
ISO/IEC JTC1/ SC32 WG3:E3A-nnn
ANSI NCITS H2-2001-008r1

- 1 of 23 -

Title: Mapping SQL types to XML types - an
overview

Author: Fred Zemke, Ashok Malhotra, Jim Melton
Source: U.S.A.
Status: Change proposal
Date: February 9, 2001

Abstract

This paper is an introduction to the candidate base document for SQL/XML. It discusses the
three kinds of mappings found there:

• character set mappings
• identifier mappings
• data type mappings

References

[Foundation CD] Jim Melton (ed), “ Committee Draft (CD) Database Language SQL
- Part 2: SQL/Foundation”, ISO/IEC JTC1/SC32 WG3:PER-004 =
ANSI NCITS H2-2000-556

[XML Schema: Datatypes] World Wide Web Consortium, “XML Schema Part 2: Datatypes”,
available at http://www.w3.org/TR/xmlschema-2/

[XML 1.0 Rec (2nd ed)] World Wide Web Consortium, “Extensible Markup Language
(XML) 1.0.” Available at: http://www.w3.org/TR/2000/WD-xml-
2e-20000814

[XML Namespaces] World Wide Web Consortium, “Namespaces in XML”, available at
http://www.w3c.org/TR/REC-xml-names

[HEL-026r2] Jim Melton, “Subproject: ‘XML-related specifications (SQL/
XML)’”, ISO/IEC JTC1/SC32 WG3:HEL-026r2 = ANSI NCITS
H2-2000-3331r1

[SQL/XML candidate] Fred Zemke, et.al., “SQL/XML candidate base document”, ISO/
IEC JTC1/SC32 WG3:E3A-003 = H2-2001-009r1

ISO/IEC JTC1/SC32 WG3:E3A-nnn
ANSI NCITS H2-2001-008r1

- 2 of 23 -

Mapping SQL types to XML types - an overview

1. Introduction
This paper provides an overview of the accompanying candidate base document for SQL/XML.
The candidate base document treats an important, though admittedly still incomplete, portion of
the problem of mapping SQL to XML. The mappings that are defined in the candidate base
document are:

• character set mappings,
• identifier mappings, and
• predefined data type mappings.

These three mappings should be seen as infrastructure that will be required by other components
of SQL/XML. As such they are relevant to the first three bullet items in section 5, “Program of
work” in the subproject proposal [HEL-026r2]. The three bullet items in question are quoted
below, with an explanation of the proposal’s applicability to each:

• Specifications for the representation of SQL data (specifically rows and tables of rows, as well
as views and query results) in XML form, and vice versa.

Applicability: in order to represent SQL data in XML, it will be necessary to map
the SQL data values to XML data values. Before such data values mappings can
be defined, one must first define the mappings of the SQL data types.

• Specifications associated with mapping SQL schemata to and from XML schemata. This may
include performing the mapping between existing arbitrary XML and SQL schemata.

Applicability: in order to map SQL schemata to XML schemata, it will be
necessary to map both SQL identifiers to XML Names and SQL data types to
XML Schema data types.

• Specifications for the representation of SQL Schemas in XML.

Applicability: it is expected that the data type mappings and possibly also the
identifier mapping will be relevant to this item.

See section 4, “Example”, of this paper, for detailed examples of how the mappings in the
candidate base document might be applied to the problem of creating an XML Schema definition
corresponding to an SQL <table definition>. The reader is cautioned, however, that these
examples are at this stage still hypothetical, because the candidate base document does not
propose mappings for <table definition>s yet.

The candidate base document represents a consensus arrived at by industry representatives from
at least eleven different companies, who have met in an informal open forum known as SQLX,
publicized within the U.S national body, and convened for the purpose of preparing contributions
to SQL/XML.

ISO/IEC JTC1/SC32 WG3:E3A-nnn
ANSI NCITS H2-2001-008r1

- 3 of 23 -

Mapping SQL types to XML types - an overview

2. Preliminaries

2.1 Lexical conventions

Since SQL/XML is a standard bridging two worlds, SQL and XML, it is important to be clear
which world each object of discussion inhabits. Since SQL/XML will be a part of the SQL
standard, there is a presumption that each object lies in the SQL world unless otherwise noted.
Consequently plain text (as opposed to bold) is reserved for SQL objects, whilebold
monospace is reserved for literal XML text, anditalic bold monospace is used for
variables denoting XML text. However, text on a separate line and clearly marked in an
accompanying paragraph as being XML is merely set in monosapce font (i.e., without the bold),
for example

<xsd :whatever/>

2.2 Namespaces

[XML Namespaces] provides a namespace capability so that users can avoid naming collisions.
XML Schema uses two namespaces, denoted in the XML documents asxsd: andxsi: . The
choice of letters to represent these namespaces is actually arbitrary, so that a user could pick
different letters as long as they are defined to refer to the correct URLs. Since the letters chosen to
represent these namespaces are arbitrary, the SQL/XML candidate base document defines two
variables,xsd : and xsi : , for them, with the italics convention indicating that these are
variables and the actual letters used may differ..

The candidate base document also needs to create XML definitions which will reside in a
namespace. An XML namespace is a URI. It may be desirable to permit references to a specific
file associated with that URI. Our editor accepted an action item to approach ISO on this subject.
He asked ISO for their permission to use a domain belonging to them, along with permission to
store a file on a directory associated with such a domain, and to use the URI of that file for the
XML namespace. ISO has indicated considerable interest in providing the permission, the
domain information, and the directory and space for a file. Formal permission has not yet been
granted, but is anticipated before the FCD ballot terminates.

While the location of this namespace is not yet known, the candidate base document uses the
variablesqlxml : to represent the user-defned letters to denote this namespace.

3. Mappings

3.1 Character set mappings

XML must be written in Unicode, though the choice of encoding is not dictated.

SQL, on the other hand, does not mandate any particular character set. An implementation may
support several character sets, and even if there is only one, it may be different from Unicode.

ISO/IEC JTC1/SC32 WG3:E3A-nnn
ANSI NCITS H2-2001-008r1

- 4 of 23 -

Mapping SQL types to XML types - an overview

Consequently it is necessary to assume an implementation-defined mapping of each SQL
character set to Unicode.

An important property of a character set mapping is whether fixed-length character strings are
mapped to fixed-length character strings; such character set mappings are termedhomomorphic.
(Formally, a character set mapping is homomorphic if for each positive integerN, there exists a
positive integerM such that all strings of lengthN are mapped to strings of lengthM.)

For example, each character of ASCII maps to a single character of Unicode; therefore the length
of a character string remains the same when mapped from ASCII to Unicode. Conversion ratios
than one-to-one are also conceivable, though the authors are not aware of any. Although we are
not aware of any non-homomorphic character set mappings, the candidate base document has
been written to allow for the possibility.

It is important to note that the XML entities (escape sequences) such as& and< are not
obstacles to homomorphism, since each entity represents a single character. The length of an
XML character string is determined by counting characters after replacing the entities by their
equivalents.

3.2 Identifier mappings

It is expected that SQL/XML will eventually include the ability to port or represent SQL metadata
in XML. For example, the results of an SQL query might be serialized in XML using either
elements or attributes to represent columns of the result. In that case it is natural to expect that the
XML element or attribute tags will correspond to the column names in the SQL query.

In the simplest cases, the ones we love to put up in chalk talks, the choice of element or attribute
tags will be obvious. For example,

SELECT name
FROM emp

is actually equivalent to

SELECT NAME
FROM EMP

so thatNAME is the natural element or attribute tag in XML for the result column.

The general case is not so simple. SQL places no restrictions on the characters that may appear in
a <delimited identifier>, whereas XML has some restrictions on XML Names. Consequently, an
SQL <identifier>, when mapped to Unicode using the implementation-defined mapping from
SQL_TEXT to Unicode, may be invalid as an XML Name. This means that it will be necessary to
have a mapping to convert an SQL <identifier> into an XML Name.

In addition, two different scenarios, with slightly different requirements, were recognized:

1. In one scenario, the SQL metadata was created independently of XML, so that there was
no (original) intention to use the SQL metadata to generate XML. For example, a table
created before the advent of XML might have a column named “Salary: Previous Posi-

ISO/IEC JTC1/SC32 WG3:E3A-nnn
ANSI NCITS H2-2001-008r1

- 5 of 23 -

Mapping SQL types to XML types - an overview

tion”. In this example, the user did not intend for “Salary” to be a namespace identifier in
XML. Consequently it would be wrong to pass the <colon> through to the XML Name.
Besides colons, the other problem is names beginning with the letters “xml” in any combi-
nation of upper or lower case. All such names are reserved by XML, and it would be dan-
gerous to pass them through as the initial sequence in the XML Name.

2. In the other scenario, the user is crafting the SQL metadata with a conscious intent to cre-
ate XML. In that case, the user will want the ability to generate namespace prefixes and
names beginning with the letters “xml”.

To deal with this problem, the candidate base document proposes two variants of the identifier
mapping. For the first scenario, the escape variant is called “fully escaped”, whereas for the other
scenario the escape variant is called “partially escaped”.

The precise algorithm, including conditional rules to account for the escape variants, is found in
the candidate base document, Subclause 5.1, “Mapping SQL <identifier>s to XML Names”. The
basic idea in both variants is that any character in the SQL <identifier> that is not valid (or
desired, for the fully escaped variant) in an XML Name is mapped to an escape sequence
consisting of an underscore, a lower case ‘x’, four or eight uppercase hex digits, and a final
underscore. The hex digits are taken from the Unicode U+HHHH representation of the character
if it has a UCS-2 representation, and from the U+HHHHHHHH representation in UCS-4
otherwise. For example, ‘@’ is not a valid XML Name character. The UCS-2 representation of
‘@’ is U+0040. Consequently the escape sequence used to represent ‘@’ is_x0040_ .

The fully escaped variant must consider a couple additional cases. First, a <colon> must be
escaped to_x003A_ . (Incidentally, an initial <colon> is escaped even in the partially escaped
variant, since initial <colon> does not delimit a valid namespace tag.) Second, if the SQL
<identifier> begins with ‘xml’ (in any combination of upper and lower case), then the XML Name
is prefixed with_xFFFF_ . Note that U+FFFF is the official Unicode “not a character”, so that
this prefix cannot be generated as the escape of any Unicode character.

An important aspect of the proposal is that a single mapping from XML Names to SQL
<identifier>s can be used to regenerate the original SQL <identifier>, no matter which variant is
used to generate the XML Name. The technique is simply to scan the XML Name from left to
right, replacing substrings of the form_x HHHH_ or _x HHHHHHHH_ by the character with that
escape sequence. (An initial_xFFFF_ is simply discarded.)

A little care must be taken to insure that the mapping from SQL <identifier>s to XML Names is
invertible. Consider for example the SQL <identifier> “_x005F@”. The at-sign is not a valid
XML Name character, so it would seem that the mapping would be_x005F_x0040_ . Now if
you use the reverse mapping, scanning from left to right, you encounter the escape sequence
x005F , which would be mapped back to <underscore>, and then the resulting SQL
<identifier> would be “_x0040_”, which is not the one we started with.

To avoid this problem, it was decided that whenever the source SQL <identifier> contains “_x”,
then the <underscore> would be escaped as_x005F_ . Thus the example “_x005F@” is
actually mapped to the XML Name_x005F_x005F_x0040_ . The reverse mapping takes the
first _x005F_ as an escape sequence, which is converted back to <underscore>. The remainder

ISO/IEC JTC1/SC32 WG3:E3A-nnn
ANSI NCITS H2-2001-008r1

- 6 of 23 -

Mapping SQL types to XML types - an overview

of the XML Name isx005F_x0040_ . Since this does not begin with an <underscore>, the
next escape sequence is_x0040_ , which is mapped back to “@”. Altogether, the reverse
mapping gives “_x005F@”, i.e., the original SQL <identifier>.

Examples in which the escape variant does not matter:

Examples in which the escape variant matters:

SQL <identifier> XML Name: Remarks

emp EMP SQL identifiers default to upper-
case

“emp” emp Delimited identifiers suffer no case
conversion

“Emp” Emp

“work@home” work_x0040_home @ = U+0040

“work_x0040_home” work_x005F_x0040_home The first underscore is followed by
‘x’, so it is escaped as_x005F_ .
The subsequentx0040_ is not an
escape sequence, it is simply cop-
ied from the source.

“work_home” work_home The underscore is not followed by
‘x’ so it is not escaped.

“@@” _x0040__x0040_ Note the two successive under-
scores when two adjacent charac-
ters must be escaped.

“:1990” _x003A_1990 Initial colon is always escaped
because it would not be a valid first
character of an XML name. See
the next table for internal colons.

Table 1:

SQL <identifier>
XML Name

partially escaped fully escaped

“po:customer” po:customer po_x003A_customer

xml XML _xFFFF_XML

“xml” xml _xFFFF_xml

ISO/IEC JTC1/SC32 WG3:E3A-nnn
ANSI NCITS H2-2001-008r1

- 7 of 23 -

Mapping SQL types to XML types - an overview

As already noted, the mapping from SQL <identifier>s to XML is invertible. It is expected that a
later change proposal for the base document will propose the inverse mapping from XML Names
to SQL <identifier>s.

Note that the reverse mapping is only a “one-sided inverse” (in mathematical parlance). That is,
while the sequence

SQL <identifier> -> XML Name -> SQL <identifier>

restores the original SQL <identifier>, the sequence

XML Name -> SQL <identifier> -> XML Name

is not guaranteed to restore the original XML Name. For example, both_ and _x005F_ are
mapped back to_ by this sequence.

3.3 Data type mappings

The SQLX group considered two styles of mapping data types from SQL to XML, which might
be called the SQL-centric and the XML-centric styles.

1. In the SQL-centric style, thesqlxml : namespace defines named types which corre-
spond as closely as possible to the SQL predefined types. The user of the SQL-centric
mapping style uses these types, rather than translating directly into the XML Schema type
system. When two SQL types map to the same XML Schema type, there are separate
named XML Schema types corresponding to each of them. Thus the original SQL type of,
e.g., a column of SQL data is apparent from the name of the XML Schema type that the
column is mapped to.

2. In the XML-centric style, thesqlxml : namespace provides minimal support for the
mappings, and in particular does not try to provide a predefined XML Schema type corre-
sponding to each SQL predefined type. Instead, an optional set of annotations is available
to record the original SQL type of columns, etc. Since the annotations are optional, the
original SQL type may not be apparent.

After both styles had been elaborated, it was found that the SQL-centric style did not have much
added value over the XML-centric style. The reason is that XML does not have “type templates”,
that is, the ability to define, e.g., a typesqlxml :CHAR with a required parameter for the
character string length. Instead the length can only be specified using the optional
xsd :length facet that is already present in the XML built-in typexsd :string .
Consequently it was decided to only propose the XML-centric style. In the future, if XML adds
type templates, it may be appropriate to revisit this decision.

Only the mappings for SQL predefined types have been defined so far; work is continuing to
define mappings for the user-defined and constructed types. It is also expected that there will be
mappings of the XML Schema types into SQL.

ISO/IEC JTC1/SC32 WG3:E3A-nnn
ANSI NCITS H2-2001-008r1

- 8 of 23 -

Mapping SQL types to XML types - an overview

3.3.1 Annotations

As explained, the philosophy behind the proposed data type mappings is to map each SQL
predefined type to its closest analog in XML Schema, and to use the optional XML Schema facets
to capture as much as possible the semantics of the SQL type.

Mapping to the closest analog of the SQL type is not always sufficient to enable the reconstruction
of the SQL type. For example, both VARCHAR and CLOB are mapped toxsd :string with
thexsd :maxLength facet to indicate the maximum length of the string. In addition, some
aspects of the SQL type system have no analog in XML at all, such as character set name and
collation. For some purposes it is expected that reconstructing the SQL type will be desired;
consequently the mappings have been augmented with optional annotations that may be used to
fully document the original SQL type.

For uniformity, every aspect of the SQL type system has an annotation, although at times this is
redundant with information already present in the non-annotational part of the type mapping.

The annotations use the single XML Schema element<sqlxml :sqltype> , which has the
attributes shown in the following table:

The XML Schema for the annotations may be found in [SQL/XML candidate] Clause 6, “The
sqlxml: namespace”.

Obviously not all annotations are relevant to all types. The definitions in Clause 6 do not define
all the restrictions that might be defined on the attributes; instead the General Rules in Subclause

<sqltype> attribute Use

name name of the SQL type

length length of the SQL type

maxLength maximum length of the SQL type

characterSetName character set name

collation collation name

precision precision

leadingPrecision precision of the leading field of an interval type

userPrecision user-specified precision of DECIMAL and FLOAT types (may be
less than the actual precision)

scale scale or fractional seconds precision

maxExponent maximum binary exponent of approximate numeric types

minExponent minimum binary exponent of approximate numeric types

ISO/IEC JTC1/SC32 WG3:E3A-nnn
ANSI NCITS H2-2001-008r1

- 9 of 23 -

Mapping SQL types to XML types - an overview

5.2, “Mapping SQL data types to XML Schema data types”, are relied on to insure that only the
appropriate annotations are generated for any particular SQL type.

Whether to generate the defined annotations, in whole or in part, is entirely implementation-
dependent, since the contexts in which these mappings might be used are not known, and hence it
is not known whether implementations will be able to always generate them.

3.3.2 Character string types

The SQL character string types are mapped to the XML Schema typexsd :string . The facet
xsd :length is used if it can be determined that every string in the SQL type will map to the
same length in the XML Schema type, otherwise thexsd :maxLength facet is used. This
means thatxsd :length is used if the source type is CHAR and the character string mapping is
homomorphic, as defined in section 3.1, “Character string mappings”.

Other facets are not used.

The relevant annotations are shown in the following table:

Finally, here are some examples, with all annotations supplied:

<sqltype> attribute Value

name CHAR , VARCHAR or CLOB

length length in characters (CHAR)

maxLength maximum length (VARCHAR and CLOB)

characterSetName character set name

collation collation name

SQL type XML Schema type

CHAR (10)
 CHARACTER SET
 LATIN1
 COLLATION
 DEUTSCH

<xsd:simpleType>
 <xsd:restriction base=”xsd:string”>
 <xsd:length value=”10”/>
 <xsd:annotation>
 <sqlxml:sqltype name=”CHAR”
 length=”10”

characterSetName=”LATIN1”
 collation=”DEUTSCH”/>
 </xsd:annotation>
 <xsd:restriction>
</xsd:simpleType>

ISO/IEC JTC1/SC32 WG3:E3A-nnn
ANSI NCITS H2-2001-008r1

- 10 of 23 -

Mapping SQL types to XML types - an overview

3.3.3 BINARY LARGE OBJECT

The XML Schema type that corresponds to the SQL data type BINARY LARGE OBJECT or
BLOB is xsd :binary . To use this XML Schema data type you must specify theencoding
facet, which must be eitherhex orbase64 . Since [XML Schema:Datatypes] does not permit the
direct use of the binary type, thesqlxml : namespace defines two data types,binaryhex and
binarybase64 in Clause 6 as follows:

<xsd:simpleType name=binaryhex>
 <xsd:restriction base=”binary”>
 <xsd:encoding value=”hex”/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name=binarybase64>
 <xsd:restriction base=”binary”>
 <xsd:encoding value=”base64”/>
 </xsd:restriction>
</xsd:simpleType>

VARCHAR (10)

on an
implementation
that defaults to
the UTF8
character set
with NORSK
collation

<xsd:simpleType>
 <xsd:restriction base=”xsd:string”>
 <xsd:maxLength value=”10”/>
 <xsd:annotation>
 <sqlxml:sqltype name=”VARCHAR”
 maxLength=”10”

characterSetName=”UTF8”
 collation=”NORSK”/>
 </xsd:annotation>
 </xsd:restriction>
</xsd:simpleType>

NCLOB (1 M)

on an
implementation
in which
national
character types
default to UCS2
with collation
SVENSK

<xsd:simpleType>
 <xsd:restriction base=”xsd:string”>
 <xsd:maxLength value=”1048576”/>
 <xsd:annotation>
 <sqlxml:sqltype name=”CLOB”
 maxLength=”1048576”

characterSetName=”UCS2”
 collation=”SVENSK”/>
 </xsd:annotation>
 </xsd:restriction>
</xsd:simpleType>

SQL type XML Schema type

ISO/IEC JTC1/SC32 WG3:E3A-nnn
ANSI NCITS H2-2001-008r1

- 11 of 23 -

Mapping SQL types to XML types - an overview

Thexsd :maxLength facet is used to specify the maximum length of the BLOB in octets. Other
facets are not used.

The relevant annotations are shown in the following table:

The SQLX group is aware of an issue with BLOB and CLOB types, which is the cost in both
space and transmission time when a LOB value is included ‘in-line’ in an XML document. It is
possible that other alternative solutions for representing LOBs will be developed. Currently,
however, the candidate base document only supports the definition of LOBs as in-line values.

Finally, here is an example showing the two possible mappings:.

3.3.4 Bit string types

The [XML Schema: Datatypes] equivalent of BIT and BIT VARYING isxsd :binary . The
implementation may use either value ofencoding facet (hex or base64) by choosing either
sqlxml :binaryhex or sqlxml :binarybase64 , defined in the previous subsection. The
xsd :length facet is used when mapping BIT to specify the length of the representation in

<sqltype> attribute Value

name BLOB

maxLength maximum length

SQL type XML Schema type

BLOB (1000)

if the
implementation
chooses hex
encoding

<xsd:simpleType>
 <xsd:restriction base=”sqlxml:binaryhex”>
 <xsd:maxLength value=”2000”/>
 <xsd:annotation>
 <sqlxml:sqltype name=”BLOB”
 maxLength=”1000”/>
 </xsd:annotation>
 </xsd:restriction>
</xsd:simpleType>

BLOB (1000)

if the
implementation
chooses base64
encoding

<xsd:simpleType>
 <xsd:restriction
 base=”sqlxml:binarybase64”>
 <xsd:maxLength value=”1334”/>
 <xsd:annotation>
 <sqlxml:sqltype name=”BLOB”
 maxLength=”1000”/>
 </xsd:annotation>
 </xsd:restriction>
</xsd:simpleType>

ISO/IEC JTC1/SC32 WG3:E3A-nnn
ANSI NCITS H2-2001-008r1

- 12 of 23 -

Mapping SQL types to XML types - an overview

characters using the chosen encoding. For example, BIT(5) inhex encoding requires 2
characters (one to encode 4 bits and another character for the fifth bit) and 1 character in the
base64 encoding. Similarly, thexsd :maxLength facet is used when mapping BIT
VARYING to specify the maximum length in characters using the chosen encoding. Other facets
are not used.

The relevant annotations are shown in the following table:

Finally, here are examples, with full annoations:

<sqltype> attribute Value

name name of the SQL type

length length (for BIT)

maxLength maximum length (for BIT VARYING)

SQL type XML Schema type

BIT (23) either

<xsd:simpleType>
 <xsd:restriction base=”sqlxml:binaryhex”>
 <xsd:length value=”6”/>
 <xsd:annotation>
 <sqlxml:sqltype
 name=”BIT”
 length=”23”/>
 </xsd:annotation>
 </xsd:restriction>
</xsd:simpleType>

or

<xsd:simpleType>
 <xsd:restriction
 base=”sqlxml:binarybase64”>
 <xsd:length value=”4”/>
 <xsd:annotation>
 <sqlxml:sqltype
 name=”BIT”
 length=”23”/>
 </xsd:annotation>
 </xsd:restriction>
</xsd:simpleType>

ISO/IEC JTC1/SC32 WG3:E3A-nnn
ANSI NCITS H2-2001-008r1

- 13 of 23 -

Mapping SQL types to XML types - an overview

3.3.5 Exact numeric types - NUMERIC and DECIMAL

The [XML Schema: Datatypes] equivalent of NUMERIC and DECIMAL isxsd :decimal .
The facetsxsd :precision andxsd :scale are used to define the characteristics of the SQL
data type.

Note that according to [Foundation CD] 6.1 <data type> SR 23), an implementation may “round
up” the precision that the user specifies with DECIMAL to a greater value. The
xsd :precision facet represent the actual precision; the user-specified precision, if the
RDBMS even retains it, may be reported in theuserPrecision annotation.

The relevant annotations are shown in the following table:

BIT VARYING (23)

if the
implementation
chooses hex
encoding

<xsd:simpleType>
 <xsd:restriction base=”sqlxml:binaryhex”>
 <xsd:maxLength value=”6”/>
 <xsd:annotation>
 <sqlxml:sqltype name=”BIT VARYING”
 length=”23”/>
 </xsd:annotation>
 </xsd:restriction>
</xsd:simpleType>

BIT VARYING (23)

if the
implementation
chooses base64
encoding

<xsd:simpleType>
 <xsd:restriction
 base=”sqlxml:binarybase64”>
 <xsd:length value=”4”/>
 <xsd:annotation>
 <sqlxml:sqltype name=”BIT VARYING”
 length=”23”/>
 </xsd:annotation>
 </xsd:restriction>
</xsd:simpleType>

<sqltype> attribute Value

name NUMERIC or DECIMAL

precision precision

userPrecision user-specified precision of DECIMAL type

scale scale or fractional seconds precision

SQL type XML Schema type

ISO/IEC JTC1/SC32 WG3:E3A-nnn
ANSI NCITS H2-2001-008r1

- 14 of 23 -

Mapping SQL types to XML types - an overview

Here are examples with the complete complement of annotations:.

3.3.6 Exact numeric types - INTEGER and SMALLINT

The [XML Schema: Datatypes] equivalent of INTEGER and SMALLINT isxsd :integer .
The xsd :maxInclusive andxsd :minInclusive are used to define the representational
range of the INTEGER and SMALLINT data types for a particular implementation. No other
facets are used.

The relevant annotation is shown in the following table:

SQL type XML Schema type

NUMERIC (7, 2) <xsd:simpleType>
 <xsd:restriction base=”xsd:decimal”>
 <xsd:precision value=”7”/>
 <xsd:scale value=”2”/>
 <xsd:annotation>
 <sqlxml:sqltype name=”NUMERIC”
 precision=”7”
 scale=”2”/>
 </xsd:annotation>]
 </xsd:restriction>
</xsd:simpleType>

DECIMAL (8, 2)

on an
implementation
that assigns
this an actual
precision of 9.

<xsd:simpleType>
 <xsd:restriction base=”xsd:decimal”>
 <xsd:precision value=”9”/>
 <xsd:scale value=”2”/>
 <xsd:annotation>
 <sqlxml:sqltype name=”DECIMAL”
 userPrecision=”8”
 scale=” 2”/>
 </xsd:annotation>
 </xsd:restriction>
</xsd:simpleType>

<sqltype> attribute Value

name INTEGER or SMALLINT

ISO/IEC JTC1/SC32 WG3:E3A-nnn
ANSI NCITS H2-2001-008r1

- 15 of 23 -

Mapping SQL types to XML types - an overview

Here are examples showing the full complement of annotations:.

3.3.7 Approximate numeric types

[XML Schema: Datatypes] supports IEEE float and double data types which have fixed precision
of 24 bits and 53 bits, respectively, and binary exponents in the ranges [-149, 104] and [-1075,
970], respectively . In [Foundation CD], the binary precision and exponent range of approximate
numeric types are not nearly so tightly specified. The SQLX group concluded that the best way to
map the approximate numeric types is on the basis of the actual binary precision and exponent
range of the SQL type. Essentially, if the binary precision of the SQL type is less than or equal to
24 bits, and the exponent range is contained in [-149, 104], then every value of the SQL type can
be mapped to a value of the XML Schema typexsd :float , otherwise the larger type
xsd :double is used. No facets are used.

The relevant annotations are shown in the following table:

SQL type XML Schema type

INTEGER

on an
implementation
using 4-byte
twos-complement
binary integers

<xsd:simpleType>
 <xsd:restriction base=”xsd:integer”>
 <xsd:maxInclusive value=”2157483647”/>
 <xsd:minInclusive value=”-2157483648”/>
 <xsd:annotation>
 <sqlxml:sqltype name=”INTEGER”/>
 </xsd:annotation>
 </xsd:restriction>
</xsd:simpleType>

SMALLINT

on an
implementation
using 2-byte
twos-complement
binary integers

<xsd:simpleType>
 <xsd:restriction
 base=”xsd:integer”>
 <xsd:maxInclusive value=”32767”/>
 <xsd:minInclusive value=”-32768”/>
 <xsd:annotation>
 <sqlxml:sqltype name=”SMALLINT”/>
 </xsd:annotation>
 </xsd:restriction>
</xsd:simpleType>

<sqltype> attribute Value

name REAL, DOUBLE PRECISION or FLOAT

precision precision

userPrecision user-specified precision of FLOAT types (may be less than the
actual precision)

ISO/IEC JTC1/SC32 WG3:E3A-nnn
ANSI NCITS H2-2001-008r1

- 16 of 23 -

Mapping SQL types to XML types - an overview

Here are some examples showing the full complement of annotations:.

maxExponent maximum binary exponent of approximate numeric types

minExponent minimum binary exponent of approximate numeric types

SQL type XML Schema type

FLOAT (20)

on an
implementation
that uses a 4-
byte floating
point with one
byte for binary
exponent
(ranging from -
128 to 127)

<xsd:simpleType>
 <xsd:restriction base=”xsd:double”/>
 <xsd:annotation>

 <sqlxml:sqltype name=”FLOAT”
 precision=”24”
 minExponent=”-128”
 maxExponent=”127”
 userPrecision=”20”/>
 </xsd:annotation>
 </xsd:restriction>
</xsd:simpleType>

REAL

on an
implementation
that uses IEEE
float type for
this type

<xsd:simpleType>
 <xsd:restriction base=”xsd:float”>
 <xsd:annotation>
 <sqlxml:sqltype name=”REAL”
 precision=”24”
 minExponent=”-149”
 maxExponent=”104”/>
 </xsd:annotation>
 </xsd:restriction>
</xsd:simpleType>

DOUBLE PRECISION

on an
implementation
that uses IEEE
double for this
type

<xsd:simpleType>
 <xsd:restriction base=”xsd:double”>
 <xsd:annotation>
 <sqlxml:sqltype
 name=”DOUBLE PRECISION”
 precision=”53”
 minExponent=”-1075”
 maxExponent=”970”/>
 </xsd:annotation>]
 </xsd:restriction>
</xsd:simpleType>

<sqltype> attribute Value

ISO/IEC JTC1/SC32 WG3:E3A-nnn
ANSI NCITS H2-2001-008r1

- 17 of 23 -

Mapping SQL types to XML types - an overview

3.3.8 BOOLEAN

The [XML Schema: Datatypes] equivalent of BOOLEAN isxsd :boolean . No facets are used.

The relevant annotations are shown in the following table:

Here is an example. Note that in the minimal case, no facets and no annotations are used, so it is
not necessary to use<xsd :simpleType> ...</ xsd :simpleType> .

3.3.9 DATE

The [XML Schema: Datatypes] equivalent of DATE isxsd :date . Since XML permits a time
zone but SQL does not, thexsd :pattern facet is used to specify a pattern that prohibits a
timezone. No other facets are used.

The relevant annotations are shown in the following table:

<sqltype> attribute Value

name BOOLEAN

SQL type XML Schema type

BOOLEAN <... type=”xsd:boolean”/>

or

<xsd:simpleType>
 <xsd:restriction base=”xsd:boolean”/>
 <xsd:annotation>
 <sqlxml:sqltype name=”BOOLEAN”/>
 </xsd:annotation>
 </xsd:retriction>
</xsd:simpleType>

<sqltype> attribute Value

name DATE

ISO/IEC JTC1/SC32 WG3:E3A-nnn
ANSI NCITS H2-2001-008r1

- 18 of 23 -

Mapping SQL types to XML types - an overview

Here is an example showing the optional annotation:

3.3.10 TIME with or without time zone

The [XML Schema: Datatypes] equivalent of TIME and TIME WITH TIME ZONE is
xsd :time . Thexsd :pattern facet is used to specify the seconds precision and to either
forbid or require the time zone, as necesary. No other facets are used.

The relevant annotations are shown in the following table:

Here are some examples:.

SQL type XML Schema type

DATE <xsd:simpleType>
 <xsd:restriction base=”xsd:date”>
 <xsd:pattern value=
 ”\p{Nd}{4}-\p{Nd}{2}-\p{Nd}{2}”/>
 <xsd:annotation>
 <sqlxml:sqltype name=”DATE”/>
 </xsd:annotation>
 </xsd:retriction>
</xsd:simpleType>

<sqltype> attribute Value

name TIME or TIME WITH TIME ZONE

scale fractional seconds precision

SQL type XML Schema type

TIME (2) <xsd:simpleType>
 <xsd:restriction base=”xsd:time”>
 <xsd:pattern value=
 ”\p{Nd}{2}:\p{Nd}{2}:\p{Nd}{2}.\p{Nd}{ 2}”/>
 <xsd:annotation>
 <sqlxml:sqltype name=”TIME”
 scale=” s”/>
 </xsd:annotation>
 </xsd:restriction>
</xsd:simpleType>

ISO/IEC JTC1/SC32 WG3:E3A-nnn
ANSI NCITS H2-2001-008r1

- 19 of 23 -

Mapping SQL types to XML types - an overview

3.3.11 TIMESTAMP with and without time zone

The [XML Schema: Datatypes] equivalent of TIMESTAMP and TIMESTAMP WITH TIME
ZONE isxsd :timeInstant . Thexsd :pattern facet is used to specify the seconds
precision and either forbid or require the time zone, as required.

The relevant annotations are shown in the following table:

The patterns for the timestamp types is too long to display on a single line, so no examples are
given.

3.3.12 Interval types

The [XML Schema: Datatypes] equivalent of INTERVAL istimeDuration . The
xsd:pattern facet is used to require the particular fields in the interval.

TIME WITH TIME ZONE (0)

<xsd:simpleType>
 <xsd:restriction base=”xsd:time”>
 <xsd:pattern value=
 ”\p{Nd}{2}:\p{Nd}{2}:\p{Nd}{2}(+|-)\p{Nd}{2}:\p{Nd}{2}”/>
 <xsd:annotation>

<sqlxml:sqltype name=”TIME WITH TIME ZONE”
 scale=”0”/>
 </xsd:annotation>
 </xsd:restriction>
</xsd:simpleType>

<sqltype> attribute Value

name TIMESTAMP or TIMESTAMP WITH TIME ZONE

scale fractional seconds precision

SQL type XML Schema type

ISO/IEC JTC1/SC32 WG3:E3A-nnn
ANSI NCITS H2-2001-008r1

- 20 of 23 -

Mapping SQL types to XML types - an overview

The relevant annotations are shown in the following table:

Here are some representative examples:

<sqltype> attribute Value

name INTERVAL YEAR
INTERVAL YEAR TO MONTH
INTERVAL MONTH
INTERVAL DAY
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL MINUTE
INTERVAL MINUTE TO SECOND
INTERVAL SECOND

leadingPrecision precision of the leading field of the interval type

scale fractional seconds precision if the seconds field is included

SQL type XML Schema type

INTERVAL YEAR (4) <xsd:simpleType>
 <xsd:restriction base=”xsd:timeDuration”>
 <xsd:pattern value=”-?P\p{Nd}{1,4}Y”/>
 <xsd:annotation>
 <sqlxml:sqltype
 name=”INTERVAL YEAR”
 leadingPrecision=”4”/>
 </xsd:annotation>]
 </xsd:restriction>
</xsd:simpleType>

ISO/IEC JTC1/SC32 WG3:E3A-nnn
ANSI NCITS H2-2001-008r1

- 21 of 23 -

Mapping SQL types to XML types - an overview

4. Example
As mentioned, it is expected that eventually SQL/XML will contain mappings for tables as well.
Two of the flavors commonly mentioned for such mappings are to map columns as either
elements or attributes. Given the table definition

CREATE TABLE Hoopla
(HooplaName CHAR(10),
 HooplaCode NUMERIC(4),
 HooplaDate DATE)

Using elements to map columns might look like this (all annotations have been omitted for
brevity):

<xsd:complexType name=”HOOPLA”>
 <xsd:sequence>

INTERVAL
YEAR (4) TO MONTH

<xsd:simpleType>
 <xsd:restriction base=”xsd:timeDuration”>
 <xsd:pattern value=
 ”-?P\p{Nd}{1,4}Y\p{Nd}{2}M”/>
 <xsd:annotation>
 <sqlxml:sqltype
 name=”INTERVAL YEAR TO MONTH”
 leadingPrecision=”4”/>
 </xsd:annotation>
 </xsd:restriction>
</xsd:simpleType>

INTERVAL DAY (6) TO SECOND (2)

<xsd:simpleType>
 <xsd:restriction base=”xsd:timeDuration”>
 <xsd:pattern value=
 ”-?P\p{Nd}{1, p}DT\p{Nd}{2}H\p{Nd}{2}M\p{Nd}{2}.\p{Nd}{ s}S”
 />
 <xsd:annotation>
 <sqlxml:sqltype name=”INTERVAL DAY TO SECOND”
 leadingPrecision=”6”
 scale=”2”/>
 </xsd:annotation>
 </xsd:restriction>
</xsd:simpleType>

SQL type XML Schema type

ISO/IEC JTC1/SC32 WG3:E3A-nnn
ANSI NCITS H2-2001-008r1

- 22 of 23 -

Mapping SQL types to XML types - an overview

 <xsd:element name=”HOOPLANAME”>
 <xsd:simpleType>
 <xsd:restriction base=”string”>
 <xsd:length value=”10”/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name=”HOOPLACODE”>
 <xsd:simpleType>
 <xsd:restriction base=”decimal”>
 <xsd:precision value=”4”/>
 <xsd:scale value=”0”/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name=”HOOPLADATE”>
 <xsd:simpleType>
 <xsd:restriction base=”date”>
 <xsd:pattern
 value=”\p{Nd}{4}-\p{Nd}{2}-\p{Nd}{2}”/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

Since every column of the table maps to a simple type, it would also be possible to use attributes
for the columns. In that case the XML correspondence for the table definition might be

<xsd:complexType name=”HOOPLA”>
 <xsd:sequence>
 <xsd:attribute name=”HOOPLANAME”>
 <xsd:simpleType>
 <xsd:restriction base=”string”>
 <xsd:length value=”10”/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:attribute/>
 <xsd:attribute name=”HOOPLACODE”>
 <xsd:simpleType>
 <xsd:restriction base=”decimal”>
 <xsd:precision value=”4”/>
 <xsd:scale value=”0”/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:attribute/>

ISO/IEC JTC1/SC32 WG3:E3A-nnn
ANSI NCITS H2-2001-008r1

- 23 of 23 -

Mapping SQL types to XML types - an overview

 <xsd:element name=”HOOPLADATE”>
 <xsd:simpleType>
 <xsd:restriction base=”date”>
 <xsd:pattern
 value=”\p{Nd}{4}-\p{Nd}{2}-\p{Nd}{2}”/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:attribute/>
 </xsd:sequence>
</xsd:complexType>

5. Possible Problems
The candidate base document notes a few Possible Problems. There are many other problems that
the authors are well aware of, but did not see fit to make into Possible Problems, because these
problems are self-evident. For example, the numerous passages that are “to be supplied” will be
obvious ballot comments if they are still present when the document is progressed to CD status,
and no PP is necessary.

- End of paper -

