusive
 4.2.8 minExclusive
 4.2.9 minInclusive
 4.2.10 precision
 4.2.11 scale

3 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

 4.2.12 encoding
 4.2.13 duration
 4.2.14 period
5 XML representation of datatype definitions
 5.1 XML representation of datatype definitions
 5.1.1 Derivation by restriction
 5.1.2 Derivation by list
 5.1.3 Derivation by union
 5.2 Constraining facets
 5.2.1 length
 5.2.2 minLength
 5.2.3 maxLength
 5.2.4 pattern
 5.2.5 enumeration
 5.2.6 maxInclusive
 5.2.7 maxExclusive
 5.2.8 minInclusive
 5.2.9 minExclusive
 5.2.10 precision
 5.2.11 scale
 5.2.12 encoding
 5.2.13 duration
 5.2.14 period
6 Conformance

Appendices

A Schema for Datatype Definitions (normative)
B DTD for Datatype Definitions (non-normative)
C Datatypes and Facets
 C.1 Fundamental Facets
 C.2 Constraining Facets
D ISO 8601 Date and Time Formats
 D.1 ISO 8601 Conventions
 D.2 Truncated and Reduced Formats
 D.3 Deviations from ISO 8601 Formats
 D.3.1 Sign Allowed
 D.3.2 No Year Zero
 D.3.3 More Than 9999 Years
E Regular Expressions
 E.1 Character Classes
 E.1.1 Character Class Escapes
F References
 F.1 Normative
 F.2 Non-normative
G Acknowledgments (non-normative)
H Revisions from Previous Draft

1 Introduction

4 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

1.1 Purpose

The [XML 1.0 Recommendation] specification defines limited facilities for applying datatypes to
document content in that documents may contain or refer to DTDs that assign types to elements and
attributes. However, document authors, including authors of traditional documents and those
transporting data in XML, often require a higher degree of type checking to ensure robustness in
document understanding and data interchange.

The table below offers two typical examples of XML instances in which datatypes are implicit: the
instance on the left represents a billing invoice, the instance on the right a memo or perhaps an
email message in XML.

Data oriented Document oriented

<invoice>
<orderDate>1999-01-21</orderDate>
<shipDate>1999-01-25</shipDate>
<billingAddress>

<name>Ashok Malhotra</name>
<street>123 IBM Ave.</street>
<city>Hawthorne</city>
<state>NY</state>
<zip>10532-0000</zip>

</billingAddress>
<voice>555-1234</voice>
<fax>555-4321</fax>

</invoice>

<memo importance='high'
date='1999-03-23'>

<from>Paul V. Biron</from>
<to>Ashok Malhotra</to>
<subject>Latest draft</subject>
<body>

We need to discuss the latest
draft <emph>immediately</emph>.
Either email me at <email>
mailto:paul.v.biron@kp.org</email>
or call <phone>555-9876</phone>

</body>
</memo>

The invoice contains several dates and telephone numbers, the postal abbreviation for a state
(which comes from an enumerated list of sanctioned values), and a ZIP code (which takes a
definable regular form). The memo contains many of the same types of information: a date,
telephone number, email address and an "importance" value (from an enumerated list, such as "low",
"medium" or "high"). Applications which process invoices and memos need to raise exceptions if
something that was supposed to be a date or telephone number does not conform to the rules for
valid dates or telephone numbers.

In both cases, validity constraints exist on the content of the instances that are not expressible in
XML DTDs. The limited datatyping facilities in XML have prevented validating XML processors from
supplying the rigorous type checking required in these situations. The result has been that individual
applications writers have had to implement type checking in an ad hoc manner. This specification
addresses the need of both document authors and applications writers for a robust, extensible
datatype system for XML which could be incorporated into XML processors. As discussed below,
these datatypes could be used in other XML-related standards as well.

1.2 Requirements

The [XML Schema Requirements] document spells out concrete requirements to be fulfilled by this
specification, which state that the XML Schema Language must:

1. provide for primitive data typing, including byte, date, integer, sequence, SQL & Java primitive
data types, etc.;

2. define a type system that is adequate for import/export from database systems (e.g., relational,
object, OLAP);

5 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

3. distinguish requirements relating to lexical data representation vs. those governing an
underlying information set;

4. allow creation of user-defined datatypes, such as datatypes that are derived from existing
datatypes and which may constrain certain of its properties (e.g., range, precision, length,
format).

1.3 Scope

This portion of the XML Schema Language discusses datatypes that can be used in an XML
Schema. These datatypes can be specified for element content that would be specified as #PCDATA
and attribute values of various types in a DTD. It is the intention of this specification that it be usable
outside of the context of XML Schemas for a wide range of other XML-related activities such as
[XSL] and [RDF Schema].

1.4 Terminology

The terminology used to describe XML Schema Datatypes is defined in the body of this specification.
The terms defined in the following list are used in building those definitions and in describing the
actions of a datatype processor:

[Definition:] for compatibility
A feature of this specification included solely to ensure that schemas which use this feature
remain compatible with [XML 1.0 Recommendation]

[Definition:] may
Conforming documents and processors are permitted to but need not behave as described.

[Definition:] match
(Of strings or names:) Two strings or names being compared must be character for character
the same.

[Definition:] must
Conforming documents and processors are required to behave as described; otherwise they
are in error.

[Definition:] error
A violation of the rules of this specification; results are undefined. Conforming software may
detect and report an error and may recover from it.

1.5 Constraints and Contributions

This specification provides three different kinds of normative statements about schema components,
their representations in XML and their contribution to the schema-validation of information items:

[Definition:] Constraint on Schemas
Constraints on the schema components themselves, i.e. conditions components must satisfy to
be components at all. Largely to be found in Datatype components (§4).

[Definition:] Schema Representation Constraint
Constraints on the representation of schema components in XML. Some but not all of these are
expressed in Schema for Datatype Definitions (normative) (§A) and DTD for Datatype
Definitions (non-normative) (§B) . Largely to be found in XML representation of datatype
definitions (§5).

[Definition:] Validity Contribution
Constraints expressed by schema components which information items must satisfy to be
schema-valid. Largely to be found in Datatype components (§4).

6 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

2 Type System
This section describes the conceptual framework behind the type system defined in this
specification. The framework has been influenced by the [ISO 11404] standard on
language-independent datatypes as well as the datatypes for [SQL] and for programming languages
such as Java.

The datatypes discussed in this specification are computer representations of well known abstract
concepts such as integer and date. It is not the place of this specification to define these abstract
concepts; many other publications provide excellent definitions.

2.1 Datatype

[Definition:] In this specification, a datatype is a 3-tuple, consisting of a) a set of distinct values,
called its value space, b) a set of lexical representations, called its lexical space, and c) a set of
facets that characterize properties of the value space, individual values or lexical items.

2.2 Value space

[Definition:] A value space is the set of values for a given datatype. Each value in the value space
of a datatype is denoted by one or more literals in its lexical space.

The value space of a given datatype can be defined in one of the following ways:

defined axiomatically from fundamental notions (intensional definition) [see primitive]
enumerated outright (extensional definition) [see enumeration]
defined by restricting the value space of an already defined datatype to a particular subset with
a given set of properties [see derived]
defined as a combination of values from one or more already defined value space(s) by a
specific construction procedure [see list and union]

value spaces have certain properties. For example, they always have the property of cardinality,
some definition of equality and may be ordered by which individual values within the value space can
be compared to one another. The properties of value spaces that are recognized by this
specification are defined in Fundamental facets (§2.5.1).

2.3 Lexical space

In addition to its value space, each datatype also has a lexical space.

[Definition:] A lexical space is the set of valid literals for a datatype (literals may appear as one or
more character information items as defined in [XML Information Set]).

For example, "100" and "1.0E2" are two different literals from the lexical space of float which both
denote the same value. The type system defined in this specification provides a mechanism for
schema designers to control the set of values and the corresponding set of acceptable literals of
those values for a datatype.

2.4 Canonical Lexical Representation

7 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

While the dataypes defined in this specification have, for the most part, a single lexical
representation i.e. each value in the datatype's value space is denoted by a single literal in its lexical
space, this is not always the case. The example in the previous section showed two literals for the
datatype float which denote the same value. Similarly, there may be several literals for one of the
date or time datatypes that denote the same value using different timezone indicators. In such cases,
this specification defines a [Definition:] canonical lexical representation, or canonical
representation for short, which selects a set of literals from among the valid set of literals for the
datatype such that each literal maps to a single value in the value space and vice-versa.

2.5 Facets

[Definition:] A facet is a single defining aspect of a value space. Generally speaking, each facet
characterizes a value space along independent axes or dimensions.

The facets of a datatype serve to distinguish those aspects of one datatype which differ from other
datatypes. Rather than being defined solely in terms of a prose description the datatypes in this
specification are defined in terms of the synthesis of facet values which together determine the value
space and properties of the datatype.

Facets are of two types: fundamental facets that define the datatype and non-fundamental or
constraining facets that constrain the permitted values of a datatype.

2.5.1 Fundamental facets

[Definition:] A fundamental facet is an abstract property which serves to semantically characterize
the values in a value space.

These properties are discussed in this section.

2.5.1.1 Equal

Every value space supports the notion of equality, with the following rules:

for any two instances of values from the value space(a,b), either a is equal to b, denoted a = b,
or a is not equal to b, denoted a != b;
there is no pair of instances (a, b) of values from the value space such that both a = b and a !=
b;
for every value a from the value space, a = a;
for any two instances (a, b) of values from the value space, a = b if and only if b = a;
for any three instances (a, b, c) of values from the value space, if a = b and b = c, then a = c.

On every datatype, the operation Equal is defined in terms of the equality property of the value
space: for any values a, b drawn from the value space, Equal(a,b) is true if a = b, and false
otherwise.

By definition, given value spaceA and value spaceB where A and B are not related by , for every pair
of values a from A and b from B, a != b.

2.5.1.2 Order

[Definition:] An order relation on a value space is a mathematical relation which imposes a total
order on the members of the value space.

8 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

[Definition:] A value space, and hence a datatype, is said to be ordered if there exists an
order-relation defined for that value space.

order relations have the following rules:

for every pair (a, b) from the value space, either a < b or b < a, or a = b;
for every triple (a, b, c) from the value space, if a < b and b < c, then a < c.

NOTE: The fact that this specification does not define an order-relation for some
datatype does not mean that some other application cannot treat that datatype as being
ordered.

2.5.1.3 Bounds

[Definition:] A value space is bounded above if there exists a unique value U in the value space
such that, for all values v in the value space, v <= U. [Definition:] The value U is said to be an
upper bound of the value space.

[Definition:] A value space is bounded below if there exists a unique value L in the space such that,
for all values v in the value space, L <= v. [Definition:] The value L is then said to be a lower
bound of the value space.

[Definition:] A datatype is bounded if its value space has both an upper bound and a lower bound.

2.5.1.4 Cardinality

[Definition:] Every value space has associated with it the concept of cardinality. Some value spaces
are finite, some are countably infinite while still others are uncountably infinite. A datatype is said to
have the cardinality of its value space.

It is sometimes useful to categorize value spaces (and hence, datatypes) as to their cardinality.
There are two significant cases:

value spaces that are finite
value spaces that are countably infinite

2.5.1.5 Numeric

[Definition:] A datatype is said to be numeric if its values are conceptually quantities (in some
mathematical number system).

[Definition:] A datatype whose values are not numeric is said to be non-numeric.

2.5.2 Constraining or Non-fundamental facets

[Definition:] A constraining facet is an optional property that can be applied to a datatype to
constrain its value space.

Constraining the value space consequently constrains the lexical space. Adding constraining facets
to a base type is described in Derivation by restriction (§5.1.1) .

9 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

In this section we define all constraining facets that are available for use when defining derived
datatypes.

2.5.2.1 length

[Definition:] length is the number of units of length, where units of length varies depending on the
base type. The value of length must be a nonNegativeInteger.

For string and datatypes derived from string, length is measured in units of [Unicode] code points.
For binary and datatypes derived from binary, length is measured in octets (8 bits) of binary data.
For datatypes derived by list, length is measured in list items.

2.5.2.2 minLength

[Definition:] minLength is the minimum number of units of length, where units of length varies
depending on the base type. The value of minLength must be a nonNegativeInteger.

For string and datatypes derived from string, minLength is measured in units of [Unicode] code
points. For binary and datatypes derived from binary, minLength is measured in octets (8 bits) of
binary data. For datatypes derived by list, length is measured in list items.

2.5.2.3 maxLength

[Definition:] maxLength is the maximum number of units of length, where units of length varies
depending on the base type. The value of maxLength must be a nonNegativeInteger.

For string and datatypes derived from string, maxLength is measured in units of [Unicode] code
points. For binary and datatypes derived from binary, maxLength is measured in octets (8 bits) of
binary data. For datatypes derived by list, length is measured in list items.

2.5.2.4 pattern

[Definition:] pattern is a constraint on the value space of a datatype which is achieved by
constraining the lexical space to literals which match a specific pattern. The value of pattern must
be a regular expression.

2.5.2.5 enumeration

[Definition:] enumeration constrains the value space to a specified set of values.

enumeration does not impose an order relation on the value space it creates; the ordered property
of the datatype involved remains that of the base type.

2.5.2.6 maxInclusive

[Definition:] maxInclusive is the upper bound of the value space for a datatype with the ordered
property. The value is inclusive in the sense that the value is itself included in the value space. The
value of maxInclusive must be of the same type as the base type.

2.5.2.7 maxExclusive

[Definition:] maxExclusive is the upper bound of the value space for a datatype with the ordered

10 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

property. The value is exclusive in the sense that the value is itself excluded from the value space.
The value of maxExclusive must be of the same type as the base type.

2.5.2.8 minInclusive

[Definition:] minInclusive is the lower bound of the value space for a datatype with the ordered
property. The value is inclusive in the sense that the value is itself included in the value space. The
value of minInclusive must be of the same type as the base type.

2.5.2.9 minExclusive

[Definition:] minExclusive is the lower bound of the value space for a datatype with the ordered
property. The value is exclusive in the sense that the value is itself excluded from the value space for
the datatype. The value of minExclusive must be of the same type as the base type.

2.5.2.10 precision

[Definition:] precision is the maximum number of decimal digits in values of datatypes derived from
decimal. The value of precision must be a positiveInteger.

2.5.2.11 scale

[Definition:] scale is the maximum number of decimal digits in the fractional part of values of
datatypes derived from decimal. The value of scale must be a nonNegativeInteger .

2.5.2.12 encoding

[Definition:] encoding is the encoded form of the lexical space of datatypes derived from binary.
The value of encoding must be one of {hex, base64}.

If the value of encoding is hex then each binary octet is encoded as a character tuple, consisting
the two hexadecimal digits ([0-9a-fA-F]) representing the octet code. For example, "20" is the hex
encoding for the US-ASCII space character.

If the value of encoding is base64 then the entire binary stream is encoding using the Base64
Content-Transfer-Encoding defined in Section 6.8 [RFC 2045].

2.5.2.13 duration

[Definition:] duration is the duration of values for the datatype recurringDuration and datatypes
derived from recurringDuration. The value of duration must be a timeDuration.

2.5.2.14 period

[Definition:] period is the frequency of recurrence for values for the datatype recurringDuration and
datatypes derived from recurringDuration. The value of period must be timeDuration.

2.6 Datatype dichotomies

It is useful to categorize the datatypes defined in this specification along various dimensions, forming
a set of characterization dichotomies.

11 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

2.6.1 Atomic vs. list vs. union datatypes

Ed. Note: I know, now this is a trichotomy and not a dichotomy...hopefully no one will be
picky enough to complain

The first distinction to be made is that between atomic, list and union datatypes.

[Definition:] Atomic datatypes are those having values which are regarded by this
specification as being indivisible.
[Definition:] List datatypes are those having values each of which which consists of a
finite-length sequence of values of an atomic datatype.
[Definition:] Union datatypes are those whose value spaces and lexical spaces are the union
of the value spaces and lexical spaces of two or more other datatypes.

For example, a single token which matches Nmtoken from [XML 1.0 Recommendation] could be the
value of an atomic datatype (NMTOKEN); while a sequence of such tokens could be the value of a
list datatype (NMTOKENS).

2.6.1.1 Atomic datatypes

atomic datatypes may be either primitive or derived. The value space of an atomic datatype is a set
of "atomic" values, which for the purposes of this specification, are not further decomposable. The
lexical space of an atomic datatype is a set of literals whose internal structure is specific to the
datatype in question.

2.6.1.2 List datatypes

Several type systems (such as the one described in [ISO 11404]) treat list datatypes as special
cases of the more general notions of aggregate or collection datatypes.

list datatypes are always derived. The value space of a list datatype is a set of finite-length
sequences of atomic values. The lexical space of a list datatype is a set of literals whose internal
structure is a whitespace separated sequence of literals of the atomic datatype of the items in the list
(where whitespace matches S in [XML 1.0 Recommendation]).

Example

<simpleType name='sizes'>
<list itemType='decimal'/>

</simpleType>

<cerealSizes xsi:type='sizes'> 8 10.5 12 </cerealSizes>

A list datatype can be derived from an atomic datatype whose lexical space allows whitespace. In
such a case, regardless of the input, list items will be separated at whitespace boundaries.

12 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

Example

<simpleType name='listOfString'>
<list itemType='string'/>

</simpleType>

<someElement xsi:type='listOfString'>
this is not list item 1
this is not list item 2
this is not list item 3
</someElement>

In the above example, the value of the someElement element is not a list of length 3; rather, it is a list
of length 18.

When a datatype is derived from a list datatype, the following constraining facets may be used:

length
maxLength
minLength
enumeration

For each of the above facets, the unit of length is measured in number of list items.

2.6.1.3 Union datatypes

The value space and lexical space of a union datatype are the union of the value spaces and lexical
spaces of its input types. union datatypes are always derived. Currently, there are no built-inunion
datatypes.

Example

A prototypical example of a union type is the maxOccurs attribute on the element element in XML
Schema itself: it is a union of nonNegativeInteger and an enumeration with the single member, the string
"unbounded", as shown below.

<attributeGroup name="occurs">
<attribute name="minOccurs" type="nonNegativeInteger" use="default" value="1"/>
<attribute name="maxOccurs">

<simpleType>
<union>

<simpleType>
<restriction base='nonNegativeInteger'/>

</simpleType>
<simpleType>

<restriction base='string'>
<enumeration value='unbounded'/>

</restriction>
</simpleType>

</union>
</simpleType>

</attribute>
</attributeGroup>

Any number (greater than 1) of atomic or listdatatypes may participate in a union type. The order in

13 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

which the participating types are specified in the definition (that is, the order of the <simpleType>
children of the <union> element) is significant. During validation, an element or attribute's value is
validated against the participating types in the order in which they appear in the definition until a
match is found. The evaluation order can be overridden with the use of xsi:type. See Datatype
definition (§4.1) and XML representation of datatype definitions (§5) for more details.

Ed. Note: (PVB) Do we want to make the restriction that there has to be more than one
type in a union? It was in the proposal, but I don't think it should be an error if only one
appears.

Example

For example, given the definition below, the first instance of the <size> element validates correctly as an
integer (§3.3.8) , the second and third as string (§3.2.1).

<xsd:element name='size'>
<xsd:simpleType>

<xsd:union>
<xsd:simpleType>

<xsd:restriction base='integer'/>
</xsd:simpleType>
<xsd:simpleType>

<xsd:restriction base='string'/>
</xsd:simpleType>

</xsd:union>
</xsd:simpleType>

</xsd:element>

<size>1</size>
<size>large</size>
<size xsi:type='xsd:string'>1</size>

NOTE: A datatype which is atomic in this specification need not be an "atomic" datatype
in any programming language used to implement this specification. Likewise, a datatype
which is a list in this specification need not be a "list" datatype in any programming
language used to implement this specification. Furthermore, a datatype which is a union
in this specification need not be a "union" datatype in any programming language used to
implement this specification.

2.6.2 Primitive vs. derived datatypes

Next, we distinquish between primitive and derived datatypes.

[Definition:] Primitive datatypes are those that are not defined in terms of other datatypes;
they exist ab initio.
[Definition:] Derived datatypes are those that are defined in terms of other datatypes.

For example, in this specification, float is a well-defined mathematical concept that cannot be
defined in terms of other datatypes, while a date is a special case of the more general datatype
recurringDuration.

The datatypes defined by this specification fall into both the primitive and derived categories. It is felt
that a judiciously chosen set of primitive datatypes will serve the widest possible audience by

14 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

providing a set of convenient datatypes that can be used as is, as well as providing a rich enough
base from which the variety of datatypes needed by schema designers can be derived.

[Definition:] Every derived datatype is defined in terms of an existing datatype, referred to as the
base type. base types may be either primitive or derived.

In the example above, date is derived from the base typerecurringDuration.

NOTE: A datatype which is primitive in this specification need not be a "primitive"
datatype in any programming language used to implement this specification. Likewise, a
datatype which is derived in this specification need not be a "derived" datatype in any
programming language used to implement this specification.

2.6.3 Built-in vs. user-derived datatypes

[Definition:] Built-in datatypes are those which are defined in this specification, and may be
either primitive or derived;
[Definition:] User-derived datatypes are those derived datatypes that are defined by individual
schema designers.

Conceptually there is no difference between the built-in derived datatypes included in this
specification and the user-derived datatypes which will be created by individual schema designers.
The built-in derived datatypes are those which are believed to be so common that if they were not
defined in this specification many schema designers would end up "reinventing" them. Furthermore,
including these derived datatypes in this specification serves to demonstrate the mechanics and
utility of the datatype generation facilities of this specification.

NOTE: A datatype which is built-in in this specification need not be a "built-in" datatype in
any programming language used to implement this specification. Likewise, a datatype
which is user-derived in this specification need not be a "user-derived" datatype in any
programming language used to implement this specification.

3 Built-in datatypes
3.1 Namespace considerations

The built-in datatypes defined by this specification are designed to be used with the XML Schema
definition language as well as other XML specifications. To facilitate such usage the built-in
datatypes in this specification have the namespace URI:

http://www.w3.org/2000/10/XMLSchema-datatypes

This applies to both built-inprimitive and built-inderived datatypes.

Each user-derived datatype is also associated with a unique namespace. However, user-derived
datatypes do not come from the namespace defined by this specification; rather, they come from the
namespace of the schema in which they are defined (see XML Representation of Schemas in [XML
Schema Part 1: Structures]).

As described in more detail in XML representation of datatype definitions (§5.1) , each user-derived
datatype must be defined in terms of another datatype in one of three ways: 1) by assigning

15 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

constraining facets which serve to restrict the value space of the user-derived datatype to a subset of
the base type; 2) by creating a list datatype whose value space consists of finite-length sequences of
values of the base type; or 3) by creating a union datatype whose value space consists of the union
of the value space of two or more other datatypes.

3.2 Primitive datatypes

The primitive datatypes defined by this specification are described below. For each datatype, the
value space and lexical space are defined, constraining facets which apply to the datatype are listed
and any datatypes derived from this datatype are specified.

primitive datatypes can only be added by revisions to this specification.

3.2.1 string

[Definition:] The string datatype represents character strings in XML. The value space of string is
the set of finite-length sequences of UCS characters ([ISO 10646] and [Unicode]). A UCS character
(or just character, for short) is an atomic unit of communication; it is not further specified except to
note that every UCS character has a corresponding UCS code point, which is an integer.

NOTE: As noted in Order (§2.5.1.2), the fact that this specification does not specify an
order-relation for string does not preclude other applications from treating strings as
being ordered.

3.2.1.1 Constraining facets

string has the following constraining facets:

length
minLength
maxLength
pattern
enumeration

3.2.1.2 Derived datatypes

string has the following built-in derived datatypes:

language
NMTOKEN
Name

3.2.2 boolean

[Definition:] boolean has the value space required to support the mathematical concept of
binary-valued logic: {true, false}.

3.2.2.1 Lexical Representation

An instance of a datatype that is defined as boolean can have the following legal lexical values {true,
false}.

16 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

3.2.2.2 Constraining facets

boolean has the following constraining facets:

pattern

3.2.3 float

[Definition:] float corresponds to the IEEE single-precision 32-bit floating point type [IEEE
754-1985]. The basic value space of float consists of the values m × 2^e, where m is an integer
whose absolute value is less than 2^24, and e is an integer between -149 and 104, inclusive. In
addition to the basic value space described above, the value space of float also contains the
following special values: positive and negative zero, positive negative infinity and not-a-number. The
order-relation on float is: x < y iff y - x is positive.

A literal in the lexical space representing a decimal number d maps to the normalized value in the
value space of float that is closest to d; if d is exactly halfway between two such values then the
even value is chosen. This is the best approximation of d[Clinger, WD (1990)] [Gay, DM (1990)],
which is more accurate than the mapping required by [IEEE 754-1985].

3.2.3.1 Lexical representation

float values have a lexical representation consisting of a mantissa followed, optionally, by the
character "E" or "e", followed by an exponent. The exponent must be an integer. The mantissa must
be a decimal number. The representations for exponent and mantissa must follow the lexical rules
for integer and decimal. If the "E" or "e" and the following exponent are omitted, an exponent value of
0 is assumed.

The special values positive and negative zero, positive and negative infinity and not-a-number have
0, -0, INF, -INF and NaN, respectively.

For example, -1E4, 1267.43233E12, 12.78e-2, 12 and INF are all legal literals for float.

3.2.3.2 Canonical representation

The canonical representation for float is defined by prohibiting certain options from the Lexical
representation (§3.2.3.1) . Specifically, the preceding optional "+" sign is prohibited from the
mantissa. The exponent must be indicated by "E" ande number representations must be normalized
such that for non-zero numbers there is a single non-zero digit to the left of the decimal point.
Leading and trailing zeroes are disallowed in the mantissa and leading zeroes are disallowed in the
exponent.

3.2.3.3 Constraining facets

float has the following constraining facets:

pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

17 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

3.2.4 double

[Definition:] The double datatype corresponds to IEEE double-precision 64-bit floating point type
[IEEE 754-1985]. The basic value space of double consists of the values m × 2^e, where m is an
integer whose absolute value is less than 2^53, and e is an integer between -1075 and 970,
inclusive. In addition to the basic value space described above, the value space of double also
contains the following special values: positive and negative zero, positive negative infinity and
not-a-number. The order-relation on double is: x < y iff y - x is positive.

A literal in the lexical space representing a decimal number d maps to the normalized value in the
value space of double that is closest to d; if d is exactly halfway between two such values then the
even value is chosen. This is the best approximation of d ([Clinger, WD (1990)] , [Gay, DM (1990)]),
which is more accurate than the mapping required by [IEEE 754-1985].

3.2.4.1 Lexical representation

double values have a lexical representation consisting of a mantissa followed, optionally, by the
character "E" or "e", followed by an exponent. The exponent must be an integer. The mantissa must
be a decimal number. The representations for exponent and mantissa must follow the lexical rules
for integer and decimal. If the "E" or "e" and the following exponent are omitted, an exponent value of
0 is assumed.

The special values positive and negative zero, positive and negative infinity and not-a-number have
0, -0, INF, -INF and NaN, respectively.

For example, -1E4, 1267.43233E12, 12.78e-2, 12 and INF are all legal literals for double.

3.2.4.2 Canonical representation

The canonical representation for double is defined by prohibiting certain options from the Lexical
representation (§3.2.4.1) . Specifically, the preceding optional "+" sign is prohibited from the
mantissa. The exponent must be indicated by "E" ande number representations must be normalized
such that for non-zero numbers there is a single non-zero digit to the left of the decimal point.
Leading and trailing zeroes are disallowed in the mantissa and leading zeroes are disallowed in the
exponent.

3.2.4.3 Constraining facets

double has the following constraining facets:

pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.2.5 decimal

[Definition:] decimal represents arbitrary precision decimal numbers. The value space of decimal is
the set of the values i × 10^-n, where i and n are integers such that n >= 0. The order-relation on

18 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

decimal is: x < y iff y - x is positive.

[Definition:] The value space of types derived from decimal with a value for precision of p is the set
of values i × 10^-n, where n and i are integers such that p >= n >= 0 and the number of significant
decimal digits in i is less than or equal to p.

[Definition:] The value space of types derived from decimal with a value for scale of s is the set of
values i × 10^-n, where i and n are integers such that 0 <= n <= s.

Ed. Note: Priority Feedback Request
The use of arbitrary precision decimal numbers, including all datatypes derived from
decimal (e.g., integer) in this design impacts the implementation of schema processors in
a number of places: checking maxLength constraints on strings, for example. It may
impact interchange between XML schemas and programming languages, databases, etc.
Our design discussions did not reveal convincing evidence of undue burden because of
arbitrary precision decimal numbers in this design, but we welcome further input from
implementors.

3.2.5.1 Lexical representation

decimal has a lexical representation consisting of a finite-length sequence of decimal digits
separated by a period as a decimal indicator, in accordance with the scale and precision facets, with
an optional leading sign. If the sign is omitted, "+" is assumed. Leading and trailing zeroes are
optional. If the fractional part is zero, the period and following zero(es) can be omitted. For example:
-1.23, 12678967.543233, +100000.00.

3.2.5.2 Canonical representation

The canonical representation for decimal is defined by prohibiting certain options from the Lexical
representation (§3.2.5.1) . Specifically, the preceding optional "+" sign is prohibited. Leading zeroes
are prohibited. Trailing zeroes to the right of the decimal point are also prohibited.

3.2.5.3 Constraining facets

decimal has the following constraining facets:

precision
scale
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.2.5.4 Derived datatypes

decimal has the following built-in derived datatypes:

integer

3.2.6 timeDuration

19 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

[Definition:] timeDuration represents a duration of time. The value space of timeDuration is a
six-dimensional space where the coordinates designate the year, month, day, hour, minute, and
second components defined in § 5.5.3.2 of [ISO 8601], respectively. These components are ordered
in their significance by their order of appearance i.e. as year, month, day, hour, minute, and second.
The order-relation on timeDuration is stated as follows: for instances x and y of timeDuration, x-y is
defined as component-wise subtraction. x > y iff all the components of x-y are non-negative and at
least one component is positive. x < y iff all the components of x-y are non-positive and at least one
component is negative. x = y iff all components of x-y are zero.

3.2.6.1 Lexical representation

A single lexical representation, similar to the representations allowed by [ISO 8601], is allowed for
timeDuration. This lexical representation is the [ISO 8601] extended format PnYn MnDTnH nMnS,
where nY represents the number of years, nM the number of months, nD the number of days, 'T' is
the date/time separator, nH the number of hours, nM the number of minutes and nS the number of
seconds. The number of seconds can include decimal digits to arbitrary precision.

The values of the Year, Month, Day, Hour and Minutes components are not restricted but allow an
arbitrary integer. Similarly, the value of the Seconds component allows an arbitrary decimal, that is
they do not follow the alternative format of § 5.5.3.2.1 of [ISO 8601].

An optional preceding minus sign ('-') is allowed, to indicate a negative duration. If the sign is omitted
a positive duration is indicated. See also ISO 8601 Date and Time Formats (§D).

For example, to indicate a duration of 1 year, 2 months, 3 days, 10 hours, and 30 minutes, one
would write: P1Y2M3DT10H30M. One could also indicate a duration of minus 120 days as: -P120D.

Reduced precision and truncated representations of this format are allowed provided they conform to
the following:

The lowest order items may be omitted. If omitted their value is assumed to be zero.
The lowest order item may have a decimal fraction.
If the number of years, months, days, hours, minutes, or seconds in any expression equals
zero, the number and its corresponding designator may be omitted. However, at least one
number and its designator must be present.
The designator 'T' shall be absent if all of the time items are absent. The designator 'P' must
always be present.

For example, P1347Y, P1347M are P1Y2MT2H are all allowed; P0Y1347M and P0Y1347M0D are
allowed. P-1347M is not allowed although -P1347M is allowed. P1Y2MT is not allowed.

3.2.6.2 Constraining facets

timeDuration has the following constraining facets:

pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

20 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

3.2.7 recurringDuration

[Definition:] recurringDuration represents a timeDuration that recurs with a specific timeDuration
starting from a specific origin. The order-relation on recurringDuration is: x < y iff y - x is positive.

Recurring duration has two constraining facets duration and period whose values must be specified
when the datatype is defined. These facets specify the length of the duration and after what duration
it recurs. The lexical format used to specify these facet values is the lexical format for timeDuration.
A value of 0 for the facet period means that the duration does not recur i.e. there is but a single
occurrence. A value of 0 for the facet duration means that the duration is, in fact, a single instant of
time.

recurringDuration is a conceptual datatype which serves as a basetype from which the other date
and time datatypes are generated. It can also be used as a basetype for user-derived datatypes. A
user-derived datatype can be generated from recurringDuration by specifying the values for
duration and period. The value that appears in an instance document is the value of the origin when
the recurrence begins.

Constraint: duration and period required for recurringDuration
It is an error for recurringDuration to be used directly in a schema. Only datatypes that are derived from
recurringDuration by specifying a value for duration and period can be used in a schema.

3.2.7.1 Lexical representation

A single lexical representation, which is a subset of the lexical representations allowed by [ISO
8601], is allowed for recurringDuration. This lexical representation is the [ISO 8601] extended
format CCYY-MM-DDThh:mm:ss.sss where "CC" represents the century, "YY" the year, "MM" the
month and "DD" the day, preceded by an optional leading sign to indicate a negative number. If the
sign is omitted, "+" is assumed. The letter "T" is the date/time separator and "hh", "mm", "ss.sss"
represent hour, minute and second respectively. Additional digits can be used to increase the
precision of fractional seconds if desired. To accommodate year values greater than 9999 additional
digits can be added to the left of this representation. The year 0000 is prohibited.

This representation can be immediately followed by a "Z" to indicate Coordinated Universal Time
(UTC). To indicate the time zone, i.e. the difference between the local time and Coordinated
Universal Time, the difference immediately follows the time and consists of a sign, + or -, followed by
hh:mm. See also ISO 8601 Date and Time Formats (§D).

The derived datatype timeInstant uses the same lexical representation. Other derived datatypes
date, time, timePeriod and recurringDate use truncated versions of this lexical representation.

3.2.7.2 Canonical representation

The canonical representation for recurringDuration is defined by prohibiting certain options from
the Lexical representation (§3.2.7.1) . Specifically, the preceding optional "+" sign is prohibited and
the time zone must be Coordinated Universal Time (UTC) and be indicated by a "Z".

3.2.7.3 Constraining facets

recurringDuration has the following constraining facets:

21 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

duration
period
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.2.7.4 Derived datatypes

recurringDuration has the following built-in derived datatypes:

timeInstant
time
timePeriod
recurringDate
recurringDay

3.2.8 binary

[Definition:] binary represents arbitrary binary data. The value space of binary is the set of
finite-length sequences of binary octets.

Constraint: encoding required for binary
It is an error for binary to be used directly in a schema. Only datatypes that are derived from binary by
minimally specifying a value for encoding can be used in a schema.

3.2.8.1 Constraining facets

binary has the following constraining facets:

encoding
length
minLength
maxLength
pattern
enumeration

Ed. Note: What does the pattern facet on binary really mean? Since pattern operates on
the lexical space, one would have to give a regex for the base64 or hex that would result
for a specific binary sequence that one wanted to constrain...this is not too far fetched for
hex, but almost impossible for base64, isn't it?

3.2.9 uriReference

[Definition:] uriReference represents a Uniform Resource Identifier (URI) Reference as defined in
Section 4 of [RFC 2396]. A uriReference may be absolute or relative, and may have an optional
fragment identifier.

22 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

[Definition:] An absolute uriReference refers to a resource in a manner which is independent of
the context in which the uriReference occurs.

[Definition:] A relative uriReference refers to a resource by describing the difference within a
hierarchy of resources between the context in which the relative uriReference occurs and the
absolute uriReference of the resource.

3.2.9.1 Lexical representation

The lexical space of uriReference is the set of strings that match the URI-reference production in
Section 4 of [RFC 2396].

3.2.9.2 Constraining facets

uriReference has the following constraining facets:

length
minLength
maxLength
pattern
enumeration

3.2.10 ID

[Definition:] ID represents the ID attribute type from [XML 1.0 Recommendation]. The value space of
ID is the set of all strings that match the NCName production in [Namespaces in XML] and have
been used in an XML document. The lexical space of ID is the set of all strings that match the
NCName production in [Namespaces in XML].

NOTE: The value space of ID is scoped to a specific instance document.

For compatibility (see Terminology (§1.4)) ID should be used only on attributes.

Constraint: ID Unique
An ID must not appear more than once in an XML document as a value of this type; i.e., ID values must
uniquely identify the elements which bear them.

3.2.10.1 Constraining facets

ID has the following constraining facets:

length
minLength
maxLength
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

23 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

3.2.11 IDREF

[Definition:] IDREF represents the IDREF attribute type from [XML 1.0 Recommendation]. The value
space of IDREF is the set of all strings that match the NCName production in [Namespaces in XML]
and have been used in an XML document as the value of an element or attribute of type ID. The
lexical space of IDREF is the set of strings that match the NCName production in [Namespaces in
XML].

NOTE: The value space of IDREF is scoped to a specific instance document.

For compatibility (see Terminology (§1.4)) this datatype should be used only on attributes.

Constraint: IDREF
An IDREF must match the value of an ID in the XML document in which it occurs.

3.2.11.1 Constraining facets

IDREF has the following constraining facets:

length
minLength
maxLength
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.2.11.2 Derived datatypes

IDREF has the following built-in derived datatypes:

IDREFS

3.2.12 ENTITY

[Definition:] ENTITY represents the ENTITY attribute type from [XML 1.0 Recommendation]. The
value space of ENTITY is the set of all strings that match the NCName production in [Namespaces in
XML] and have been declared as an unparsed entity in a document type definition. The lexical space
of ENTITY is the set of all strings that match the NCName production in [Namespaces in XML].

NOTE: The value space of ENTITY is scoped to a specific instance document.

Constraint: ENTITY declared
ENTITY values must match an unparsed entity name that is declared in the schema.

For compatibility (see Terminology (§1.4)) ENTITY should be used only on attributes.

3.2.12.1 Constraining facets

24 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

ENTITY has the following constraining facets:

length
minLength
maxLength
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.2.12.2 Derived datatypes

ENTITY has the following built-in derived datatypes:

ENTITIES

3.2.13 NOTATION

[Definition:] NOTATION represents the NOTATION attribute type from [XML 1.0 Recommendation].
The value space of NOTATION is the set of all notations declared in a schema. The lexical space of
NOTATION is the set of all strings that match the NCName production in [Namespaces in XML].

NOTE: The value space of NOTATION is scoped to a specific instance document.

Constraint: NOTATION declared
NOTATION values must match a notation name that is declared in the schema.

For compatibility (see Terminology (§1.4)) NOTATION should be used only on attributes.

3.2.13.1 Constraining facets

NOTATION has the following constraining facets:

length
minLength
maxLength
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.2.14 QName

[Definition:] QName represents XML qualified names. The value space of QName is the set of
tuples {namespace name, local part}, where namespace name is a uriReference and local part is an
NCName. The lexical space of QName is the set of strings that match the QName production of

25 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

[Namespaces in XML].

3.2.14.1 Constraining facets

QName has the following constraining facets:

length
minLength
maxLength
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3 Derived datatypes

This section gives conceptual definitions for all built-inderived datatypes defined by this
specification. The XML Representation used to define derived datatypes (whether built-in or
user-derived) is given in section XML representation of datatype definitions (§5.1) and the complete
definitions of the built-inderived datatypes are provided in Appendix Schema for Datatype Definitions
(normative) (§A).

3.3.1 language

[Definition:] language represents natural language identifiers as defined by [RFC 1766]. The value
space of language is the set of all strings that match the LanguageID production in [XML 1.0
Recommendation]. The lexical space of language is the set of all strings that match the LanguageID
production in [XML 1.0 Recommendation]. The base type of language is string.

3.3.1.1 Constraining facets

language has the following constraining facets:

length
minLength
maxLength
pattern
enumeration

3.3.2 IDREFS

[Definition:] IDREFS represents the IDREFS attribute type from [XML 1.0 Recommendation]. The
value space of IDREFS is the set of finite-length sequences of IDREFs that have been used in an
XML document. The lexical space of IDREFS is the set of whitespace separated tokens, each of
which is in the lexical space of IDREF. The base type of IDREFS is IDREF.

NOTE: The value space of IDREFS is scoped to a specific instance document.

For compatibility (see Terminology (§1.4)) IDREFS should be used only on attributes.

26 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

3.3.2.1 Constraining facets

IDREFS has the following constraining facets:

length
minLength
maxLength
enumeration

3.3.3 ENTITIES

[Definition:] ENTITIES represents the ENTITIES attribute type from [XML 1.0 Recommendation].
The value space of ENTITIES is the set of finite-length sequences of ENTITYs that have been
declared as unparsed entities in a document type definition. The lexical space of ENTITIES is the set
of whitespace separated tokens, each of which is in the lexical space of NMTOKEN. The base type
of ENTITIES is ENTITY.

NOTE: The value space of ENTITIES is scoped to a specific instance document.

For compatibility (see Terminology (§1.4)) ENTITIES should be used only on attributes.

3.3.3.1 Constraining facets

ENTITIES has the following constraining facets:

length
minLength
maxLength
enumeration

3.3.4 NMTOKEN

[Definition:] NMTOKEN represents the NMTOKEN attribute type from [XML 1.0 Recommendation].
The value space of NMTOKEN is the set of tokens that match the Nmtoken production in [XML 1.0
Recommendation]. The lexical space of NMTOKEN is the set of strings that match the Nmtoken
production in [XML 1.0 Recommendation]. The base type of NMTOKEN is string.

For compatibility (see Terminology (§1.4)) NMTOKEN should be used only on attributes.

3.3.4.1 Constraining facets

NMTOKEN has the following constraining facets:

length
minLength
maxLength
pattern
enumeration

3.3.4.2 Derived datatypes

NMTOKEN has the following built-in derived datatypes:

27 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

NMTOKENS

3.3.5 NMTOKENS

[Definition:] NMTOKENS represents the NMTOKENS attribute type from [XML 1.0
Recommendation]. The value space of NMTOKENS is the set of finite-length sequences of
NMTOKENs. The lexical space of NMTOKENS is the set of whitespace separated tokens, each of
which is in the lexical space of NMTOKEN. The base type of NMTOKENS is NMTOKEN.

For compatibility (see Terminology (§1.4)) NMTOKENS should be used only on attributes.

3.3.5.1 Constraining facets

NMTOKENS has the following constraining facets:

length
minLength
maxLength
enumeration

3.3.6 Name

[Definition:] Name represents XML Names. The value space of Name is the set of all strings which
match the Name production of [XML 1.0 Recommendation]. The lexical space of Name is the set of
all strings which match the Name production of [XML 1.0 Recommendation]. The base type of Name
is string.

3.3.6.1 Constraining facets

Name has the following constraining facets:

length
minLength
maxLength
pattern
enumeration

3.3.6.2 Derived datatypes

Name has the following built-in derived datatypes:

NCName

3.3.7 NCName

[Definition:] NCName represents XML "non-colonized" Names. The value space of NCName is the
set of all strings which match the NCName production of [Namespaces in XML]. The lexical space of
NCName is the set of all strings which match the NCName production of [Namespaces in XML]. The
base type of NCName is Name.

3.3.7.1 Constraining facets

28 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

NCName has the following constraining facets:

length
minLength
maxLength
pattern
enumeration

3.3.8 integer

[Definition:] integer is derived from decimal by fixing the value of scale to be 0. This results in the
standard mathematical concept of the integer numbers. The value space of integer is the infinite set
{...,-2,-1,0,1,2,...}. The base type of integer is decimal.

3.3.8.1 Lexical representation

integer has a lexical representation consisting of a finite-length sequence of decimal digits with an
optional leading sign. If the sign is omitted, "+" is assumed. For example: -1, 0, 12678967543233,
+100000.

3.3.8.2 Canonical representation

The canonical representation for integer is defined by prohibiting certain options from the Lexical
representation (§3.3.8.1) . Specifically, the preceding optional "+" sign is prohibited and leading
zeroes are prohibited.

3.3.8.3 Constraining facets

integer has the following constraining facets:

precision
scale
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.8.4 Derived datatypes

integer has the following built-in derived datatypes:

nonPositiveInteger
long
nonNegativeInteger

3.3.9 nonPositiveInteger

[Definition:] nonPositiveInteger is derived from integer by setting the value of maxInclusive to be 0.
This results in the standard mathematical concept of the non-positive integers. The value space of

29 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

nonPositiveInteger is the infinite set {...,-2,-1,0}. The base type of nonPositiveInteger is integer.

3.3.9.1 Lexical representation

nonPositiveInteger has a lexical representation consisting of a negative sign ("-") followed by a
finite-length sequence of decimal digits. If the sequence of digits consists of all zeros then the sign is
optional. For example: -1, 0, -12678967543233, -100000.

3.3.9.2 Canonical representation

The canonical representation for nonPositiveInteger is defined by prohibiting certain options from
the Lexical representation (§3.3.9.1) . Specifically, the negative sign ("-") is required with the token
"0" and leading zeroes are prohibited.

3.3.9.3 Constraining facets

nonPositiveInteger has the following constraining facets:

precision
scale
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.9.4 Derived datatypes

nonPositiveInteger has the following built-in derived datatypes:

negativeInteger

3.3.10 negativeInteger

[Definition:] negativeInteger is derived from nonPositiveInteger by setting the value of maxInclusive
to be -1. This results in the standard mathematical concept of the negative integers. The value space
of negativeInteger is the infinite set {...,-2,-1}. The base type of negativeInteger is
nonPositiveInteger.

3.3.10.1 Lexical representation

negativeInteger has a lexical representation consisting of a negative sign ("-") followed by a
finite-length sequence of decimal digits. For example: -1, -12678967543233, -100000.

3.3.10.2 Canonical representation

The canonical representation for negativeInteger is defined by prohibiting certain options from the
Lexical representation (§3.3.10.1) . Specifically, leading zeroes are prohibited.

3.3.10.3 Constraining facets

negativeInteger has the following constraining facets:

30 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

precision
scale
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.11 long

[Definition:] long is derived from integer by setting the value of maxInclusive to be
9223372036854775807 and minInclusive to be -9223372036854775808. The base type of long is
integer.

3.3.11.1 Lexical representation

long has a lexical representation consisting of an optional sign followed by a finite-length sequence
of decimal digits. If the sign is omitted, "+" is assumed. For example: -1, 0, 12678967543233,
+100000.

3.3.11.2 Canonical representation

The canonical representation for long is defined by prohibiting certain options from the Lexical
representation (§3.3.11.1) . Specifically, the the optional "+" sign is prohibited and leading zeroes are
prohibited.

3.3.11.3 Constraining facets

long has the following constraining facets:

precision
scale
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.11.4 Derived datatypes

long has the following built-in derived datatypes:

int

3.3.12 int

[Definition:] int is derived from long by setting the value of maxInclusive to be 2147483647 and
minInclusive to be -2147483648. The base type of int is long.

3.3.12.1 Lexical representation

31 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

int has a lexical representation consisting of an optional sign followed by a finite-length sequence of
decimal digits. If the sign is omitted, "+" is assumed. For example: -1, 0, 126789675, +100000.

3.3.12.2 Canonical representation

The canonical representation for int is defined by prohibiting certain options from the Lexical
representation (§3.3.12.1) . Specifically, the the optional "+" sign is prohibited and leading zeroes are
prohibited.

3.3.12.3 Constraining facets

int has the following constraining facets:

precision
scale
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.12.4 Derived datatypes

int has the following built-in derived datatypes:

short

3.3.13 short

[Definition:] short is derived from int by setting the value of maxInclusive to be 32767 and
minInclusive to be -32768. The base type of short is int.

3.3.13.1 Lexical representation

short has a lexical representation consisting of an optional sign followed by a finite-length sequence
of decimal digits. If the sign is omitted, "+" is assumed. For example: -1, 0, 12678, +10000.

3.3.13.2 Canonical representation

The canonical representation for short is defined by prohibiting certain options from the Lexical
representation (§3.3.13.1) . Specifically, the the optional "+" sign is prohibited and leading zeroes are
prohibited.

3.3.13.3 Constraining facets

short has the following constraining facets:

precision
scale
pattern
enumeration

32 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.13.4 Derived datatypes

short has the following built-in derived datatypes:

byte

3.3.14 byte

[Definition:] byte is derived from short by setting the value of maxInclusive to be 127 and
minInclusive to be -128. The base type of byte is short.

3.3.14.1 Lexical representation

byte has a lexical representation consisting of an optional sign followed by a finite-length sequence
of decimal digits. If the sign is omitted, "+" is assumed. For example: -1, 0, 126, +100.

3.3.14.2 Canonical representation

The canonical representation for byte is defined by prohibiting certain options from the Lexical
representation (§3.3.14.1) . Specifically, the the optional "+" sign is prohibited and leading zeroes are
prohibited.

3.3.14.3 Constraining facets

byte has the following constraining facets:

precision
scale
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.15 nonNegativeInteger

[Definition:] nonNegativeInteger is derived from integer by setting the value of minInclusive to be 0.
This results in the standard mathematical concept of the non-negative integers. The value space of
nonNegativeInteger is the infinite set {0,1,2,...}. The base type of nonNegativeInteger is integer.

3.3.15.1 Lexical representation

nonNegativeInteger has a lexical representation consisting of an optional sign followed by a
finite-length sequence of decimal digits. If the sign is omitted, "+" is assumed. For example: 1, 0,
12678967543233, +100000.

3.3.15.2 Canonical representation

33 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

The canonical representation for nonNegativeInteger is defined by prohibiting certain options from
the Lexical representation (§3.3.15.1) . Specifically, the the optional "+" sign is prohibited and leading
zeroes are prohibited.

3.3.15.3 Constraining facets

nonNegativeInteger has the following constraining facets:

precision
scale
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.15.4 Derived datatypes

nonNegativeInteger has the following built-in derived datatypes:

unsignedLong
positiveInteger

3.3.16 unsignedLong

[Definition:] unsignedLong is derived from nonNegativeInteger by setting the value of maxInclusive
to be 18446744073709551615. The base type of unsignedLong is nonNegativeInteger.

3.3.16.1 Lexical representation

unsignedLong has a lexical representation consisting of a finite-length sequence of decimal digits.
For example: 0, 12678967543233, 100000.

3.3.16.2 Canonical representation

The canonical representation for unsignedLong is defined by prohibiting certain options from the
Lexical representation (§3.3.16.1) . Specifically, leading zeroes are prohibited.

3.3.16.3 Constraining facets

unsignedLong has the following constraining facets:

precision
scale
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

34 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

3.3.16.4 Derived datatypes

unsignedLong has the following built-in derived datatypes:

unsignedInt

3.3.17 unsignedInt

[Definition:] unsignedInt is derived from unsignedLong by setting the value of maxInclusive to be
4294967295. The base type of unsignedInt is unsignedLong.

3.3.17.1 Lexical representation

unsignedInt has a lexical representation consisting of a finite-length sequence of decimal digits. For
example: 0, 1267896754, 100000.

3.3.17.2 Canonical representation

The canonical representation for unsignedInt is defined by prohibiting certain options from the
Lexical representation (§3.3.17.1) . Specifically, leading zeroes are prohibited.

3.3.17.3 Constraining facets

unsignedInt has the following constraining facets:

precision
scale
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.17.4 Derived datatypes

unsignedInt has the following built-in derived datatypes:

unsignedShort

3.3.18 unsignedShort

[Definition:] unsignedShort is derived from unsignedInt by setting the value of maxInclusive to be
65535. The base type of unsignedShort is unsignedInt.

3.3.18.1 Lexical representation

unsignedShort has a lexical representation consisting of a finite-length sequence of decimal digits.
For example: 0, 12678, 10000.

3.3.18.2 Canonical representation

The canonical representation for unsignedShort is defined by prohibiting certain options from the

35 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

Lexical representation (§3.3.18.1) . Specifically, the leading zeroes are prohibited.

3.3.18.3 Constraining facets

unsignedShort has the following constraining facets:

precision
scale
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.18.4 Derived datatypes

unsignedShort has the following built-in derived datatypes:

unsignedByte

3.3.19 unsignedByte

[Definition:] unsignedByte is derived from unsignedShort by setting the value of maxInclusive to be
255. The base type of unsignedByte is unsignedShort.

3.3.19.1 Lexical representation

unsignedByte has a lexical representation consisting of a finite-length sequence of decimal digits.
For example: 0, 126, 100.

3.3.19.2 Canonical representation

The canonical representation for unsignedByte is defined by prohibiting certain options from the
Lexical representation (§3.3.19.1) . Specifically, leading zeroes are prohibited.

3.3.19.3 Constraining facets

unsignedByte has the following constraining facets:

precision
scale
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.20 positiveInteger

[Definition:] positiveInteger is derived from nonNegativeInteger by setting the value of minInclusive
to be 1. This results in the standard mathematical concept of the positive integer numbers. The value

36 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

space of positiveInteger is the infinite set {1,2,...}. The base type of positiveInteger is
nonNegativeInteger.

3.3.20.1 Lexical representation

positiveInteger has a lexical representation consisting of an optional positive sign ("+") followed by
a finite-length sequence of decimal digits. For example: 1, 12678967543233, +100000.

3.3.20.2 Canonical representation

The canonical representation for positiveInteger is defined by prohibiting certain options from the
Lexical representation (§3.3.20.1) . Specifically, the the optional "+" sign is prohibited and leading
zeroes are prohibited.

3.3.20.3 Constraining facets

positiveInteger has the following constraining facets:

precision
scale
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.21 timeInstant

[Definition:] timeInstant represents a specific instant of time. The value space of timeInstant is the
space of Combinations of date and time of day values as defined in § 5.4 of [ISO 8601]. The base
type of timeInstant is recurringDuration. timeInstant is generated from recurringDuration by fixing
the value of the duration facet equal to "P0Y" and the value of the period facet equal to "P0Y" (no
recurrence).

3.3.21.1 Lexical representation

A single lexical representation, which is a subset of the lexical representations allowed by [ISO
8601], and is the same lexical representation as its basetype recurringDuration is allowed for
timeInstant.

For example, to indicate 1:20 pm on May the 31st, 1999 for Eastern Standard Time which is 5 hours
behind Coordinated Universal Time (UTC), one would write: 1999-05-31T13:20:00-05:00.

3.3.21.2 Canonical representation

The canonical representation for timeInstant is defined by prohibiting certain options from the
Lexical representation (§3.3.21.1) . Specifically, the preceding optional "+" sign is prohibited and the
time zone must be Coordinated Universal Time (UTC) and be indicated by a "Z".

3.3.21.3 Constraining facets

timeInstant has the following constraining facets:

37 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

duration
period
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.22 time

[Definition:] time represents an instant of time that recurs every day. The value space of time is the
space of time of day values as defined in § 5.3 of [ISO 8601]. Specifically, it is a set of zero-duration
daily instances e.g. lexical 12:30:24 to represent T12:30:24 on any day. The base type of time is
recurringDuration. time is generated from recurringDuration by fixing the value of the duration facet
equal to "P0Y" and the value of the period facet equal to "P1D".

3.3.22.1 Lexical representation

The lexical representation for time is the left truncated lexical representation for timeInstant:
hh:mm:ss.sss with optional following time zone indicator. For example, to indicate 1:20 pm for
Eastern Standard Time which is 5 hours behind Coordinated Universal Time (UTC), one would write:
13:20:00-05:00. See also ISO 8601 Date and Time Formats (§D).

3.3.22.2 Canonical representation

The canonical representation for time is defined by prohibiting certain options from the Lexical
representation (§3.3.22.1) . Specifically, the preceding optional "+" sign is prohibited and the time
zone must be Coordinated Universal Time (UTC) and be indicated by a "Z".

3.3.22.3 Constraining facets

time has the following constraining facets:

duration
period
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.23 timePeriod

[Definition:] timePeriod represents a specific period of time with a given start and end. The value
space of timePeriod is the value space of Periods of time as defined in § 5.5 of [ISO 8601]. The
base type of timePeriod is recurringDuration. timePeriod is generated from recurringDuration by
fixing the value of the period facet equal to "P0Y" (no recurrence).

The value in the instance specifies the start of the time period while the value of duration facet,

38 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

specified when subtypes are defined, gives the duration of the time period.

3.3.23.1 Lexical representation

The lexical representation for timePeriod is the same as that of its basetype, recurringDuration.

3.3.23.2 Canonical representation

The canonical representation for timePeriod is defined by prohibiting certain options from the
Lexical representation (§3.3.23.1) . Specifically, the preceding optional "+" sign is prohibited and the
time zone must be Coordinated Universal Time (UTC) and be indicated by a "Z".

3.3.23.3 Constraining facets

timePeriod has the following constraining facets:

duration
period
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

Constraint: period facet value required for timePeriod
It is an error for timePeriod to be used directly in a schema. Only datatypes that are derived from
timePeriod by specifying a value for duration can be used in a schema.

3.3.23.4 Derived datatypes

timePeriod has the following built-in derived datatypes:

date
month
year
century

3.3.24 date

[Definition:] date represents a timePeriod that starts at midnight of a specified day and lasts until
midnight the following day. The value space of date is the set of Gregorian calendar dates as
defined in § 5.2.1 of [ISO 8601]. Specifically, it is a set of one-day long, non-periodic instances e.g.
lexical 1999-10-26 to represent the whole day of 1999-10-26, independent of how many hours this
day has. The base type of date is timePeriod. date is generated from timePeriod by fixing the value
of the duration facet equal to "P1D".

3.3.24.1 Lexical representation

The lexical representation for date is the reduced (right truncated) lexical representation for
timePeriod: CCYY-MM-DD. No left truncation is allowed. An optional following time zone qualifier is
allowed as for timePeriod. To accommodate year values outside the range from 0001 to 9999,

39 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

additional digits can be added to the left of this representation and a preceding "-" is allowed.

For example, to indicate May the 31st, 1999, one would write: 1999-05-31. See also ISO 8601 Date
and Time Formats (§D).

3.3.24.2 Canonical representation

The canonical representation for date is defined by prohibiting certain options from the Lexical
representation (§3.3.24.1) . Specifically, the preceding optional "+" sign is prohibited and the time
zone must be Coordinated Universal Time (UTC) and be indicated by a "Z".

3.3.24.3 Constraining facets

date has the following constraining facets:

duration
period
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.25 month

[Definition:] month represents a timePeriod that starts at midnight on the first day of the month and
lasts until the midnight that ends the last day of the month. The value space of month is the set of
Gregorian calendar months as defined in § 5.2.1 of [ISO 8601]. Specifically, it is a set of one-month
long, non-periodic instances e.g. 1999-10 to represent the whole month of 1999-10, independent of
how many days this month has. The base type of month is timePeriod. month is generated from
timePeriod by fixing the value of the duration facet equal to "P1M".

3.3.25.1 Lexical representation

The lexical representation for month is the reduced (right truncated) lexical representation for
timePeriod: CCYY-MM. No left truncation is allowed. An optional following time zone qualifier is
allowed as for timePeriod. To accommodate year values outside the range from 0001 to 9999,
additional digits can be added to the left of this representation and a preceding "-" is allowed.

For example, to indicate the month of May 1999, one would write: 1999-05. See also ISO 8601 Date
and Time Formats (§D).

3.3.25.2 Canonical representation

The canonical representation for month is defined by prohibiting certain options from the Lexical
representation (§3.3.25.1) . Specifically, the preceding optional "+" sign is prohibited and the time
zone must be Coordinated Universal Time (UTC) and be indicated by a "Z".

3.3.25.3 Constraining facets

month has the following constraining facets:

40 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

duration
period
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.26 year

[Definition:] year represents a timePeriod that starts at the midnight that starts the first day of the
year and ends at the midnight that ends the last day of the year. The value space of year is the set
of Gregorian calendar years as defined in § 5.2.1 of [ISO 8601]. Specifically, it is a set of one-year
long, non-periodic instances e.g. lexical 1999 to represent the whole year 1999, independent of how
many months and days this year has. The base type of year is timePeriod. year is generated from
timePeriod by fixing the value of the duration facet equal to "P1Y".

3.3.26.1 Lexical representation

The lexical representation for year is the reduced (right truncated) lexical representation for
timePeriod: CCYY. No left truncation is allowed. An optional following time zone qualifier is allowed
as for timePeriod. To accommodate year values outside the range from 0001 to 9999, additional
digits can be added to the left of this representation and a preceding "-" is allowed.

For example, to indicate 1999, one would write: 1999. See also ISO 8601 Date and Time Formats
(§D).

3.3.26.2 Canonical representation

The canonical representation for year is defined by prohibiting certain options from the Lexical
representation (§3.3.26.1) . Specifically, the preceding optional "+" sign is prohibited and the time
zone must be Coordinated Universal Time (UTC) and be indicated by a "Z".

3.3.26.3 Constraining facets

year has the following constraining facets:

duration
period
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.27 century

[Definition:] century represents a timePeriod that starts at the midnight that starts the first day of the
century and ends at the midnight that ends that last day of the century. The value space of century
is the set of Gregorian calendar centuries as defined in § 5.2.1 of [ISO 8601]. Specifically, it is a set

41 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

of one-century long, non-periodic instances e.g. lexical 20 to represent the whole of the 19th century.
The base type of century is timePeriod. century is generated from timePeriod by fixing the value of
the duration facet equal to "P100Y".

3.3.27.1 Lexical representation

The lexical representation for century is the reduced (right truncated) lexical representation for
timePeriod: CC. No left truncation is allowed. An optional following time zone qualifier is allowed as
for timePeriod. To accommodate year values outside the range from 0001 to 9999, additional digits
can be added to the left of this representation and a preceding "-" is allowed.

For example, to indicate the 20th century, one would write: 19. See also ISO 8601 Date and Time
Formats (§D).

3.3.27.2 Canonical representation

The canonical representation for century is defined by prohibiting certain options from the Lexical
representation (§3.3.27.1) . Specifically, the preceding optional "+" sign is prohibited and the time
zone must be Coordinated Universal Time (UTC) and be indicated by a "Z".

3.3.27.3 Constraining facets

century has the following constraining facets:

duration
period
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.28 recurringDate

[Definition:] recurringDate is a date that recurs, specifically a day of the year such as the third of
May. Arbitrary recurring dates are not supported by this datatype. The value space of recurringDate
is the set of calendar dates, as defined in § 3 of [ISO 8601]. Specidically, it is a set of one-day long,
annually periodic instances. The base type of recurringDate is recurringDuration. recurringDate is
generated from recurringDuration by fixing the value of the duration facet equal to "P1D" and the
value of the period facet to "P1Y" (one year).

3.3.28.1 Lexical representation

The lexical representation for recurringDate is the left truncated lexical representation for date:
--MM-DD. No other formats are allowed. See also ISO 8601 Date and Time Formats (§D).

3.3.28.2 Canonical representation

The canonical representation for recurringDate is defined by prohibiting certain options from the
Lexical representation (§3.3.28.1) . Specifically, the preceding optional "+" sign is prohibited and the
time zone must be Coordinated Universal Time (UTC) and be indicated by a "Z".

42 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

3.3.28.3 Constraining facets

recurringDate has the following constraining facets:

duration
period
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.29 recurringDay

[Definition:] recurringDay is a day that recurs, specifically a day of the month such as the 5th of the
month. Arbitrary recurring days are not supported by this datatype. The value space of recurringDay
is the space of a set of calendar dates as defined in § 3 of [ISO 8601]. Specifically, it is a set of
one-day long, monthly periodic instances. The base type of recurringDay is recurringDuration.
recurringDay is generated from recurringDuration by fixing the value of the duration facet equal to
"P1D" and the value of the period facet to "P1M".

3.3.29.1 Lexical representation

The lexical representation for recurringDay is the left truncated lexical representation for date: ---DD
. No other formats are allowed. See also ISO 8601 Date and Time Formats (§D).

3.3.29.2 Canonical representation

The canonical representation for recurringDay is defined by prohibiting certain options from the
Lexical representation (§3.3.29.1) . Specifically, the preceding optional "+" sign is prohibited and the
time zone must be Coordinated Universal Time (UTC) and be indicated by a "Z".

3.3.29.3 Constraining facets

recurringDay has the following constraining facets:

duration
period
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

4 Datatype components
The following sections provide full details on the properties and significance of each kind of schema
component involved in datatype definitions. For each property, the kinds of values it may have is
specified. Any property not identified as optional is required to be present; optional properties which
are absent are taken to have the null value.

43 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

Throughout the following sections, the [value] of an attribute information item means a string
composed of, in order, the [character code] of each character information item in the [children] of that
attribute information item.

For more information on the notion of datatype (schema) components, see Schema Component
Details

NOTE: Readers whose primary interest is in the XML representation of datatype
definitions may wish to skip this section on the first reading, concentrating instead on
XML representation of datatype definitions (§5) .

4.1 Datatype definition

Datatype definitions provide for:

Establishing the value space of a datatype, through the combined set of constraining facets
specified in the definition;
Attaching a unique name (actually a QName) to the value space

The datatype definition schema component has the following properties:

Schema Component: Datatype Definition
[name]

Optional. An NCName as defined by [Namespaces in XML].
[target namespace]

Either null or a namespace URI, as defined in [Namespaces in XML].
[variety]

One of {atomic, list, union}.
[base type definition]

If {variety} is atomic or list then a datatype definition, else if {variety} is union then a list of
datatype definitions.

[facets]
A possibly empty set of Constraining facets (§4.2) .

[fundamental facets]
A set of Fundamental facets (§2.5.1)

[annotation]
Optional. An annotation.

Datatypes are identified by their {name} and {target namespace}. Except for anonymous datatypes
(those with no {name}), datatype definitions must be uniquely identified within an schema.

If {variety} is atomic then the value space of the datatype defined will be a subset of the value space
of {base type definition} . If {variety} is list then the value space of the datatype defined will be a
finite-length sequence of values from the value space of {base type definition} . If {variety} is union
then the value space of the datatype defined will be the union of the value spaces of each datatype
in {base type definition} .

If {variety} is atomic then {base type definition} must itself be atomic. If {variety} is list then {base type

44 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

definition} must be either atomic or union. If {variety} is union then {base type definition} must be a
list of atomic, list or union types.

Ed. Note: (PVB) List of union makes sense, allowing different items in the list to be of the
different types in the union. There is no way to override the lexical resolution strategy,
i.e., you can't use xsi:type to say that item 3 of the list is really a string when the
resolution strategy would say it is an int. This is OK, but it just dawned on my and I
wanted to call it out to make sure I'm correct.

The value of {facets} consists of the set of facets specified directly in the datatype definition unioned
with the possibly empty set of {facets} of {base type definition} .

The value of {fundamental facets} consists of the set of fundamental facets and their values. If
{variety} is atomic then {fundamental facets} are inherited from {base type definition} with the
possibility that bounded could become true if one of facets providing bounds is given a value (e.g.,
maxInclusive, maxExclusive, minInclusive or minExclusive). If {variety} is list then numeric is false
and the other fundamental facets are valued the same as when {variety} is atomic. If {variety} is
union then ordered, bounded and numeric are false and cardinality is countably infinite if any
datatype in {base type definition} is countably infinite and finite otherwise.

Ed. Note: (PVB) The above is slightly wrong for unions, but I don't have time to think thru
all of the cases. For instance, if all the types in the union are bounded and the VS of the
union is the union of the participating types, then shouldn't the union be bounded?

Constraint on Schemas: applicable facets
The constraining facets which are allowed the be members of {facets} are dependent on {base type
definition} as specified in the following table:

 {base type definition} applicable {facets}
If {variety} is list, then

 [all datatypes] length, minLength, maxLength, enumeration
If {variety} is union, then

 [all datatypes] pattern, enumeration
else if {variety} is atomic, then

primitive

string length, minLength, maxLength, pattern, enumeration
boolean pattern

float pattern, enumeration, maxInclusive, maxExclusive, minInclusive,
minExclusive

double pattern, enumeration, maxInclusive, maxExclusive, minInclusive,
minExclusive

decimal precision, scale, pattern, enumeration, maxInclusive,
maxExclusive, minInclusive, minExclusive

timeDuration pattern, enumeration, maxInclusive, maxExclusive, minInclusive,
minExclusive

recurringDuration duration, period, pattern, enumeration, maxInclusive,
maxExclusive, minInclusive, minExclusive

binary encoding, length, minLength, maxLength, pattern, enumeration

45 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

uriReference length, minLength, maxLength, pattern, enumeration

ID length, minLength, maxLength, pattern, enumeration,
maxInclusive, maxExclusive, minInclusive, minExclusive

IDREF length, minLength, maxLength, pattern, enumeration,
maxInclusive, maxExclusive, minInclusive, minExclusive

ENTITY length, minLength, maxLength, pattern, enumeration,
maxInclusive, maxExclusive, minInclusive, minExclusive

NOTATION length, minLength, maxLength, pattern, enumeration,
maxInclusive, maxExclusive, minInclusive, minExclusive

QName length, minLength, maxLength, pattern, enumeration,
maxInclusive, maxExclusive, minInclusive, minExclusive

derived

language length, minLength, maxLength, pattern, enumeration
IDREFS length, minLength, maxLength, enumeration
ENTITIES length, minLength, maxLength, enumeration
NMTOKEN length, minLength, maxLength, pattern, enumeration
NMTOKENS length, minLength, maxLength, enumeration
Name length, minLength, maxLength, pattern, enumeration
NCName length, minLength, maxLength, pattern, enumeration

integer precision, scale, pattern, enumeration, maxInclusive,
maxExclusive, minInclusive, minExclusive

nonPositiveInteger precision, scale, pattern, enumeration, maxInclusive,
maxExclusive, minInclusive, minExclusive

negativeInteger precision, scale, pattern, enumeration, maxInclusive,
maxExclusive, minInclusive, minExclusive

long precision, scale, pattern, enumeration, maxInclusive,
maxExclusive, minInclusive, minExclusive

int precision, scale, pattern, enumeration, maxInclusive,
maxExclusive, minInclusive, minExclusive

short precision, scale, pattern, enumeration, maxInclusive,
maxExclusive, minInclusive, minExclusive

byte precision, scale, pattern, enumeration, maxInclusive,
maxExclusive, minInclusive, minExclusive

nonNegativeInteger precision, scale, pattern, enumeration, maxInclusive,
maxExclusive, minInclusive, minExclusive

unsignedLong precision, scale, pattern, enumeration, maxInclusive,
maxExclusive, minInclusive, minExclusive

unsignedInt precision, scale, pattern, enumeration, maxInclusive,
maxExclusive, minInclusive, minExclusive

unsignedShort precision, scale, pattern, enumeration, maxInclusive,
maxExclusive, minInclusive, minExclusive

unsignedByte precision, scale, pattern, enumeration, maxInclusive,
maxExclusive, minInclusive, minExclusive

46 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

positiveInteger precision, scale, pattern, enumeration, maxInclusive,
maxExclusive, minInclusive, minExclusive

timeInstant duration, period, pattern, enumeration, maxInclusive,
maxExclusive, minInclusive, minExclusive

time duration, period, pattern, enumeration, maxInclusive,
maxExclusive, minInclusive, minExclusive

timePeriod duration, period, pattern, enumeration, maxInclusive,
maxExclusive, minInclusive, minExclusive

date duration, period, pattern, enumeration, maxInclusive,
maxExclusive, minInclusive, minExclusive

month duration, period, pattern, enumeration, maxInclusive,
maxExclusive, minInclusive, minExclusive

year duration, period, pattern, enumeration, maxInclusive,
maxExclusive, minInclusive, minExclusive

century duration, period, pattern, enumeration, maxInclusive,
maxExclusive, minInclusive, minExclusive

recurringDate duration, period, pattern, enumeration, maxInclusive,
maxExclusive, minInclusive, minExclusive

recurringDay duration, period, pattern, enumeration, maxInclusive,
maxExclusive, minInclusive, minExclusive

Constraint on Schemas: list of atomic
If {variety} is list, then {variety} of {base type definition} must be atomic.

Validation Contribution: datatype valid
A sequence of character information items appearing in an instance document is schema-valid with respect to a
datatype definition if:

1. It is a member of the lexical space of the {base type definition} ;
2. The member of the value space of the {base type definition} denoted by the sequence is facet valid

(§4.2) with respect to each member of {facets}.

4.2 Constraining facets

This section provides the details of each constraining facet component.

constraining facets provide for:

Constraining the value space of a datatype by specifying optional properties which serve to
semantically characterize the values in the value space.

Validation Contribution: facet valid
A member of a value space is schema-valid with respect to a constraining facet component if:

1. the member is schema-valid with respect to the particular constraining facet as specified below.

4.2.1 length

47 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

length provides for:

Constraining a value space to values with a specific number of units of length, where units of
length varies depending on {base type definition} .

Schema Component: length
[value]

A nonNegativeInteger.
[fixed]

A boolean.
[annotation]

Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} may not specify a
value for other than {value}.

Constraint on Schemas: length and minLength
It is an error for both length and minLength to be members of {facets}.

Validation Contribution: length valid
A member of a value space is schema-valid with respect to length if:

1. {base type definition} is string, then the length of the value, as measured in [Unicode] code points, is
equal to {value};

2. {base type definition} is binary, then the length of the value, as measured in octets of the binary data,
is equal to {value};

3. {variety} is list, then the length of the value, as measured in list items, is equal to {value}

4.2.2 minLength

minLength provides for:

Constraining a value space to values with at least a specific number of units of length, where
units of length varies depending on {base type definition} .

Schema Component: minLength
[value]

A nonNegativeInteger.
[fixed]

A boolean.
[annotation]

Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} may not specify a
value for other than {value}.

48 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

Constraint on Schemas: minLength <= maxLength
If both minLength and maxLength are members of {facets}, then the {value} of minLength must be less
than or equal to the {value} of maxLength.

Validation Contribution: minLength valid
A member of a value space is schema-valid with respect to minLength if:

1. {base type definition} is string, then the length of the value, as measured in [Unicode] code points, is
greater than or equal to {value};

2. {base type definition} is binary, then the length of the value, as measured in octets of binary data, is
greater than or equal to {value};

3. {variety} is list, then the length of the value, as measured in list items, is greater than or equal to {value}

4.2.3 maxLength

maxLength provides for:

Constraining a value space to values with at most a specific number of units of length, where
units of length varies depending on {base type definition} .

Schema Component: maxLength
[value]

A nonNegativeInteger.
[fixed]

A boolean.
[annotation]

Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} may not specify a
value for other than {value}.

Constraint on Schemas: length and maxLength
It is an error for both length and maxLength to be specified for the same datatype.

Validation Contribution: maxLength valid
A member of a value space is schema-valid with respect to maxLength if:

1. {base type definition} is string, then the length of the value, as measured in [Unicode] code points, is
less than or equal to {value};

2. {base type definition} is binary, then the length of the value, as measured in octets of binary data, is
less than or equal to {value};

3. {variety} is list, then the length of the value, as measured in list items, is less than or equal to {value}

4.2.4 pattern

pattern provides for:

Constraining a value space to values that are denoted by literals which match a specific

49 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

regular expression.

Schema Component: pattern
[value]

A regular expression .
[annotation]

Optional. An annotation.

Ed. Note: (PVB) Fixing the pattern component makes sense (and would result in no
further restriction of the value space using any other facet), but the concept of "fixing" one
occurance of pattern facet doesn't seem to make sense. So, I'm not sure how this should
be handled at the XML representation level.

Ed. Note: (AM) I have removed the "fixed" property from enumeration and pattern
pending resolution on how to handle these two cases.

Validation Contribution: pattern valid
A member of a value space is schema-valid with respect to pattern if:

1. the value is among the set of values denoted by literals which are among the set of strings denoted by the
regular expression specified in {value}.

4.2.5 enumeration

enumeration provides for:

Constraining a value space to a specified set of values.

Schema Component: enumeration
[value]

A set of values from the value space of the {base type definition} .
[annotation]

Optional. An annotation.

Ed. Note: (PVB) Fixing the enumeration component makes sense (and would result in no
further restriction of the value space using any other facet), but the concept of "fixing" one
occurance of enumeration facet doesn't seem to make sense. So, I'm not sure how this
should be handled at the XML representation level.

Ed. Note: (AM) I have removed the "fixed" property from enumeration and pattern
pending resolution on how to handle these two cases.

Validation Contribution: enumeration valid
A member of a value space is schema-valid with respect to enumeration if:

1. the value is one of the values specified in {value}.

50 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

4.2.6 maxInclusive

maxInclusive provides for:

Constraining a value space to values with a specific inclusiveupper bound.

Schema Component: maxInclusive
[value]

A value from the value space of the {base type definition} .
[fixed]

A boolean.
[annotation]

Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} may not specify a
value for other than {value}.

Constraint on Schemas: minInclusive <= maxInclusive
It is an error for the value specified for minInclusive to be greater than the value specified for maxInclusive
for the same datatype.

Validation Contribution: maxInclusive valid
A member of a value space is schema-valid with respect to maxInclusive if:

1. the numeric property in {fundamental facets} is true, then the value is numerically less than or equal
to {value};

2. the numeric property of {base type definition} is false (i.e., {base type definition} is one of the date
and time related datatypes), then the value must be chronologically less than or equal to {value};

4.2.7 maxExclusive

maxExclusive provides for:

Constraining a value space to values with a specific exclusiveupper bound.

Schema Component: maxExclusive
[value]

A value from the value space of the {base type definition} .
[fixed]

A boolean.
[annotation]

Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} may not specify a
value for other than {value}.

51 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

Constraint on Schemas: maxInclusive and maxExclusive
It is an error for both maxInclusive and maxExclusive to be specified for the same datatype.

Constraint on Schemas: minExclusive <= maxExclusive
It is an error for the value specified for minExclusive to be greater than the value specified for
maxExclusive for the same datatype.

Validation Contribution: maxExclusive valid
A member of a value space is schema-valid with respect to maxExclusive if:

1. the numeric property of {base type definition} is true, then the value must be numerically less than
{value};

2. the numeric property of {base type definition} is false (i.e., {base type definition} is one of the date
and time related datatypes), then the value must be chronologically less than {value};

4.2.8 minExclusive

minExclusive provides for:

Constraining a value space to values with a specific exclusivelower bound.

Schema Component: minExclusive
[value]

A value from the value space of the {base type definition} .
[fixed]

A boolean.
[annotation]

Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} may not specify a
value for other than {value}.

Constraint on Schemas: minInclusive and minExclusive
It is an error for both minInclusive and minExclusive to be specified for the same datatype.

Validation Contribution: minExclusive valid
A member of a value space is schema-valid with respect to minExclusive if:

1. the numeric property of {base type definition} is true, then the value must be numerically greater than
{value};

2. the numeric property of {base type definition} is false (i.e., {base type definition} is one of the date
and time related datatypes), then the value must be chronologically greater than {value};

4.2.9 minInclusive

minInclusive provides for:

Constraining a value space to values with a specific inclusivelower bound.

52 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

Schema Component: minInclusive
[value]

A value from the value space of the {base type definition} .
[fixed]

A boolean.
[annotation]

Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} may not specify a
value for other than {value}.

Validation Contribution: minInclusive valid
A member of a value space is schema-valid with respect to minInclusive if:

1. the numeric property of {base type definition} is true, then the value must be numerically greater than
or equal to {value};

2. the numeric property of {base type definition} is false (i.e., {base type definition} is one of the date
and time related datatypes), then the value must be chronologically greater than or equal to {value};

4.2.10 precision

precision provides for:

Constraining a value space to values with a specific maximum number of decimal digits.

Schema Component: precision
[value]

A positiveInteger .
[fixed]

A boolean.
[annotation]

Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} may not specify a
value for other than {value}.

Validation Contribution: precision valid
A member of a value space is schema-valid with respect to precision if:

1. the number of decimal digits in the value is less than or equal to {value};

4.2.11 scale

scale provides for:

53 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

Constraining a value space to values with a specific maximum number of decimal digits in the
fractional part.

Schema Component: scale
[value]

A nonNegativeInteger.
[fixed]

A boolean.
[annotation]

Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} may not specify a
value for other than {value}.

Constraint on Schemas: scale less than or equal to precision
It is an error for scale to be greater than precision.

Validation Contribution: scale valid
A member of a value space is schema-valid with respect to precision if:

1. the number of decimal digits in the fractional part of the value is less than or equal to {value};

4.2.12 encoding

encoding provides for:

Constraining the lexical space of datatypes derived from binary to a specified form.

Schema Component: encoding
[value]

One of {hex, base64}.
[fixed]

A boolean.
[annotation]

Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} may not specify a
value for other than {value}.

NOTE: There are no Validity Contributions associated with encoding.

4.2.13 duration

duration provides for:

Constraining a value space to values of a specific duration of time.

54 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

Schema Component: duration
[value]

A timeDuration.
[fixed]

A boolean.
[annotation]

Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} may not specify a
value for other than {value}.

NOTE: There are no Validity Contributions associated duration.

4.2.14 period

period provides for:

Constraining a value space to values of a specific frequency of recurrence.

Schema Component: period
[value]

A timeDuration.
[fixed]

A boolean.
[annotation]

Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} may not specify a
value for other than {value}.

NOTE: There are no Validity Contributions associated period.

5 XML representation of datatype definitions
The sections below define correspondences between element information items and datatype
definition components. All the element information items in the XML representation of a datatype
definition are in the XML Schema namespace, that is their [namespace URI] is
http://www.w3.org/2000/10/XMLSchema.

Throughout the following sections, the [value] of an attribute information item or the [children] of an
element information item means a string composed of, in order, the [character code] of each
character information item in the [children] of that attribute information item or in the [children] of that
element information item respectively.

5.1 XML representation of datatype definitions

The XML representation for a Datatype definition schema component is a simpleType element

55 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

information item. The correspondences between the properties of the information item and properties
of the component are as follows:

XML Representation Summary: simpleType Element Information Item

<simpleType
id = ID
name = NCName>
Content: (annotation? , (restriction | list | union))

</simpleType>

<restriction
base = QName>
Content: ((annotation?) , (| simpleType? | (minExclusive | minInclusive |

maxExclusive | maxInclusive | precision | scale | length | minLength |
maxLength | encoding | period | duration | enumeration | pattern)*))
</restriction>

<list
itemType = QName>
Content: (annotation?)

</list>

<union
memberType = QName>
Content: (annotation? , (simpleType+))

</union>

Datatype Definition Schema Component

Property Representation
{name} The value of the name[attribute], if present, otherwise null
{base type definition} If {variety} is list then the value of the type[attribute]; else if {variety} is

union, then the list of {base type definition} from the
simpleType[children]; else the value of the base[attribute] of the
restriction[child]

{variety} list if the immediate [child] of simpleType (or the {variety} of {base type
definition} or any of its ancestors) is list is list; else union if the immediate
[child] of simpleType (or the {variety} of {base type definition} or any of
its ancestors) is union; otherwise atomic

{target namespace} The value of the targetNamespace[attribute] of the parent schema element
information item.

{facets} The union of the set of facet components corresponding to the facet
[children] of the restriction.

{annotation} The annotation corresponding to the annotation element information item in
the [children], if present, otherwise null

A derived datatype can be derived from a primitive datatype or another derived datatype by one of
three means: by restriction, by list or by union.

5.1.1 Derivation by restriction

56 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

An atomic datatype can be derived from another atomic datatype by restricting its value space and,
consequently, lexical space.

Example

An electronic commerce schema might define a datatype called Sku (the barcode number that appears
on products) from the built-in datatype string by supplying a value for the pattern facet.

<simpleType name='Sku'>
<restriction base='string'>

<pattern value='\d{3}-[A-Z]{2}'/>
</restriction>

</simpleType>

In this case, Sku is the name of the new user-derived datatype, string is its base type and pattern is
the facet.

5.1.2 Derivation by list

A list datatype must be derived from an atomic datatype. This yields a list datatype that can contain
whitespace separated lists of values of the base type.

Example

A system may want to store lists of floating point values.

<simpleType name='listOfFloat'>
<list itemType='float'/>

</simpleType>

In this case, listOfFloat is the name of the new user-derived datatype, float is its base type and list is
the derivation method.

As mentioned in List datatypes (§2.6.1.2), when a datatype is derived from a list datatype, the
following constraining facets may be used:

length
maxLength
minLength
enumeration

regardless of the constraining facets that are applicable to the atomic datatype that serves as the
base type of the list.

For each of the above facets, the unit of length is measured in number of list items.

5.1.3 Derivation by union

A union datatype may be derived from two or more atomic, list or other union datatypes.

57 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

Example

An example, taken from a typical display oriented text markup language, might want to express font
sizes as an integer between 8 and 72, or with one of the tokens "small", "medium" or "large". The
union type definition below would accomplish that.

<xsd:attribute name="size">
<xsd:simpleType>

<xsd:union>
<xsd:simpleType>

<xsd:restriction base="xsd:positiveInteger">
<xsd:minInclusive="8"/>
<xsd:maxInclusive="72"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType>

<xsd:restriction base="xsd:NMTOKEN">
<xsd:enumeration value="small"/>
<xsd:enumeration value="medium"/>
<xsd:enumeration value="large"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:union>
</xsd:simpleType>

</xsd:attribute>

<p>
A header
</p>
<p>
this is a test
</p>

As mentioned in Union datatypes (§2.6.1.3), when a datatype is derived from a union datatype, the
only following constraining facets may be used:

pattern
enumeration

regardless of the constraining facets that may be applicable to the datatypes that participate in the
union

5.2 Constraining facets

This section discusses the details of the XML Representation for specifying constraining facets in a
datatype definition.

5.2.1 length

The XML representation for a length schema component is a length element information item. The
correspondences between the properties of the information item and properties of the component
are as follows:

58 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

XML Representation Summary: length Element Information Item

<length
id = ID
value = nonNegativeInteger
fixed = boolean : false>
Content: (annotation?)

</length>

length Schema Component

Property Representation
{value} The value of the value[attribute]
{fixed} The value of the fixed[attribute], if present, otherwise false
{annotation} The annotation corresponding to the annotation element information item in the

[children], if present, otherwise null

Example

The following is the definition of a user-derived datatype to represent product codes which must be
exactly 8 characters in length. By fixing the value of the length facet we ensure that types derived from
productCode may change or set the values of other facets, such as pattern, but cannot change the
length.

<simpleType name='productCode'>
<restriction base='string'>

<length value='8' fixed='true'/>
</restriction>

</simpleType>

5.2.2 minLength

The XML representation for a minLength schema component is a minLength element information
item. The correspondences between the properties of the information item and properties of the
component are as follows:

59 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

XML Representation Summary: minLength Element Information Item

<minLength
id = ID
value = nonNegativeInteger
fixed = boolean : false>
Content: (annotation?)

</minLength>

minLength Schema Component

Property Representation
{value} The value of the value[attribute]
{fixed} The value of the fixed[attribute], if present, otherwise false
{annotation} The annotation corresponding to the annotation element information item in the

[children], if present, otherwise null

Example

The following is the definition of a user-derived datatype which requires strings to have at least one
character (i.e., the empty string is not in the value space of this datatype).

<simpleType name='non-empty-string'>
<restriction base='string'>

<minLength value='1'/>
</restriction>

</simpleType>

5.2.3 maxLength

The XML representation for a maxLength schema component is a maxLength element information
item. The correspondences between the properties of the information item and properties of the
component are as follows:

XML Representation Summary: maxLength Element Information Item

<maxLength
id = ID
value = nonNegativeInteger
fixed = boolean : false>
Content: (annotation?)

</maxLength>

maxLength Schema Component

Property Representation
{value} The value of the value[attribute]
{fixed} The value of the fixed[attribute], if present, otherwise false
{annotation} The annotation corresponding to the annotation element information item in the

[children], if present, otherwise null

60 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

Example

The following is the definition of a user-derived datatype which might be used to accept form input
with an upper limit to the number of characters that are acceptable.

<simpleType name='form-input'>
<restriction base='string'>

<maxLength value='50'/>
</restriction>

</simpleType>

5.2.4 pattern

The XML representation for a pattern schema component is a pattern element information item. The
correspondences between the properties of the information item and properties of the component
are as follows:

XML Representation Summary: pattern Element Information Item

<pattern
id = ID
value = string
fixed = boolean : false>
Content: (annotation?)

</pattern>

{value} must be a valid regular expression.

pattern Schema Component

Property Representation
{value} The value of the value[attribute]
{annotation} The annotation corresponding to the annotation element information item in the

[children], if present, otherwise null

Schema Representation Constraint: Multiple patterns
If multiple pattern element information items appear as [children] of a simpleType, the [value]s should be
combined as if they appeared in a single regular expression as separate branches.

Example

The following is the definition of a user-derived datatype which is a better representation of postal
codes in the United States, by limiting strings to those which are matched by a specific regular
expression.

<simpleType name='better-us-zipcode'>
<restriction base='string'>

<pattern value='[0-9]{5}(-[0-9]{4})?'/>
</restriction>

</simpleType>

61 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

5.2.5 enumeration

The XML representation for a enumeration schema component is a enumeration element information
item. The correspondences between the properties of the information item and properties of the
component are as follows:

XML Representation Summary: enumeration Element Information Item

<enumeration
id = ID
value = string
fixed = boolean : false>
Content: (annotation?)

</enumeration>

{value} must be a valid value of the {base type definition} .

enumeration Schema Component

Property Representation
{value} The value of the value[attribute]
{annotation} The annotation corresponding to the annotation element information item in the

[children], if present, otherwise null

Schema Representation Constraint: Multiple patterns
If multiple enumeration element information items appear as [children] of a simpleType the {value} of the
enumeration component should be the set of all such [value]s.

62 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

Example

The following example is a datatype definition for a user-derived datatype which limits the values of
dates to the three US holidays enumerated. This datatype definition would appear in a schema authored
by an "end-user" and shows how to define a datatype by enumerating the values in its value space.
The enumerated values must be type-valid literals for the base type.

<simpleType name='holidays'>
<annotation>

<documentation>some US holidays</documentation>
</annotation>
<restriction base='recurringDate'>

<enumeration value='--01-01'>
<annotation>

<documentation>New Year's day</documentation>
</annotation>

</enumeration>
<enumeration value='--07-04'/>

<annotation>
<documentation>4th of July</documentation>

</annotation>
</enumeration>
<enumeration value='--12-25'/>

<annotation>
<documentation>Christmas</documentation>

</annotation>
</enumeration>

</restriction>
</simpleType>

5.2.6 maxInclusive

The XML representation for a maxInclusive schema component is a maxInclusive element
information item. The correspondences between the properties of the information item and properties
of the component are as follows:

XML Representation Summary: maxInclusive Element Information Item

<maxInclusive
id = ID
value = string
fixed = boolean : false>
Content: (annotation?)

</maxInclusive>

{value} must be a valid value of the {base type definition} .

maxInclusive Schema Component

Property Representation
{value} The value of the value[attribute]
{fixed} The value of the fixed[attribute], if present, otherwise false, if present, otherwise false
{annotation} The annotation corresponding to the annotation element information item in the

[children], if present, otherwise null

63 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

Example

The following is the definition of a user-derived datatype which limits values to integers less than or
equal to 100, using maxInclusive.

<simpleType name='one-hundred-or-less'>
<restriction base='integer'>

<maxInclusive value='100'/>
</restriction>

</simpleType>

5.2.7 maxExclusive

The XML representation for a maxExclusive schema component is a maxExclusive element
information item. The correspondences between the properties of the information item and properties
of the component are as follows:

XML Representation Summary: maxExclusive Element Information Item

<maxExclusive
id = ID
value = string
fixed = boolean : false>
Content: (annotation?)

</maxExclusive>

{value} must be a valid value of the {base type definition} .

maxExclusive Schema Component

Property Representation
{value} The value of the value[attribute]
{fixed} The value of the fixed[attribute], if present, otherwise false
{annotation} The annotation corresponding to the annotation element information item in the

[children], if present, otherwise null

Example

The following is the definition of a user-derived datatype which limits values to integers less than or
equal to 100, using maxExclusive.

<simpleType name='less-than-one-hundred-and-one'>
<restriction base='integer'>

<maxExclusive value='101'/>
</restriction>

</simpleType>

Note that the value space of this datatype is identical to the previous one (named
'one-hundred-or-less').

5.2.8 minInclusive

64 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

The XML representation for a minInclusive schema component is a minInclusive element information
item. The correspondences between the properties of the information item and properties of the
component are as follows:

XML Representation Summary: minInclusive Element Information Item

<minInclusive
id = ID
value = string
fixed = boolean : false>
Content: (annotation?)

</minInclusive>

{value} must be a valid value of the {base type definition} .

minInclusive Schema Component

Property Representation
{value} The value of the value[attribute]
{fixed} The value of the fixed[attribute], if present, otherwise false
{annotation} The annotation corresponding to the annotation element information item in the

[children], if present, otherwise null

Example

The following is the definition of a user-derived datatype which limits values to integers greater than
or equal to 100, using minInclusive.

<simpleType name='one-hundred-or-more'>
<restriction base='integer'>

<minInclusive value='100'/>
</restriction>

</simpleType>

5.2.9 minExclusive

The XML representation for a minExclusive schema component is a minExclusive element
information item. The correspondences between the properties of the information item and properties
of the component are as follows:

65 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

XML Representation Summary: minExclusive Element Information Item

<minExclusive
id = ID
value = string
fixed = boolean : false>
Content: (annotation?)

</minExclusive>

{value} must be a valid value of the {base type definition} .

minExclusive Schema Component

Property Representation
{value} The value of the value[attribute]
{fixed} The value of the fixed[attribute], if present, otherwise false
{annotation} The annotation corresponding to the annotation element information item in the

[children], if present, otherwise null

Example

The following is the definition of a user-derived datatype which limits values to integers greater than
or equal to 100, using minExclusive.

<simpleType name='more-than-ninety-nine'>
<restriction base='integer'>

<minExclusive value='99'/>
</restriction>

</simpleType>

Note that the value space of this datatype is identical to the previous one (named
'one-hundred-or-more').

5.2.10 precision

The XML representation for a precision schema component is a precision element information item.
The correspondences between the properties of the information item and properties of the
component are as follows:

66 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

XML Representation Summary: precision Element Information Item

<precision
id = ID
value = nonNegativeInteger
fixed = boolean : false>
Content: (annotation?)

</precision>

precision Schema Component

Property Representation
{value} The value of the value[attribute]
{fixed} The value of the fixed[attribute], if present, otherwise false
{annotation} The annotation corresponding to the annotation element information item in the

[children], if present, otherwise null

Example

The following is the definition of a user-derived datatype which could be used to represent monetary
amounts, such as in a financial management application which does not have figures above $1M and
only allows whole cents. This definition would appear in a schema authored by an "end-user" and shows
how to define a datatype by specifying facet values which constrain the range of the base type in a
manner specific to the base type (different than specifying max/min values as before).

<simpleType name='amount'>
<restriction base='decimal'>

<precision value='8'/>
<scale value='2' fixed='true'/>

</restriction>
</simpleType>

5.2.11 scale

The XML representation for a scale schema component is a scale element information item. The
correspondences between the properties of the information item and properties of the component
are as follows:

67 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

XML Representation Summary: scale Element Information Item

<scale
id = ID
value = nonNegativeInteger
fixed = boolean : false>
Content: (annotation?)

</scale>

scale Schema Component

Property Representation
{value} The value of the value[attribute]
{fixed} The value of the fixed[attribute], if present, otherwise false
{annotation} The annotation corresponding to the annotation element information item in the

[children], if present, otherwise null

Example

The following is the definition of a user-derived datatype which could be used to represent the
magnitude of a person's body temperature on the farenheit scale. This definition would appear in a
schema authored by an "end-user" and shows how to define a datatype by specifying facet values which
constrain the range of the base type.

<simpleType name='farenheitBodyTemp'>
<restriction base='decimal'>

<precision value='4'/>
<scale value='1'/>
<minInclusive value='97.5'/>
<maxInclusive value='105.0'/>

</restriction>
</simpleType>

5.2.12 encoding

The XML representation for a encoding schema component is an encoding element information item.
The correspondences between the properties of the information item and properties of the
component are as follows:

68 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

XML Representation Summary: encoding Element Information Item

<encoding
id = ID
value = hex | base64
fixed = boolean : false>
Content: (annotation?)

</encoding>

encoding Schema Component

Property Representation
{value} The value of the value[attribute]
{fixed} The value of the fixed[attribute], if present, otherwise false
{annotation} The annotation corresponding to the annotation element information item in the

[children], if present, otherwise null

Example

The following example is a datatype definition for a user-derived datatype whose value space is the
set of binary streams of length 4 octets (32 bits) and whose lexical space is the set of base64
encodings of such binary streams. This datatype definition would appear in a schema authored by an
"end-user" and shows how to define a datatype by specifying multiple constraining facets.

<simpleType name='myBinary'>
<restriction base='binary'>

<length value='4'/>
<encoding value='base64'/>

</restriction>
</simpleType>

5.2.13 duration

The XML representation for a duration schema component is a duration element information item.
The correspondences between the properties of the information item and properties of the
component are as follows:

69 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

XML Representation Summary: duration Element Information Item

<duration
id = ID
value = timeDuration
fixed = boolean : false>
Content: (annotation?)

</duration>

duration Schema Component

Property Representation
{value} The value of the value[attribute]
{fixed} The value of the fixed[attribute], if present, otherwise false
{annotation} The annotation corresponding to the annotation element information item in the

[children], if present, otherwise null

Example

Suppose an health insurance company wanted to define the length of a hospital stay permitted for the
birth of a baby as two days. They may want to define a datatype as below.

<simpleType name='birthingStay'>
<restriction base='timePeriod'>

<duration value='P2D'/>
</restriction>

</simpleType>

5.2.14 period

The XML representation for a period schema component is a period element information item. The
correspondences between the properties of the information item and properties of the component
are as follows:

XML Representation Summary: period Element Information Item

<period
id = ID
value = timeDuration
fixed = boolean : false>
Content: (annotation?)

</period>

period Schema Component

Property Representation
{value} The value of the value[attribute]
{fixed} The value of the fixed[attribute], if present, otherwise false
{annotation} The annotation corresponding to the annotation element information item in the

[children], if present, otherwise null

70 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

Example

Suppose we wanted to define a day of the week i.e. a duration of one day that recurs every 7 days. This
could be done as follows:

<simpleType name='dayOfWeek'>
<restriction base='recurringDuration'>

<duration value='P1D'/>
<period value='P7D'/>

</restriction>
</simpleType>

6 Conformance
This specification describes two levels of conformance for datatype processors. The first is required
of all processors. Support for the other will depend on the application environments for which the
processor is intended.

[Definition:] Minimally conforming processors must completely and correctly implement the
Constraint on Schemas and Validity Contribution .

[Definition:] Processors which accept schemas in the form of XML documents as described in XML
representation of datatype definitions (§5.1) are additionally said to provide conformance to the
XML Representation of Schemas, and must, when processing schema documents, completely and
correctly implement all Schema Representation Constraints in this specification, and must adhere
exactly to the specifications in XML representation of datatype definitions (§5.1) for mapping the
contents of such documents to schema components for use in validation.

NOTE: By separating the conformance requirements relating to the concrete syntax of
XML schema documents, this specification admits processors which validate using
schemas stored in optimised binary representations, dynamically created schemas
represented as programming language data structures, or implementations in which
particular schemas are compiled into executable code such as C or Java. Such
processors can be said to be minimally conforming but not necessarily in conformance to
the XML Representation of Schemas.

A Schema for Datatype Definitions (normative)

<?xml version='1.0'?>
<!-- XML Schema schema for XML Schemas: Part 2: Datatypes -->
<!DOCTYPE schema PUBLIC "-//W3C//DTD XMLSCHEMA 200010//EN" "XMLSchema.dtd" [
<!--

keep this schema XML1.0 DTD valid
-->

<!ENTITY % elementAttrs 'xmlns:x CDATA #IMPLIED'>
<!ENTITY % schemaAttrs 'xmlns:hfp CDATA #IMPLIED'>

<!ELEMENT hfp:hasFacet EMPTY>
<!ATTLIST hfp:hasFacet

71 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

name NMTOKEN #REQUIRED
>

<!ELEMENT hfp:hasProperty EMPTY>
<!ATTLIST hfp:hasProperty

name NMTOKEN #REQUIRED
value CDATA #REQUIRED
>

]>
<schema xmlns="http://www.w3.org/2000/10/XMLSchema"

targetNamespace="http://www.w3.org/2000/10/XMLSchema"
version="$Id: datatypes.html,v 1.4 2000/09/22 22:45:23 ht Exp $"
xmlns:hfp="http://www.w3.org/2000/10/XMLSchema-hasFacetAndProperty">

<annotation>
<documentation source="http://www.w3.org/TR/2000/WD-xmlschema-2-20000922/datatypes.htm
The schema corresponding to this document is normative,
with respect to the syntactic constraints it expresses in the
XML Schema language. The documentation (within <documentation> elements)
below, is not normative, but rather highlights important aspects of
the W3C Recommendation of which this is a part</documentation>

</annotation>

<import namespace="http://www.w3.org/XML/1998/namespace"
schemaLocation="http://www.w3.org/2000/10/xml.xsd">
<annotation>

<documentation>
Get access to the xml: attribute groups for xml:lang

</documentation>
</annotation>

</import>

<annotation>
<documentation>

First the builtin primitive datatypes. These definitions are for
information only, the real builtin definitions are magic. Note i
particular that there is no type named 'anySimpleType'. The
primitives should really be derived from no type at all, and
anySimpleType should be derived as a union of all the primitives.

</documentation>
</annotation>

<simpleType name="string">
<annotation>

<appinfo>
<hfp:hasFacet name="length"/>
<hfp:hasFacet name="minLength"/>
<hfp:hasFacet name="maxLength"/>
<hfp:hasFacet name="pattern"/>
<hfp:hasFacet name="enumeration"/>
<hfp:hasProperty name="ordered" value="false"/>
<hfp:hasProperty name="bounded" value="false"/>
<hfp:hasProperty name="cardinality" value="countably infi
<hfp:hasProperty name="numeric" value="false"/>

</appinfo>
</annotation>
<restriction base="anySimpleType"/>

</simpleType>

<simpleType name="boolean">
<annotation>

<appinfo>
<hfp:hasFacet name="pattern"/>
<hfp:hasProperty name="ordered" value="false"/>
<hfp:hasProperty name="bounded" value="false"/>
<hfp:hasProperty name="cardinality" value="finite"/>
<hfp:hasProperty name="numeric" value="false"/>

</appinfo>
</annotation>

72 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

<restriction base="anySimpleType"/>
</simpleType>

<simpleType name="float">
<annotation>

<appinfo>
<hfp:hasFacet name="pattern"/>
<hfp:hasFacet name="enumeration"/>
<hfp:hasFacet name="maxInclusive"/>
<hfp:hasFacet name="maxExclusive"/>
<hfp:hasFacet name="minInclusive"/>
<hfp:hasFacet name="minExclusive"/>
<hfp:hasProperty name="ordered" value="true"/>
<hfp:hasProperty name="bounded" value="true"/>
<hfp:hasProperty name="cardinality" value="finite"/>
<hfp:hasProperty name="numeric" value="true"/>

</appinfo>
</annotation>
<restriction base="anySimpleType"/>

</simpleType>

<simpleType name="double">
<annotation>

<appinfo>
<hfp:hasFacet name="pattern"/>
<hfp:hasFacet name="enumeration"/>
<hfp:hasFacet name="maxInclusive"/>
<hfp:hasFacet name="maxExclusive"/>
<hfp:hasFacet name="minInclusive"/>
<hfp:hasFacet name="minExclusive"/>
<hfp:hasProperty name="ordered" value="true"/>
<hfp:hasProperty name="bounded" value="true"/>
<hfp:hasProperty name="cardinality" value="finite"/>
<hfp:hasProperty name="numeric" value="true"/>

</appinfo>
</annotation>
<restriction base="anySimpleType"/>

</simpleType>

<simpleType name="decimal">
<annotation>

<appinfo>
<hfp:hasFacet name="precision"/>
<hfp:hasFacet name="scale"/>
<hfp:hasFacet name="pattern"/>
<hfp:hasFacet name="enumeration"/>
<hfp:hasFacet name="maxInclusive"/>
<hfp:hasFacet name="maxExclusive"/>
<hfp:hasFacet name="minInclusive"/>
<hfp:hasFacet name="minExclusive"/>
<hfp:hasProperty name="ordered" value="true"/>
<hfp:hasProperty name="bounded" value="false"/>
<hfp:hasProperty name="cardinality" value="countably infi
<hfp:hasProperty name="numeric" value="true"/>

</appinfo>
</annotation>
<restriction base="anySimpleType"/>

</simpleType>

<simpleType name="timeDuration">
<annotation>

<appinfo>
<hfp:hasFacet name="pattern"/>
<hfp:hasFacet name="enumeration"/>
<hfp:hasFacet name="maxInclusive"/>
<hfp:hasFacet name="maxExclusive"/>
<hfp:hasFacet name="minInclusive"/>
<hfp:hasFacet name="minExclusive"/>

73 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

<hfp:hasProperty name="ordered" value="true"/>
<hfp:hasProperty name="bounded" value="false"/>
<hfp:hasProperty name="cardinality" value="countably infi
<hfp:hasProperty name="numeric" value="false"/>

</appinfo>
</annotation>
<restriction base="anySimpleType"/>

</simpleType>

<simpleType name="recurringDuration">
<annotation>

<appinfo>
<hfp:hasFacet name="duration"/>
<hfp:hasFacet name="period"/>
<hfp:hasFacet name="pattern"/>
<hfp:hasFacet name="enumeration"/>
<hfp:hasFacet name="maxInclusive"/>
<hfp:hasFacet name="maxExclusive"/>
<hfp:hasFacet name="minInclusive"/>
<hfp:hasFacet name="minExclusive"/>
<hfp:hasProperty name="ordered" value="false"/>
<hfp:hasProperty name="bounded" value="false"/>
<hfp:hasProperty name="cardinality" value="countably infi
<hfp:hasProperty name="numeric" value="false"/>

</appinfo>
</annotation>
<restriction base="anySimpleType"/>

</simpleType>

<simpleType name="binary">
<annotation>

<appinfo>
<hfp:hasFacet name="encoding"/>
<hfp:hasFacet name="length"/>
<hfp:hasFacet name="minLength"/>
<hfp:hasFacet name="maxLength"/>
<hfp:hasFacet name="pattern"/>
<hfp:hasFacet name="enumeration"/>
<hfp:hasProperty name="ordered" value="false"/>
<hfp:hasProperty name="bounded" value="false"/>
<hfp:hasProperty name="cardinality" value="countably infi
<hfp:hasProperty name="numeric" value="false"/>

</appinfo>
</annotation>
<restriction base="anySimpleType"/>

</simpleType>

<simpleType name="uriReference">
<annotation>

<appinfo>
<hfp:hasFacet name="length"/>
<hfp:hasFacet name="minLength"/>
<hfp:hasFacet name="maxLength"/>
<hfp:hasFacet name="pattern"/>
<hfp:hasFacet name="enumeration"/>
<hfp:hasProperty name="ordered" value="false"/>
<hfp:hasProperty name="bounded" value="false"/>
<hfp:hasProperty name="cardinality" value="countably infi
<hfp:hasProperty name="numeric" value="false"/>

</appinfo>
</annotation>
<restriction base="anySimpleType"/>

</simpleType>

<simpleType name="ID">
<annotation>

<appinfo>
<hfp:hasFacet name="length"/>

74 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

<hfp:hasFacet name="minLength"/>
<hfp:hasFacet name="maxLength"/>
<hfp:hasFacet name="pattern"/>
<hfp:hasFacet name="enumeration"/>
<hfp:hasFacet name="maxInclusive"/>
<hfp:hasFacet name="maxExclusive"/>
<hfp:hasFacet name="minInclusive"/>
<hfp:hasFacet name="minExclusive"/>
<hfp:hasProperty name="ordered" value="true"/>
<hfp:hasProperty name="bounded" value="false"/>
<hfp:hasProperty name="cardinality" value="countably infi
<hfp:hasProperty name="numeric" value="false"/>

</appinfo>
</annotation>
<restriction base="anySimpleType"/>

</simpleType>

<simpleType name="IDREF">
<annotation>

<appinfo>
<hfp:hasFacet name="length"/>
<hfp:hasFacet name="minLength"/>
<hfp:hasFacet name="maxLength"/>
<hfp:hasFacet name="pattern"/>
<hfp:hasFacet name="enumeration"/>
<hfp:hasFacet name="maxInclusive"/>
<hfp:hasFacet name="maxExclusive"/>
<hfp:hasFacet name="minInclusive"/>
<hfp:hasFacet name="minExclusive"/>
<hfp:hasProperty name="ordered" value="true"/>
<hfp:hasProperty name="bounded" value="false"/>
<hfp:hasProperty name="cardinality" value="countably infi
<hfp:hasProperty name="numeric" value="false"/>

</appinfo>
</annotation>
<restriction base="anySimpleType"/>

</simpleType>

<simpleType name="ENTITY">
<annotation>

<appinfo>
<hfp:hasFacet name="length"/>
<hfp:hasFacet name="minLength"/>
<hfp:hasFacet name="maxLength"/>
<hfp:hasFacet name="pattern"/>
<hfp:hasFacet name="enumeration"/>
<hfp:hasFacet name="maxInclusive"/>
<hfp:hasFacet name="maxExclusive"/>
<hfp:hasFacet name="minInclusive"/>
<hfp:hasFacet name="minExclusive"/>
<hfp:hasProperty name="ordered" value="true"/>
<hfp:hasProperty name="bounded" value="false"/>
<hfp:hasProperty name="cardinality" value="countably infi
<hfp:hasProperty name="numeric" value="false"/>

</appinfo>
</annotation>
<restriction base="anySimpleType"/>

</simpleType>

<simpleType name="NOTATION">
<annotation>

<appinfo>
<hfp:hasFacet name="length"/>
<hfp:hasFacet name="minLength"/>
<hfp:hasFacet name="maxLength"/>
<hfp:hasFacet name="pattern"/>
<hfp:hasFacet name="enumeration"/>
<hfp:hasFacet name="maxInclusive"/>

75 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

<hfp:hasFacet name="maxExclusive"/>
<hfp:hasFacet name="minInclusive"/>
<hfp:hasFacet name="minExclusive"/>
<hfp:hasProperty name="ordered" value="true"/>
<hfp:hasProperty name="bounded" value="false"/>
<hfp:hasProperty name="cardinality" value="countably infi
<hfp:hasProperty name="numeric" value="false"/>

</appinfo>
</annotation>
<restriction base="anySimpleType"/>

</simpleType>

<simpleType name="QName">
<annotation>

<appinfo>
<hfp:hasFacet name="length"/>
<hfp:hasFacet name="minLength"/>
<hfp:hasFacet name="maxLength"/>
<hfp:hasFacet name="pattern"/>
<hfp:hasFacet name="enumeration"/>
<hfp:hasFacet name="maxInclusive"/>
<hfp:hasFacet name="maxExclusive"/>
<hfp:hasFacet name="minInclusive"/>
<hfp:hasFacet name="minExclusive"/>
<hfp:hasProperty name="ordered" value="true"/>
<hfp:hasProperty name="bounded" value="false"/>
<hfp:hasProperty name="cardinality" value="countably infi
<hfp:hasProperty name="numeric" value="false"/>

</appinfo>
</annotation>

<restriction base="anySimpleType"/>
</simpleType>

<annotation>
<documentation>

Now the derived primitive types
</documentation>

</annotation>

<simpleType name="language">
<restriction base="string">

<pattern value="([a-zA-Z]{2}|[iI]-[a-zA-Z]+|[xX]-[a-zA-Z]+)(-[a-z
<annotation>

<documentation source="http://www.w3.org/TR/REC-x
pattern matches production 33 from the XM

</documentation>
</annotation>

</pattern>
</restriction>

</simpleType>

<simpleType name="IDREFS">
<annotation>

<appinfo>
<hfp:hasFacet name="length"/>
<hfp:hasFacet name="minLength"/>
<hfp:hasFacet name="maxLength"/>
<hfp:hasFacet name="enumeration"/>
<hfp:hasProperty name="ordered" value="false"/>
<hfp:hasProperty name="bounded" value="false"/>
<hfp:hasProperty name="cardinality" value="countably infi
<hfp:hasProperty name="numeric" value="false"/>

</appinfo>
</annotation>
<list itemType="IDREF"/>

</simpleType>

<simpleType name="ENTITIES">

76 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

<annotation>
<appinfo>

<hfp:hasFacet name="length"/>
<hfp:hasFacet name="minLength"/>
<hfp:hasFacet name="maxLength"/>
<hfp:hasFacet name="enumeration"/>
<hfp:hasProperty name="ordered" value="false"/>
<hfp:hasProperty name="bounded" value="false"/>
<hfp:hasProperty name="cardinality" value="countably infi
<hfp:hasProperty name="numeric" value="false"/>

</appinfo>
</annotation>
<list itemType="ENTITY"/>

</simpleType>

<simpleType name="NMTOKEN">
<restriction base="string">

<pattern value="\c+">
<annotation>

<documentation source="http://www.w3.org/TR/REC-x
pattern matches production 7 from the XML

</documentation>
</annotation>

</pattern>
</restriction>

</simpleType>

<simpleType name="NMTOKENS">
<annotation>

<appinfo>
<hfp:hasFacet name="length"/>
<hfp:hasFacet name="minLength"/>
<hfp:hasFacet name="maxLength"/>
<hfp:hasFacet name="enumeration"/>
<hfp:hasProperty name="ordered" value="true"/>
<hfp:hasProperty name="bounded" value="false"/>
<hfp:hasProperty name="cardinality" value="countably infi
<hfp:hasProperty name="numeric" value="false"/>

</appinfo>
</annotation>
<list itemType="NMTOKEN"/>

</simpleType>

<simpleType name="Name">
<restriction base="string">

<pattern value="\i\c*">
<annotation>

<documentation source="http://www.w3.org/TR/REC-x
pattern matches production 5 from the XML

</documentation>
</annotation>

</pattern>
</restriction>

</simpleType>

<simpleType name="NCName">
<restriction base="Name">

<pattern value="[\i-[:]][\c-[:]]*">
<annotation>

<documentation source="http://www.w3.org/TR/REC-x
pattern matches production 4 from the Nam

</documentation>
</annotation>

</pattern>
</restriction>

</simpleType>

<simpleType name="integer">

77 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

<restriction base="decimal">
<scale value="0" fixed="true"/>

</restriction>
</simpleType>

<simpleType name="nonPositiveInteger">
<restriction base="integer">

<maxInclusive value="0"/>
</restriction>

</simpleType>

<simpleType name="negativeInteger">
<restriction base="nonPositiveInteger">

<maxInclusive value="-1"/>
</restriction>

</simpleType>

<simpleType name="long">
<annotation>

<appinfo>
<hfp:hasProperty name="bounded" value="true"/>
<hfp:hasProperty name="cardinality" value="finite"/>

</appinfo>
</annotation>
<restriction base="integer">

<minInclusive value="-9223372036854775808"/>
<maxInclusive value="9223372036854775807"/>

</restriction>
</simpleType>

<simpleType name="int">
<restriction base="long">

<minInclusive value="-2147483648"/>
<maxInclusive value="2147483647"/>

</restriction>
</simpleType>

<simpleType name="short">
<restriction base="int">

<minInclusive value="-32768"/>
<maxInclusive value="32767"/>

</restriction>
</simpleType>

<simpleType name="byte">
<restriction base="short">

<minInclusive value="-128"/>
<maxInclusive value="127"/>

</restriction>
</simpleType>

<simpleType name="nonNegativeInteger">
<restriction base="integer">

<minInclusive value="0"/>
</restriction>

</simpleType>

<simpleType name="unsignedLong">
<annotation>

<appinfo>
<hfp:hasProperty name="bounded" value="true"/>
<hfp:hasProperty name="cardinality" value="finite"/>

</appinfo>
</annotation>
<restriction base="nonNegativeInteger">

<maxInclusive value="18446744073709551615"/>
</restriction>

</simpleType>

78 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

<simpleType name="unsignedInt">
<restriction base="unsignedLong">

<maxInclusive value="4294967295"/>
</restriction>

</simpleType>

<simpleType name="unsignedShort">
<restriction base="unsignedInt">

<maxInclusive value="65535"/>
</restriction>

</simpleType>

<simpleType name="unsignedByte">
<restriction base="unsignedShort">

<maxInclusive value="255"/>
</restriction>

</simpleType>

<simpleType name="positiveInteger">
<restriction base="nonNegativeInteger">

<minInclusive value="1"/>
</restriction>

</simpleType>

<simpleType name="timeInstant">
<restriction base="recurringDuration">

<duration value="P0Y" fixed="true"/>
<period value="P0Y" fixed="true"/>

</restriction>
</simpleType>

<simpleType name="time">
<restriction base="recurringDuration">

<period value="PT24H" fixed="true"/>
<duration value="P0Y" fixed="true"/>

</restriction>
</simpleType>

<simpleType name="timePeriod">
<restriction base="recurringDuration">

<period value="P0Y" fixed="true"/>
</restriction>

</simpleType>

<simpleType name="date">
<restriction base="timePeriod">

<duration value="PT24H" fixed="true"/>
</restriction>

</simpleType>

<simpleType name="month">
<restriction base="timePeriod">

<duration value="P1M" fixed="true"/>
</restriction>

</simpleType>

<simpleType name="year">
<restriction base="timePeriod">

<duration value="P1Y" fixed="true"/>
</restriction>

</simpleType>

<simpleType name="century">
<restriction base="timePeriod">

<period value="P100Y" fixed="true"/>
</restriction>

</simpleType>

79 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

<simpleType name="recurringDate">
<restriction base="recurringDuration">

<duration value="P24H" fixed="true"/>
<period value="P1Y" fixed="true"/>

</restriction>
</simpleType>

<simpleType name="recurringDay">
<restriction base="recurringDuration">

<duration value="P24H" fixed="true"/>
<period value="P1M" fixed="true"/>

</restriction>
</simpleType>

<complexType name="openAttrs">
<annotation>
<documentation>This type is extended by almost all schema types

to allow attributes from other namespaces to be
added to user schemas.</documentation>

</annotation>
<complexContent>
<restriction base="anyType">
<anyAttribute namespace="##other" processContents="lax"/>

</restriction>
</complexContent>

</complexType>

<complexType name="annotated">
<annotation>

<documentation>This type is extended by all types which allow annotation
other than <schema> itself</documentation>

</annotation>
<complexContent>

<extension base="openAttrs">
<sequence>
<element ref="annotation" minOccurs="0"/>

</sequence>
<attribute name="id" type="ID"/>

</extension>
</complexContent>

</complexType>

<complexType name="simpleType" abstract="true">
<complexContent>

<extension base="annotated">
<sequence>
<element ref="simpleDerivation"/>

</sequence>
<attribute name="name" type="NCName">
<annotation>
<documentation>Can be restricted to required or forbidden</documentation>

</annotation>
</attribute>

</extension>
</complexContent>

</complexType>

<complexType name="topLevelSimpleType">
<complexContent>

<restriction base="simpleType">
<sequence>
<element ref="annotation" minOccurs="0"/>
<element ref="simpleDerivation"/>

</sequence>
<attribute name="name" use="required" type="NCName">

<annotation>
<documentation>Required at the top level</documentation>

80 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

</annotation>
</attribute>

</restriction>
</complexContent>

</complexType>

<complexType name="localSimpleType">
<complexContent>

<restriction base="simpleType">
<sequence>
<element ref="annotation" minOccurs="0"/>
<element ref="simpleDerivation"/>

</sequence>
<attribute name="name" use="prohibited">

<annotation>
<documentation>Forbidden when nested</documentation>

</annotation>
</attribute>

</restriction>
</complexContent>

</complexType>

<element name="simpleType" substitutionGroup="redefinable" type="topLevelSimpleType"/>

<element name="simpleDerivation" abstract="true" type="annotated"/>

<group name="simpleRestrictionModel">
<choice>
<element ref="facet" minOccurs="0" maxOccurs="unbounded"/>

</choice>
</group>

<element name="restriction" substitutionGroup="simpleDerivation">
<complexType>

<annotation>
<documentation>base attribute and simpleType child are mutually

exclusive, but one or other is required</documentation>
</annotation>

<complexContent>
<extension base="annotated">

<sequence>
<element name="simpleType" type="localSimpleType" minOccurs="0"/>
<group ref="simpleRestrictionModel"/>

</sequence>
<attribute name="base" type="QName" use="optional"/>

</extension>
</complexContent>

</complexType>
</element>

<element name="list" substitutionGroup="simpleDerivation">
<complexType>

<annotation>
<documentation>type attribute and simpleType child are mutually

exclusive, but one or other is required</documentation>
</annotation>

<complexContent>
<extension base="annotated">

<sequence>
<element name="simpleType" type="localSimpleType" minOccurs="0"/>

</sequence>
<attribute name="itemType" type="QName" use="optional"/>

</extension>
</complexContent>

</complexType>
</element>

81 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

<element name="union" substitutionGroup="simpleDerivation">
<complexType>

<annotation>
<documentation>types attribute must be non-empty or there must be

at least one simpleType child</documentation>
</annotation>

<complexContent>
<extension base="annotated">

<sequence>
<element name="simpleType" type="localSimpleType" minOccurs="0" maxOccurs="unbounded

</sequence>
<attribute name="memberTypes" use="optional">
<simpleType>
<list itemType="QName"/>

</simpleType>
</attribute>

</extension>
</complexContent>

</complexType>
</element>

<complexType name="facet">
<complexContent>

<extension base="annotated">
<attribute name="value" use="required"/>
<attribute name="fixed" type="boolean" use="optional"/>

</extension>
</complexContent>

</complexType>

<element name="facet" type="facet" abstract="true"/>

<element name="minBound" abstract="true" substitutionGroup="facet"/>

<element name="minExclusive" substitutionGroup="minBound"/>
<element name="minInclusive" substitutionGroup="minBound"/>

<element name="maxBound" abstract="true" substitutionGroup="facet"/>

<element name="maxExclusive" substitutionGroup="maxBound"/>
<element name="maxInclusive" substitutionGroup="maxBound"/>

<complexType name="numFacet">
<complexContent>

<restriction base="facet">
<sequence>
<element ref="annotation" minOccurs="0"/>

</sequence>
<attribute name="value" type="nonNegativeInteger"/>

</restriction>
</complexContent>

</complexType>

<element name="precision" substitutionGroup="facet">
<complexType>
<complexContent>
<restriction base="numFacet">
<sequence>
<element ref="annotation" minOccurs="0"/>

</sequence>
<attribute name="value" type="positiveInteger"/>

</restriction>
</complexContent>

</complexType>
</element>

82 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

<element name="scale" type="numFacet" substitutionGroup="facet"/>

<element name="length" type="numFacet" substitutionGroup="facet"/>
<element name="minLength" type="numFacet" substitutionGroup="facet"/>
<element name="maxLength" type="numFacet" substitutionGroup="facet"/>

<element name="encoding" substitutionGroup="facet">
<complexType>

<complexContent>
<restriction base="facet">

<sequence>
<element ref="annotation" minOccurs="0"/>

</sequence>
<attribute name="value">

<simpleType>
<restriction base="NMTOKEN">

<enumeration value="hex">
<annotation>

<documentation>
each (8-bit) byte
of 2 hexidecimal

</documentation>
</annotation>

</enumeration>
<enumeration value="base64">

<annotation>
<documentation>

value is encoded
in the MIME RFC

</documentation>
</annotation>

</enumeration>
</restriction>

</simpleType>
</attribute>

</restriction>
</complexContent>

</complexType>
<s/element>

<element name="period" substitutionGroup="facet">
<complexType>

<complexContent>
<restriction base="facet">

<sequence>
<element ref="annotation" minOccurs="0"/>

</sequence>
<attribute name="value" type="timeDuration"/>

</restriction>
</complexContent>

</complexType>
</element>

<element name="duration" substitutionGroup="facet">
<complexType>

<complexContent>
<restriction base="facet">

<sequence>
<element ref="annotation" minOccurs="0"/>

</sequence>
<attribute name="value" type="timeDuration"/>

</restriction>
</complexContent>

</complexType>
</element>

<element name="enumeration" substitutionGroup="facet"/>

83 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

<element name="pattern" substitutionGroup="facet"/>

<element name="appinfo">
<complexType mixed="true">

<sequence minOccurs="0" maxOccurs="unbounded">
<any processContents="lax"/>

</sequence>
<attribute name="source" type="uriReference"/>

</complexType>
</element>

<element name="documentation" xmlns:x="http://www.w3.org/XML/1998/namespace">
<complexType mixed="true">

<sequence minOccurs="0" maxOccurs="unbounded">
<any processContents="lax"/>

</sequence>
<attribute name="source" type="uriReference"/>
<attribute ref="x:lang"/>

</complexType>
</element>

<element name="annotation">
<complexType>

<choice minOccurs="0" maxOccurs="unbounded">
<element ref="appinfo"/>
<element ref="documentation"/>

</choice>
</complexType>

</element>

<simpleType name="anySimpleType">
<annotation>
<documentation>Not the real thing, provided just for

completeness</documentation>
</annotation>
<restriction base="anyType"/>

</simpleType>

</schema>

B DTD for Datatype Definitions (non-normative)

<!-- DTD for XML Schemas: Part 2: Datatypes -->
<!-- $Id: datatypes.html,v 1.4 2000/09/22 22:45:23 ht Exp $ -->
<!-- Define all the element names, with optional prefix -->
<!ENTITY % simpleType "%p;simpleType">
<!ENTITY % restriction "%p;restriction">
<!ENTITY % list "%p;list">
<!ENTITY % union "%p;union">
<!ENTITY % maxExclusive "%p;maxExclusive">
<!ENTITY % minExclusive "%p;minExclusive">
<!ENTITY % maxInclusive "%p;maxInclusive">
<!ENTITY % minInclusive "%p;minInclusive">
<!ENTITY % precision "%p;precision">
<!ENTITY % scale "%p;scale">
<!ENTITY % length "%p;length">
<!ENTITY % minLength "%p;minLength">
<!ENTITY % maxLength "%p;maxLength">
<!ENTITY % enumeration "%p;enumeration">
<!ENTITY % pattern "%p;pattern">
<!ENTITY % encoding "%p;encoding">
<!ENTITY % period "%p;period">

84 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

<!ENTITY % duration "%p;duration">

<!-- Customisation entities for the ATTLIST of each element type.
Define one of these if your schema takes advantage of the
anyAttribute='##other' in the schema for schemas -->

<!ENTITY % simpleTypeAttrs ''>
<!ENTITY % restrictionAttrs ''>
<!ENTITY % listAttrs ''>
<!ENTITY % unionAttrs ''>
<!ENTITY % simpleTypeAttrs ''>
<!ENTITY % maxExclusiveAttrs ''>
<!ENTITY % minExclusiveAttrs ''>
<!ENTITY % maxInclusiveAttrs ''>
<!ENTITY % minInclusiveAttrs ''>
<!ENTITY % precisionAttrs ''>
<!ENTITY % scaleAttrs ''>
<!ENTITY % lengthAttrs ''>
<!ENTITY % minLengthAttrs ''>
<!ENTITY % maxLengthAttrs ''>
<!ENTITY % enumerationAttrs ''>
<!ENTITY % patternAttrs ''>
<!ENTITY % encodingAttrs ''>
<!ENTITY % periodAttrs ''>
<!ENTITY % durationAttrs ''>
<!ENTITY % appinfoAttrs ''>
<!ENTITY % documentationAttrs ''>

<!-- annotation elements -->
<!ENTITY % annotation "%p;annotation">
<!ENTITY % appinfo "%p;appinfo">
<!ENTITY % documentation "%p;documentation">

<!-- Define some entities for informative use as attribute types -->
<!ENTITY % URIref "CDATA">
<!ENTITY % XPathExpr "CDATA">
<!ENTITY % QName "NMTOKEN">
<!ENTITY % QNames "NMTOKENS">
<!ENTITY % NCName "NMTOKEN">
<!ENTITY % nonNegativeInteger "NMTOKEN">
<!ENTITY % boolean "(true|false)">

<!-- Note that the use of 'facet' below is less restrictive than is
really intended: There should in fact be no more than one of each of
minInclusive, minExclusive, maxInclusive, maxExclusive,
precision, scale,
length, maxLength, minLength, encoding, period within datatype,
and the min- and max- variants of Inclusive and Exclusive are
mutually exclusive.
On the other hand, pattern and enumeration may repeat -->

<!ENTITY % minBound '(%minInclusive; | %minExclusive;)'>
<!ENTITY % maxBound '(%maxInclusive; | %maxExclusive;)'>
<!ENTITY % bounds '%minBound; | %maxBound;'>
<!ENTITY % numeric '%precision; | %scale;'>
<!ENTITY % ordered '%bounds; | %numeric;'>
<!ENTITY % unordered

'%pattern; | %enumeration; | %length; | %maxLength; | %minLength;
| %encoding; | %period; | %duration;'>

<!ENTITY % facet '%ordered; | %unordered;'>
<!ENTITY % facetAttr 'value CDATA #REQUIRED'>
<!ENTITY % fixedAttr 'fixed %boolean; #IMPLIED'>
<!ENTITY % facetModel '(%annotation;)?'>
<!ELEMENT %simpleType; ((%annotation;)?, (%restriction; | %list; | %union;))>
<!ATTLIST %simpleType;

name %NCName; #IMPLIED
%simpleTypeAttrs;>

85 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

<!-- name is required at top level -->
<!ELEMENT %restriction; ((%annotation;)?,

(%restriction1; |
((%simpleType;)?,(%facet;)*)),

(%attrDecls;))>
<!ATTLIST %restriction;

base %QName; #IMPLIED
%restrictionAttrs;>

<!-- base and simpleType child are mutually exclusive, one is required -->
<!-- restriction is shared between simpleType and simpleContent and -->
<!-- complexContent (in XMLSchema.xsd). restriction1 is for the latter -->
<!-- cases, when this is restricting a complex type, as is attrDecls -->
<!ELEMENT %list; ((%annotation;)?,(%simpleType;)?)>
<!ATTLIST %list;

itemType %QName; #IMPLIED
%listAttrs;>

<!-- itemType and simpleType child are mutually exclusive, one is required -->
<!ELEMENT %union; ((%annotation;)?,(%simpleType;)*)>
<!ATTLIST %union;

memberTypes %QNames; #IMPLIED
%unionAttrs;>

<!-- At least one item in memberTypes or one simpleType child is required -->

<!ELEMENT %maxExclusive; %facetModel;>
<!ATTLIST %maxExclusive;

%facetAttr;
%fixedAttr;

%maxExclusiveAttrs;>
<!ELEMENT %minExclusive; %facetModel;>
<!ATTLIST %minExclusive;

%facetAttr;
%fixedAttr;
%minExclusiveAttrs;>

<!ELEMENT %maxInclusive; %facetModel;>
<!ATTLIST %maxInclusive;

%facetAttr;
%fixedAttr;
%maxInclusiveAttrs;>

<!ELEMENT %minInclusive; %facetModel;>
<!ATTLIST %minInclusive;

%facetAttr;
%fixedAttr;
%minInclusiveAttrs;>

<!ELEMENT %precision; %facetModel;>
<!ATTLIST %precision;

%facetAttr;
%fixedAttr;
%precisionAttrs;>

<!ELEMENT %scale; %facetModel;>
<!ATTLIST %scale;

%facetAttr;
%fixedAttr;
%scaleAttrs;>

<!ELEMENT %length; %facetModel;>
<!ATTLIST %length;

%facetAttr;
%fixedAttr;
%lengthAttrs;>

<!ELEMENT %minLength; %facetModel;>
<!ATTLIST %minLength;

%facetAttr;
%fixedAttr;
%minLengthAttrs;>

<!ELEMENT %maxLength; %facetModel;>
<!ATTLIST %maxLength;

86 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

%facetAttr;
%fixedAttr;
%maxLengthAttrs;>

<!-- This one can be repeated -->
<!ELEMENT %enumeration; %facetModel;>
<!ATTLIST %enumeration;

%facetAttr;
%enumerationAttrs;>

<!-- This one can be repeated -->
<!ELEMENT %pattern; %facetModel;>
<!ATTLIST %pattern;

%facetAttr;
%patternAttrs;>

<!ELEMENT %encoding; %facetModel;>
<!ATTLIST %encoding;

%facetAttr;
%fixedAttr;
%encodingAttrs;>

<!ELEMENT %period; %facetModel;>
<!ATTLIST %period;

%facetAttr;
%fixedAttr;
%periodAttrs;>

<!ELEMENT %duration; %facetModel;>
<!ATTLIST %duration;

%facetAttr;
%fixedAttr;
%durationAttrs;>

<!-- Annotation is either application information or documentation -->
<!-- By having these here they are available for datatypes as well

as all the structures elements -->

<!ELEMENT %annotation; (%appinfo; | %documentation;)*>

<!-- User must define annotation elements in internal subset for this
to work -->

<!ELEMENT %appinfo; ANY> <!-- too restrictive -->
<!ATTLIST %appinfo;

source %URIref; #IMPLIED
%appinfoAttrs;>

<!ELEMENT %documentation; ANY> <!-- too restrictive -->
<!ATTLIST %documentation;

source %URIref; #IMPLIED
xml:lang CDATA #IMPLIED
%documentationAttrs;>

C Datatypes and Facets
C.1 Fundamental Facets

The following table shows the values of the fundamental facets for each built-in datatype.

 Datatype ordered bounded cardinality numeric
string false false countably infinite false
boolean false false finite false

87 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

primitive

float true true finite true
double true true finite true
decimal true false countably infinite true
timeDuration true false countably infinite false
recurringDuration false false countably infinite false
binary false false countably infinite false
uriReference false false countably infinite false
ID true false countably infinite false
IDREF true false countably infinite false
ENTITY true false countably infinite false
NOTATION true false countably infinite false
QName true false countably infinite false

derived

language false false countably infinite false
IDREFS false false countably infinite false
ENTITIES false false countably infinite false
NMTOKEN false false countably infinite false
NMTOKENS true false countably infinite false
Name false false countably infinite false
NCName false false countably infinite false
integer true false countably infinite true
nonPositiveInteger true false countably infinite true
negativeInteger true false countably infinite true
long true true finite true
int true true finite true
short true true finite true
byte true true finite true
nonNegativeInteger true false countably infinite true
unsignedLong true true finite true
unsignedInt true true finite true
unsignedShort true true finite true
unsignedByte true true finite true
positiveInteger true false countably infinite true
timeInstant false false countably infinite false
time false false countably infinite false
timePeriod false false countably infinite false
date false false countably infinite false
month false false countably infinite false
year false false countably infinite false
century false false countably infinite false

88 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

recurringDate false false countably infinite false
recurringDay false false countably infinite false

C.2 Constraining Facets

The constraining facets are listed below with all the primitive and derived datatypes that they apply
to.

length applies to the following datatypes:

string
language
NMTOKEN
Name
NCName
binary
uriReference
ID
IDREF
ENTITY
NOTATION
QName
IDREFS
ENTITIES
NMTOKENS

minLength applies to the following datatypes:

string
language
NMTOKEN
Name
NCName
binary
uriReference
ID
IDREF
ENTITY
NOTATION
QName
IDREFS
ENTITIES
NMTOKENS

maxLength applies to the following datatypes:

string
language
NMTOKEN
Name
NCName

89 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

binary
uriReference
ID
IDREF
ENTITY
NOTATION
QName
IDREFS
ENTITIES
NMTOKENS

pattern applies to the following datatypes:

string
language
NMTOKEN
Name
NCName
boolean
float
double
decimal
integer
nonPositiveInteger
negativeInteger
long
int
short
byte
nonNegativeInteger
unsignedLong
unsignedInt
unsignedShort
unsignedByte
positiveInteger
timeDuration
recurringDuration
timeInstant
time
timePeriod
date
month
year
century
recurringDate
recurringDay
binary
uriReference
ID
IDREF
ENTITY
NOTATION

90 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

QName

enumeration applies to the following datatypes:

string
language
NMTOKEN
Name
NCName
float
double
decimal
integer
nonPositiveInteger
negativeInteger
long
int
short
byte
nonNegativeInteger
unsignedLong
unsignedInt
unsignedShort
unsignedByte
positiveInteger
timeDuration
recurringDuration
timeInstant
time
timePeriod
date
month
year
century
recurringDate
recurringDay
binary
uriReference
ID
IDREF
ENTITY
NOTATION
QName
IDREFS
ENTITIES
NMTOKENS

maxInclusive applies to the following datatypes:

float
double
decimal

91 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

integer
nonPositiveInteger
negativeInteger
long
int
short
byte
nonNegativeInteger
unsignedLong
unsignedInt
unsignedShort
unsignedByte
positiveInteger
timeDuration
recurringDuration
timeInstant
time
timePeriod
date
month
year
century
recurringDate
recurringDay
ID
IDREF
ENTITY
NOTATION
QName

maxExclusive applies to the following datatypes:

float
double
decimal
integer
nonPositiveInteger
negativeInteger
long
int
short
byte
nonNegativeInteger
unsignedLong
unsignedInt
unsignedShort
unsignedByte
positiveInteger
timeDuration
recurringDuration
timeInstant
time

92 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

timePeriod
date
month
year
century
recurringDate
recurringDay
ID
IDREF
ENTITY
NOTATION
QName

minInclusive applies to the following datatypes:

float
double
decimal
integer
nonPositiveInteger
negativeInteger
long
int
short
byte
nonNegativeInteger
unsignedLong
unsignedInt
unsignedShort
unsignedByte
positiveInteger
timeDuration
recurringDuration
timeInstant
time
timePeriod
date
month
year
century
recurringDate
recurringDay
ID
IDREF
ENTITY
NOTATION
QName

minExclusive applies to the following datatypes:

float
double

93 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

decimal
integer
nonPositiveInteger
negativeInteger
long
int
short
byte
nonNegativeInteger
unsignedLong
unsignedInt
unsignedShort
unsignedByte
positiveInteger
timeDuration
recurringDuration
timeInstant
time
timePeriod
date
month
year
century
recurringDate
recurringDay
ID
IDREF
ENTITY
NOTATION
QName

precision applies to the following datatypes:

decimal
integer
nonPositiveInteger
negativeInteger
long
int
short
byte
nonNegativeInteger
unsignedLong
unsignedInt
unsignedShort
unsignedByte
positiveInteger

scale applies to the following datatypes:

decimal
integer

94 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

nonPositiveInteger
negativeInteger
long
int
short
byte
nonNegativeInteger
unsignedLong
unsignedInt
unsignedShort
unsignedByte
positiveInteger

encoding applies to the following datatypes:

binary

duration applies to the following datatypes:

recurringDuration
timeInstant
time
timePeriod
date
month
year
century
recurringDate
recurringDay

period applies to the following datatypes:

recurringDuration
timeInstant
time
timePeriod
date
month
year
century
recurringDate
recurringDay

D ISO 8601 Date and Time Formats
D.1 ISO 8601 Conventions

The two primitive datatypes described above, timeDuration, recurringDuration, and the five derived
dataypes timeInstant, date, time, timePeriod, and recurringDate use lexical formats inspired by [ISO
8601]. This appendix provides more detail on the ISO formats and discusses some deviations from
them for the datatypes defined in this specification.

95 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

[ISO 8601] "specifies the representation of dates in the Gregorian calendar and times and
representations of periods of time". It should be pointed out that the datatypes described in this
specification do not cover all the types of data covered by [ISO 8601], nor do they support all the
lexical representations for those types of data.

[ISO 8601] lexical formats are described using "pictures" in which characters are used in place of
digits. These characters have the following meanings:

C -- represents a digit used in the thousands and hundreds components, the "century"
component, of the time element "year". Legal values are from 0 to 9.
Y -- represents a digit used in the tens and units components of the time element "year". Legal
values are from 0 to 9.
M -- represents a digit used in the time element "month". The two digits in a MM format can
have values from 1 to 12.
D -- represents a digit used in the time element "day". The two digits in a DD format can have
values from 1 to 28 if the month value equals 2, 1 to 29 if the month value equals 2 and the
year is a leap year, 1 to 30 if the month value equals 4, 6, 9 or 11, and 1 to 31 if the month
value equals 1, 3, 5, 7, 8, 10 or 12.
h -- represents a digit used in the time element "hour". The two digits in a hh format can have
values from 0 to 12.
m -- represents a digit used in the time element "minute". The two digits in a mm format can
have values from 0 to 60.
s -- represents a digit used in the time element "second". The two digits in a ss format can have
values from 0 to 60. In the formats described in this specification the whole number of seconds
may be followed by decimal seconds to an arbitrary level of precision. This is represented in
the picture by "ss.sss".

For all the information items indicated by the above characters, leading zeros are required where
indicated.

In addition to the above, certain characters are used as designators and appear as themselves in
lexical formats.

T -- is used as time designator to indicate the start of the representation of the time of day in
recurringDuration and timeInstant
Z -- is used as time-zone designator, immediately (without a space) following a data element
expressing the time of day in Coordinated Universal Time (UTC) in recurringDuration,
timeInstant and time

D.2 Truncated and Reduced Formats

[ISO 8601] supports a variety of "truncated" formats in which some of the characters on the left of
specific formats, for example, the century, can be omitted. Truncated formats are, in general, not
permitted for the datatypes defined in this specification with three exceptions. The time datatype
uses a truncated format for timeInstant. By truncating the date information we represent an instant of
time that recurs every day. Similarly, the recurringDate and recurringDay datatypes use
left-truncated formats for date.

[ISO 8601] also supports a variety of "reduced" or right-truncated formats in which some of the
characters to the right of specific formats, such as the time specification, can be omitted. Right
truncated formats are also, in general, not permitted for the datatypes defined in this specification

96 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

with the following exceptions: right-truncated representations of timePeriod are used as lexical
representations for date, month, year and century.

D.3 Deviations from ISO 8601 Formats

D.3.1 Sign Allowed

An optional minus sign is allowed immediately preceding, without a space, the lexical
representations for timeInstant and date.

D.3.2 No Year Zero

The year "0000" is an illegal year value.

D.3.3 More Than 9999 Years

To accommodate year values greater than 9999, more than four digits are allowed in the year
representations of timeInstant, timeInstant and time. This follows the [ISO 8601 Draft Revision].

E Regular Expressions
A regular expressionR is a sequence of characters that denote a set of stringsL(R). When used to
constrain a lexical space, a regular expressionR asserts that only strings in L(R) are valid literals
for values of that type.

[Definition:] A regular expression is composed from zero or more branches, separated by |
characters.

For all branches S, and for all regular expressions T, valid
regular expressions R are:

Denoting the set of strings L(R)
containing:

(empty string) the set containing just the empty string
S all strings in L(S)

S|T all strings in L(S) and all strings in L(T)

[Definition:] A branch consists of zero or more pieces, concatenated together.

For all pieces S, and for all branches T, valid branches R
are: Denoting the set of strings L(R) containing:

S all strings in L(S)
ST all strings st with s in L(S) and t in L(T)

[Definition:] A piece is an atom, possibly followed by a quantifier.

97 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

For all atoms S and non-negative integers n, m
such that n <= m, valid pieces R are: Denoting the set of strings L(R) containing:

S all strings in L(S)
S? the empty string, and all strings in L(S).

S*
All strings in L(S?) and all strings st with s in L(S*) and t in

L(S). (all concatenations of zero or more strings from
L(S))

S+ All strings st with s in L(S) and t in L(S*). (all
concatenations of one or more strings from L(S))

S{n,m} All strings st with s in L(S) and t in L(S{n-1,m-1}). (All
sequences of at least n, and at most m, strings from L(S))

S{0,m} All strings st with s in L(S?) and t in L(S{0,m-1}). (All
sequences of at most m, strings from L(S))

S{n,} All strings in L(S{n,n}S*)
S{0,0} The set containing only the empty string

NOTE: The regular expression language in the Perl Programming Language [Perl] does
not include a quantifier of the form S{,m), since it is logically equivalent to S{0,m}. We
have, therefore, left this logical possibility out of the regular expression language defined
by this specification. We welcome further input from implementors and schema authors
on this issue.

[Definition:] A quantifier is one of ?, *, +, {n,m} or {n,}, which have the meanings defined in the
table above.

[Definition:] An atom is either a normal character, a character class, or a parenthesized regular
expression.

For all normal characters c, character classes C, and regular
expressions S, valid atoms R are:

Denoting the set of strings L(R)
containing:

c the single string consisting only of c
C all strings in L(C)

(S) all strings in L(S)

[Definition:] A metacharacter is either ., \, ?, *, +, {, }(,), [or]. These characters have special
meanings in regular expressions, but can be escaped to form atoms that denote the sets of strings
containing only themselves, i.e., an escaped metacharacter behaves like a normal character.

[Definition:] A normal character is any XML character that is not a metacharacter. In regular
expressions, a normal character is an atom that denotes the singleton set of strings containing only
itself.

Note that a normal character can be represented either as itself, or with a character reference.

E.1 Character Classes

[Definition:] A character class is an atomR that identifies a set of charactersC(R). The set of

98 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

strings L(R) denoted by a character class R contains one single-character string " c" for each
character c in C(R).

A character class is either a character class escape or a character class expression.

[Definition:] A character class expression is a character group surrounded by [and] characters.
For all character groups G, [G] is a valid character class expression, identifying the set of
characters C([G]) = C(G).

[Definition:] A character group is either positive character group, a negative character group, or a
character class subtraction.

[Definition:] A positive character group consists of one or more character ranges or character
class escapes, concatenated together. A positive character group identifies the set of characters
containing all of the characters in all of the sets identified by its constituent ranges or escapes.

For all character ranges R, all character class escapes E,
and all positive character groups P, valid positive

character groups G are:

Identifying the set of characters C(G)
containing:

R all characters in C(R).
E all characters in C(E).

RP all characters in C(R) and all characters in
C(P).

EP all characters in C(E) and all characters in
C(P).

[Definition:] A negative character group is a positive character group preceded by the ^ character.
For all positive character groups P, ^P is a valid negative character group, and C(^P) contains all
XML characters that are not in C(P).

[Definition:] A character class subtraction is a character class expression subtracted from a
positive character group or negative character group, using the - character.

For any positive character group or negative character groupG, and any character class
expressionC, G-C is a valid character class subtraction, identifying the set of all characters in C(G)
that are not also in C(C).

[Definition:] A character rangeR identifies a set of characters C(R) containing all XML characters
with Unicode code points in a specified range.

A single XML character is a character range that identifies the set of characters containing only
itself. All XML characters are valid character ranges, except as follows:

The [,], and \ characters are not valid character ranges;
The ^ character is only valid at the beginning of a positive character group if it is part of a
negative character group; and
The - character is a valid character range only at the beginning or end of a positive character
group.

A character range may also be written in the form s-e, identifying the set that contains all XML

99 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

characters with Unicode code points greater than or equal to the code point of s, but not greater than
the code point of e.

s-e is a valid character range iff:

s is a single character escape, or an XML character;
s is not \
If s is the first character in a character class expression, then s is not ^
e is a single character escape, or an XML character;
e is not \ or [; and
The code point of e is greater than or equal to the code point of s;

NOTE: The code point of a single character escape is the code point of the single
character in the set of characters that it identifies.

E.1.1 Character Class Escapes

[Definition:] A character class escape is a short sequence of characters that identifies predefined
character class. The valid character class escapes include the single character escapes, the
multi-character escapes, and the category escapes.

[Definition:] A single character escape identifies a set containing a only one character -- usually
because that character is difficult or impossible to write directly into a regular expression.

The valid single character escapes are: Identifying the set of characters C(R) containing:
\n the newline character (
)
\r the return character ()
\t the tab character ()
\\ \
\| |
\. .
\- -
\^ ^
\? ?
* *
\+ +
\{ {
\} }
\((
\))
\[[
\]]

[Definition:] The Unicode Standard [Unicode] defines a number of character properties and provides
mappings from code points to specific character properties. The set containing of all characters that
have property X, may be identified with a category escape\p{X}. The complement of this set may be

100 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

specified with the category escape\P{X}. ([\P{X}] = [^\p{X}]).

NOTE: The syntax \p{X} is the same as that used in [Perl 5.6].

The following table specifies the main character properties (for more information, see Chapter 4 of
[Unicode]).

Category Property Meaning

Letters

L All Letters
Lu Uppercase
Ll Lowercase
Lt Titlecase
Lm Modifier
Lo Other

Marks

M All Marks
Mn Non-Spacing
Mc Spacing Combining
Me Enclosing

Numbers

N All Numbers
Nd Decimal Digit
Nl Letter
No Other

Punctuation

P All Punctuation
Pc Connector
Pd Dash
Ps Open
Pe Close
Pi Initial quote (may behave like Ps or Pe depending on usage)
Pf Final quote (may behave like Ps or Pe depending on usage)
Po Other

Separators

Z All Separators
Zs Space
Zl Line
Zp Paragraph

S All Symbols

Sm Math

101 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

Symbols Sc Currency
Sk Modifier
So Other

Other

C All Others
Cc Control
Cf Format
Cs Surrogate
Co Private Use
Cn Not Assigned

[Definition:] The Unicode Standard [Unicode] groups code points into a number of blocks such as
Basic Latin (i.e., ASCII), Latin-1 Supplement, Hangul Jamo, CJK Compatibility, etc. The set
containing of all characters that have block name X (with all whitespace stripped out), may be
identified with a block escape\p{IsX}. The compliment of this set may be specified with the block
escape\P{IsX}. ([\P{IsX}] = [^\p{IsX}]).

NOTE: The syntax \p{IsX} is the same as that used in [Perl 5.6].

For example, the block escape for identifying the ASCII characters is \p{IsBasicLatin}.

[Definition:] A multi-character escape provides a simple way to identify a commonly used set of
characters:

Character
sequence Equivalent character class

. [^\n\r]
\s [\t\n\r]
\S [^\s]
\i [\p{L}\p{Nl}:_]
\I [^\i]
\c the set of characters matched by NameChar
\C [^\c]
\d \p{Nd}
\D [^\d]

\w [�-]-[\p{P}\p{S}\p{C}] (all characters except the set of
"punctuation", "separator" and "control" characters)

\W [^\w]

F References
F.1 Normative

Clinger, WD (1990)

102 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

William D Clinger. How to Read Floating Point Numbers Accurately. In Proceedings of
Conference on Programming Language Design and Implementation , pages 92-101. Available
at: ftp://ftp.ccs.neu.edu/pub/people/will/howtoread.ps

IEEE 754-1985
IEEE. IEEE Standard for Binary Floating-Point Arithmetic. See
http://standards.ieee.org/reading/ieee/std_public/description/busarch/754-1985_desc.html

ISO 10646
ISO (International Organization for Standardization). ISO/IEC 10646-1993 (E). Information
technology --- Universal Multiple-Octet Coded Character Set (UCS) --- Part 1: Architecture and
Basic Multilingual Plane. [Geneva]: International Organization for Standardization, 1993 (plus
amendments AM 1 through AM 7).

Namespaces in XML
World Wide Web Consortium. Namespaces in XML. Available at:
http://www.w3.org/TR/REC-xml-names/

RFC 1766
H. Alvestrand, ed. RFC 1766: Tags for the Identification of Languages 1995. Available at:
http://www.ietf.org/rfc/rfc1766.txt

RFC 2045
N. Freed and N. Borenstein. RFC 2045: Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies . 1996 Available at: http://www.ietf.org/rfc/rfc2045.txt

RFC 2396
Tim Berners-Lee, et. al. RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax.. 1998
Available at: http://www.ietf.org/rfc/rfc2396.txt

Unicode
The Unicode Consortium. The Unicode Standard, Version 3.0. Addison-Wesley, 2000. ISBN
0-201-61633-5.

Unicode Database
The Unicode Consortium. The Unicode Character Database. Available at:
http://www.unicode.org/Public/3.0-Update/UnicodeCharacterDatabase-3.0.0.html

XML 1.0 Recommendation
World Wide Web Consortium. Extensible Markup Language (XML) 1.0. Available at:
http://www.w3.org/TR/REC-xml

XML Information Set
World Wide Web Consortium. XML Information Set (public WD) Available at:
http://www.w3.org/TR/xml-infoset

XML Schema Part 1: Structures
XML Schema Part 1: Structures. Available at:
http://www.w3.org/TR/2000/WD-xmlschema-1-20000922/

XML Schema Requirements
XML Schema Requirements. Available at: http://www.w3.org/TR/NOTE-xml-schema-req

F.2 Non-normative

Gay, DM (1990)
David M. Gay. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. AT&T Bell
Laboratories Numerical Analysis Manuscript 90-10, November 1990. Available at:
http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz

ISO 11404
ISO (International Organization for Standardization). Language-independent Datatypes. See
http://www.iso.ch/cate/d19346.html

ISO 8601

103 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

ISO (International Organization for Standardization). Representations of dates and times,
1988-06-15. Available at: http://www.iso.ch/markete/8601.pdf

ISO 8601 Draft Revision
ISO (International Organization for Standardization). Representations of dates and times, draft
revision, 1998.

Perl
The Perl Programming Language. See http://www.perl.com

Perl 5.6
The Perl Programming Language, Version 5.6. See
http://www.perl.com/language/misc/ann58/index.html

RDF Schema
World Wide Web Consortium. RDF Schema Specification. Available at:
http://www.w3.org/TR/rdf-schema/

SQL
ISO (International Organization for Standardization). ISO/IEC 9075-2:1999, Information
technology --- Database languages --- SQL --- Part 2: Foundation (SQL/Foundation) . [Geneva]:
International Organization for Standardization, 1999. See http://www.iso.ch/cate/d26197.html

Unicode Regular Expression Guidelines
Mark Davis. Unicode Regular Expression Guidelines, 1988. Available at:
http://www.unicode.org/unicode/reports/tr18/

XSL
World Wide Web Consortium. Extensible Stylesheet Language (XSL). Available at:
http://www.w3.org/TR/xsl/

G Acknowledgments (non-normative)
The editors acknowledge the members of the XML Schema Working Group, the members of other
W3C Working Groups, and industry experts in other forums who have contributed directly or
indirectly to the process or content of creating this document. The Working Group is particularly
grateful to Lotus Development Corp. and IBM for providing teleconferencing facilities.

The current members of the XML Schema Working Group are:

Jim Barnette, Defense Information Systems Agency (DISA); David Beech, Oracle Corp.; Paul V.
Biron, Health Level Seven; Don Box, DevelopMentor; Allen Brown, Microsoft; Lee Buck, Extensibility;
Charles E. Campbell, Informix; Peter Chen, Bootstrap Alliance and LSU; David Cleary, Progress
Software; Dan Connolly, W3C (staff contact); Roger L. Costello, MITRE; Ugo Corda, Xerox; Andrew
Eisenberg, Progress Software; David Ezell, Hewlett Packard Company; David Fallside, IBM;
Matthew Fuchs, Commerce One; Andrew Goodchild, Distributed Systems Technology Centre (DSTC
Pty Ltd); Paul Grosso, ArborText, Inc; Martin Gudgin, DevelopMentor; Dave Hollander,
CommerceNet (co-chair); Mary Holstege, Calico Commerce; Jane Hunter, Distributed Systems
Technology Centre (DSTC Pty Ltd); Rick Jelliffe, Academia Sinica; Andrew Layman, Microsoft;
Dmitry Lenkov, Hewlett Packard Company; Eve Maler, Sun Microsystems; Ashok Malhotra, IBM;
Murray Maloney, Commerce One; John McCarthy, Lawrence Berkeley National Laboratory; Noah
Mendelsohn, Lotus Development Corporation; Don Mullen, Extensibility; Frank Olken, Lawrence
Berkeley National Laboratory; Dave Peterson, Graphic Communications Association; Mark Reinhold,
Sun Microsystems; Jonathan Robie, Software AG; John C. Schneider, MITRE; Lew Shannon, NCR;
C. M. Sperberg-McQueen, W3C (co-chair); Bob Streich, Calico Commerce; Henry S. Thompson,
University of Edinburgh; Matt Timmermans, Microstar; Jim Trezzo, Oracle Corp.; Steph Tryphonas,
Microstar; Mark Tucker, Health Level Seven; Asir S. Vedamuthu, webMethods, Inc; Priscilla
Walmsley, XMLSolutions; Norm Walsh, ArborText, Inc; Aki Yoshida, SAP AG

104 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

The XML Schema Working Group has benefited in its work from the participation and contributions
of a number of people not currently members of the Working Group, including in particular those
named below. Affiliations given are those current at the time of their work with the WG.

Paula Angerstein, Vignette Corporation; Gabe Beged-Dov, Rogue Wave Software; Greg
Bumgardner, Rogue Wave Software; Dean Burson, Lotus Development Corporation; Rob Ellman,
Calico Commerce; George Feinberg, Object Design; Charles Frankston, Microsoft; Ernesto
Guerrieri, Inso; Michael Hyman, Microsoft; Renato Iannella, Distributed Systems Technology Centre
(DSTC Pty Ltd); Dianne Kennedy, Graphic Communications Association; Janet Koenig, Sun
Microsystems; Setrag Khoshafian, Technology Deployment International (TDI); Ara Kullukian,
Technology Deployment International (TDI); Murata Makoto, Xerox; Chris Olds, Wall Data; Shriram
Revankar, Xerox; William Shea, Merrill Lynch; Ralph Swick, W3C; Tony Stewart, Rivcom

H Revisions from Previous Draft
1. 2000-07-12: pvb: removed note from DTD/Schema for datatypes included in Appendices A&B

which says they aren't normative but that they ones included in Appednices A&B are:-)
2. 2000-07-12: pvb: added \| as a single character escape in the regex language
3. 2000-07-12: pvb: changed all wording of the form "X is derived from Y by fixing the value of

facet Z to a" to be "X is derived from Y by setting the value of facet Z to a", to avoid confusion
(since we can't [yet] "fix" a facet value).

4. 2000-07-13: pvb: updated the status of this document section for internal point release
5. 2000-07-13: pvb: added note to section on order relations, to the effect that just because this

spec doesn't say that a type is ordered doesn't mean that down-stream apps can't specify
some order relation.

6. 2000-07-13: pvb: modified stylesheet to make "priority feedback" issues more prevalent
7. 200007-13: pvb: modified markup around PFI for decimal to take advantage of the new

stylesheet template for PFIs
8. 2000-07-13: pvb: removed the order relation from string, and hence, the min/max facets
9. 2000-07-13: pvb: turned the <note> in decimal about wanting feedback about arbitrary

precision into an <ednote role='pf'>, which displays specially with new stylesheet
10. 2000-07-14: pvb: fixed the stylesheet so that it put a space between the links "built-in" and

"derived" in the auto-generated "Derived types" subsection of each type definition.
11. 2000-07-14: pvb: created a schema for has-facet and has-property used in the appinfo of type

definitions in the schema for datatypes
12. 2000-07-14: pvb: modified stylesheet to generate the spec from the modified has-facet and

has-property appinfo items
13. 2000-07-15 and 2000-07-16: pvb: my allergies had me in bed all day and couldn't get anything

done
14. 2000-07-17: pvb: almost fixed the bugs introduced by the stylesheet modifications for has-facet

and has-property. Appendix C still contains a few type names duplicated under some
facets...I'll get that later.

15. 2000-07-18: AM: Fixed typos caught by Susan Lesch in her note to schema-comments of May
12.

16. 2000-07-18: AM: Changed line in date formats to say year 0 not allowed.
17. 2000-07-18: AM: Changed value space for decimal.
18. 2000-07-18: AM: Changed text for recurringDuration.
19. 2000-07-18: AM: Fixed typos in "time".
20. 2000-07-18: pvb: changed has-facet and has-property to hasFacet and hasProperty
21. 2000-07-18: pvb: changed definition of decimal again, to give separate defs of value space

105 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

without any facet being valued, with only precision and with only scale. This is intended to
clarify what is and is not meant by precision and scale. Also fixed long standing typo in the
equation for the value space of decimal: i x 10^n corrected to i x 10^-n.

22. 2000-08-07: pvb: finally found error in stylesheet which was causing XT to have a
stackOverflow, preventing the release of this version.

23. 2000-08-15: pvb: added a fixed property to each facet component
24. 2000-08-15: pvb: removed redundant "if"s in many of the Validation Contributions in section 4
25. 2000-08-15: pvb: removed mention of string from the Validation Contributions of the

order-related facets (min/max inc/exc) in section 4. This should have been done in a previous
draft when string became unordered.

26. 2000-08-16: pvb: added fixed property to each facet component; added fixed attribute to each
facet element. Possible problems with the XML repr for pattern and enumeration still to be
worked out.

27. 2000-08-21: pvb: fixed schema dump file, so that stylesheet correctly formats the value
attribute of all facets as being required.

28. 2000-08-21: pvb: fixed stylesheet so that "hex | base64" in the XML Rep for encoding no longer
formated as "| hex | base64"...this also fixed a long standing bug in the stylesheet such
surrounding properly formating of <choice> in content models

29. 2000-08-22: pvb: added union types
30. 2000-08-23: pvb: changed defn syntax to conform to union proposal, including changes to

stylesheet to get autogenerated text from datatypes.xsd to format correctly
31. 2000-08-24: pvb: cleaned up a few sections so that they are consistent with the (now) 3 forms

of derivation (where there used to be only 2)
32. 2000-08-24: pvb: marked app B (DTD) as non-normative
33. 2000-08-30: AM: added definition of canonical form as 2.4.
34. 2000-08-30: AM: added canonical forms for all built-in datatypes.
35. 2000-08-30: AM: changed lex space for boolean to {true, false}.
36. 2000-08-31: AM: removed fixed property from pattern and enumeration pending resolution of

how to handle these two cases.
37. 2000-08-31: AM: fixed syntax for examples. Added "fixed" for 2 examples.
38. 2000-08-31: AM: removed pattern facet from binary.
39. 2000-08-31: AM: changed value space for timeDuration. Some bug fixes to Appendix D.

106 of 106 10/11/2000 08:08 AM

XML Schema Part 2: Datatypes file:///Z|/W3C Recommendations/Working Dra...velopment/XML-Schema/Part2/xmlschema-2.h

