
American National Standard for Information Technology ANSI NCITS 331.2-2000

SQLJ Part 2: SQL Types
using the Java Programming Language

June 30, 2000

THIS COVER PAGE WILL BE REPLACED BEFORE PUBLICATION

Jim Melton
H2-2000-344

Page i

TABLE OF CONTENTS

1. SCOPE 1

2. NORMATIVE REFERENCES 1

3. INTRODUCTION 1

3.1 SQLJ 1

3.2 Technical components 2
3.2.1 SQLJ: SQL Routines using the Java™ Programming Language 2
3.2.2 SQLJ: SQL Types using the Java™ Programming Language 2

3.3 Conformance 3

3.4 Organization of the document 3

4. TUTORIAL 5

4.1 Overview 5

4.2 Example Java classes 5

4.3 Using Java classes in SQL: introduction 9
4.3.1 Installing Address and Address2Line in an SQL system 9
4.3.2 CREATE TYPE for Address and Address2Line 9
4.3.3 Multiple SQL types for a single Java class 11
4.3.4 “Collapsing” subclasses 11
4.3.5 GRANT and REVOKE statements for datatypes 13
4.3.6 Deployment descriptors for classes 13
4.3.7 Using Java classes as datatypes 15
4.3.8 SELECT, INSERT, and UPDATE 16
4.3.9 Referencing Java fields and methods in SQL 17
4.3.10 Extended visibility rules 17
4.3.11 Logical representation of Java instances in SQL 18
4.3.12 Converting objects between SQL and Java 19
4.3.13 USING SERIALIZABLE 20
4.3.14 USING SQLDATA 20
4.3.15 Developing for Portability 21
4.3.16 Static methods 21
4.3.17 Static fields 22

Page ii

4.3.18 Instance-update methods 22
4.3.19 Subtypes in SQLJ data 24
4.3.20 References to fields and methods of null instances 25
4.3.21 Ordering of SQLJ data 27

5. SQL ELEMENTS 29

5.1 CREATE TYPE statement 29

5.2 CREATE ORDERING statement 37

5.3 DROP TYPE statement 40

5.4 SQLJ member references 41

5.5 SQLJ method call 43

6. JAVA TOPICS 47

6.1 Deployment descriptor files 47

7. STATUS CODES 49

7.1 Class and subclass values for uncaught Java exceptions 49

7.2 SQLSTATE 50

Page iii

Foreword

(This foreword is not a part of American National Standard NCITS 331.2-2000.)
This Standard (American National Standard NCITS 331.2-2000, Information Systems — SQLJ —
Part 2: SQLJ SQL Types using the Java™ Programming Language) is a new standard.
ANSI (the American National Standards Institute) is the United States national standards body
charged with development of American National Standards.
This Standard was approved as an American National Standard by the American National
Standards Institute on XXX xx, 200x.
Requests for interpretation, suggestions for improvement or addenda, or defect reports are
welcome.
They should be sent to the NCITS Secretariat, Information Technology Industry Council (ITIC),
1250 Eye Street, NW, Suite 200, Washington, DC 20005.
This Standard was processed and approved for submittal to ANSI by the Accredited Standards
Committee NCITS (National Committee for Information Technology Standards). Committee
approval of this Standard does not necessarily imply that all committee members voted for
approval.
NCITS Membership at the time BSR NCITS 331.2-2000 was approved by NCITS to be forwarded
for final approval by BSR:

NCITS Chairman NCITS Vice Chair NCITS Secretary

Ms. Karen Higgenbottom Mr. Dave Michael Ms. Monica Vago

*Non-Response **Abstain

PRODUCERS=nn
To Be Supplied

CONSUMERS=nn
To Be Supplied

GENERAL INTEREST=nn
To Be Supplied

Page iv

Introduction
The organization of this Part of this American National Standard is as follows:
1) Clause 1, “Scope”, specifies the scope of this part of ANSI NCITS 331.
2) Clause 2, “Normative references”, identifies additional standards and publicly-available

specifications that, through reference in this part of ANSI NCITS 331, constitute provisions of
this part of ANSI NCITS 331.

3) Clause 3, "Introduction", introduces SQLJ Part 2 and its concepts.
4) Clause 4, "Tutorial", describes SQLJ Part 2 features.
5) Clause 5, "SQL elements", defines new SQL statement extensions.
6) Clause 6, "Java topics", defines the conventions used in deployment descriptor files.
7) Clause 7, "Status codes", defines new SQLSTATE class and subclass codes for conditions

raised by SQLJ Part 2 implementations.
In the text of this part of ANSI NCITS 331, Clauses begin a new odd-numbered page. Any
resulting blank space is not significant.
All Clauses of this part of ANSI NCITS 331 are normative, including Clause 4, ‘‘Tutorial’’.

Introduction

Page 1

1. SCOPE

This part of ANSI NCITS 331 specifies the manner in which SQL datatypes may be created using
the Java™ programming language. (Java is a registered trademark of Sun Microsystems, Inc.)

2. NORMATIVE REFERENCES

1) ANSI/ISO/IEC 9075-2:1999, Database Language SQL — Foundation.
2) ANSI/ISO/IEC 9075-4:1999, Information technology — Database languages — SQL — Part 4:

Persistent Stored Modules (SQL/PSM).
3) ANSI/ISO/IEC 9075-10:2000, Information Systems — Database Languages — SQL — Part 10:

Object Language Bindings (SQL/OLB).
4) The Java Language Specification, James Gosling, Bill Joy, and Guy Steele, Addison-Wesley,

1996.

3. INTRODUCTION

3.1 SQLJ
The term “SQLJ” refers to a series of specifications for ways to use the Java™ programming
language with SQL. The specifications are in several parts:
• ANSI/ISO/IEC 9075-10:2000, Database Language SQL — Part 10: SQL/OLB

Specifications for embedding SQL statements in Java methods.
• NCITS 331.1, SQLJ — Part 1: SQL Routines using the Java™ Programming Language

Specifications for calling Java static methods as SQL stored procedures and user-defined
functions.

• NCITS 331.2, SQLJ — Part 2: SQL Types using the Java™ Programming Language
Specifications for using Java classes as SQL user-defined datatypes.

This document is the SQLJ: SQL Types using the Java ™ Programming Language specification. It
defines SQL extensions for using Java classes as datatypes in SQL.
Database Language SQL — Part 10: SQL/OLB specifies facilities for a way to invoking SQL
facilities from a Java environment.
SQLJ: SQL Routines using the Java ™ Programming Language specifies SQL extensions for
installing Java classes in an SQL system, for invoking static methods of Java classes in SQL as
SQL functions and stored procedures, for obtaining specified output values of parameters, and for
returning SQL result sets.

SQLJ Part 2 — SQL Types using the Java  Programming Language

Page 2

SQLJ: SQL Types using the Java ™ Programming Language assumes the facilities of SQLJ: SQL
Routines. The SQLJ: SQL Types specification does not repeat or subsume the specifications of
SQLJ: SQL Routines.
SQLJ: SQL Types does not require or depend on SQL/OLB.
Taken together the collection of SQLJ facilities provide a way to write Java classes whose methods
invoke SQL, and to use those classes and their methods in an SQL system. This provides a way to
write SQL functions, procedures, and datatypes using the Java language.

3.2 Technical components

3.2.1 SQLJ: SQL Routines using the Java™ Programming Language
SQLJ: SQL Routines using the Java ™ Programming Language includes the following:
• New built-in procedures:

� sqlj.install_jar — to load a Java jar file containing a set of Java classes in an SQL
system.
� sqlj.remove_jar — to delete a previously installed Java jar file and its Java classes.

• A type of file, called a deployment descriptor file, which is a “script” of SQL create, grant,
drop, and revoke statements. If a jar file that is referenced in a call of the sqlj.install_jar
procedure contains a deployment descriptor file, then the SQL statements in that deployment
descriptor file may be executed during the install or remove actions.

• Extended statements:
� create procedure/function—to specify an SQL name for a Java method.
� drop procedure/function—to delete the SQL name of a Java method.

• Conventions for returning values of out and inout parameters, and for returning SQL result
sets.

3.2.2 SQLJ: SQL Types using the Java™ Programming Language
SQLJ: SQL Types using the Java™ Programming Language includes the following:
• Extensions of the following SQL statements:

� create type — to specify an SQL name for a Java class. Similar to the create
procedure/function of SQLJ: SQL Routines and the create type of SQL/Foundation.

� drop type — to delete the SQL name of a Java class. Similar to the drop
procedure/function of SQLJ: SQL Routines and the drop type of SQL/Foundation.

• New forms of reference: Qualified references to the fields and methods of columns whose
datatypes are defined on Java classes.

Introduction

Page 3

3.3 Conformance
An implementation of NCITS xxx is conformant if it implements all capabilities specified in this
standard that are not specified as optional, and if it identifies which of those optional capabilities it
implements.

3.4 Organization of the document
The remaining sections of the document are organized as follows:
• The Tutorial section describes the features of SQLJ: SQL Types.
• The SQL elements section defines SQL statement extensions, and new rules for SQL element

references and method calls.
• The Java topics section defines the deployment descriptors for Java classes used as SQL

datatypes.
• The Status codes section defines new SQLSTATE exception codes for SQLJ exceptions.

Tutorial

Page 5

4. TUTORIAL

4.1 Overview
This tutorial section shows a series of example Java classes and their methods, and shows how they
can be installed in an SQL system and used as datatypes in SQL.

4.2 Example Java classes
This section shows example Java classes Address and Address2Line.

• The Address class represents street addresses in the USA, with a street field containing
a street name and building number, and a zip field containing a postal code.

• The Address2Line class is a subclass of the Address class. It adds one additional field,
named line2, which would contain data such as an apartment number.

• The Address and Address2Line classes both have the following methods:
� A default niladic constructor.
� A constructor with parameters.
� A toString method to return a string representation of an address.

• The Address and Address2Line classes are both specified to implement the Java
interfaces java.io.Serializable and java.sql.SQLData.
 A Java class that will be used as a datatype in SQL must implement either the Java
interface java.io.Serializable or the Java interface java.sql.SQLData or both. This is
required to transfer class instances between Java environments and between Java and
SQL.

The following is the text of the Address class:
public class Address implements java.io.Serializable, java.sql.SQLData {

public String street;
public String zip;
public static int recommendedWidth = 25;
private String sql_type; // For the SQLData interface
// A default constructor
public Address () {

street = "Unknown";
zip = "None";

}
// A constructor with parameters
public Address (String S, String Z) {

SQLJ Part 2 — SQL Types using the Java  Programming Language

Page 6

street = S;
zip = Z;

}

// A method to return a string representation of the full address
public String toString() {

return "Street=" + street + " ZIP=" + zip;
}

// A void method to remove leading blanks
// This uses the static method Misc.stripLeadingBlanks.
public void removeLeadingBlanks() {

street = Misc.stripLeadingBlanks(street);
zip = Misc.stripLeadingBlanks(zip);

}
// A static method to determine if two addresses
// are in arithmetically contiguous zones.
public static String contiguous(Address a1, Address a2) {

if (Integer.parseInt(a1.zip) == Integer.parseInt(a2.zip)+1
 || Integer.parseInt(a1.zip) == Integer.parseInt(a2.zip) -1)
return("yes");
else return("no");

}

// SQLData implementation:
public void readSQL (SQLInput in, String type)

throws SQLException {
sql_type = type;
street = in.readString();
zip = in.readString();

}

public void writeSQL (SQLOutput out)
throws SQLException {
out.writeString(street);
out.writeString(zip);

}

Tutorial

Page 7

public String getSQLTypeName () { return sql_type; }

}

The following is the text of the Address2Line class, which is a subclass of the Address class:
public class Address2Line extends Address

implements java.io.Serializable, java.sql.SQLData {
public String line2;
// A default constructor
public Address2Line () {

super();
line2 = " ";

}
// A constructor with parameters
public Address2Line (String S, String L2, String Z) {

street = S;
line2 = L2;
zip = Z;

}
// A method to return a string representation of the full address
public String toString() {

return "Street=" + street + " Line2=" + line2 + " ZIP=" + zip;
}
// A void method to remove leading blanks.
// Note that this is an imperative method that modifies the instance.
// This uses the static method Misc.stripLeadingBlanks defined below.
public void removeLeadingBlanks() {

line2 = Misc.stripLeadingBlanks(line2);
super.removeLeadingBlanks();

}
// SQLData implementation:
public void readSQL (SQLInput in, String type)

throws SQLException {
super.readSQL(in,type);
line2 = in.readString();

}

public void writeSQL (SQLOutput out)

SQLJ Part 2 — SQL Types using the Java  Programming Language

Page 8

throws SQLException {
super.writeSQL(out);
out.writeString(line2);

}
}

//The following class and method is used only internally in the above Java methods.
//We won't define an SQL function for this method.
public class Misc {

// remove leading blanks from a String
public static String stripLeadingBlanks(String s) {

int scan;
for (scan=0; scan<s.length(); scan++)

if (! java.lang.Character.isSpace(s.charAt(scan)))
break;

if (scan == s.length()) return "";
else return s.substring(scan);

}
}

Tutorial

Page 9

4.3 Using Java classes in SQL: introduction

4.3.1 Installing Address and Address2Line in an SQL system
To install classes such as Address and Address2Line in an SQL system, you proceed as in SQLJ:
SQL Routines. The source code for the classes will be in files with filetype java, which you
compile using the javac command to produce object code files with filetype class. You then
assemble those class files into a Java "jar" file with filetype jar, and you place that jar file in a
directory for which you can specify a URL. Assume that "file:~/classes/AddrJar.jar" is such a
URL. Now you can install the classes into an SQL system by calling the sqlj.install_jar procedure
that was described in SQLJ: SQL Routines:

sqlj.install_jar ('file:~/classes/AddrJar.jar', 'address_classes_jar', 0);

4.3.2 CREATE TYPE for Address and Address2Line
Before you can use a Java class as an SQL datatype, you must define SQL names for the SQL
datatype and its fields and methods. You do this with extended forms of the SQL create type
statement.
An implementation of SQLJ: SQL Types may support these extended forms of the create type
statement explicitly as standalone SQL statements, or in deployment descriptor files, or may
support an implementation-defined mechanism that achieves the same effect as the create type
statement. Deployment descriptor files are included in jar files, and executed implicitly during calls
of the built-in SQLJ procedure sqlj.install_jar that specify a deploy action (third parameter non-
zero). This is described in section 6.1, “Deployment descriptor files”. In this Tutorial section, we
will show the create type statements as standalone SQL statements.
The following SQL create type statements reference the above Java Address and Address2Line
classes:

create type addr external name 'address_classes_jar:Address'
 language java
as(street_attr varchar(50) external name ' street',
zip_attr char(10) external name 'zip'
)
static method rec_width () returns integer

external variable name 'recommendedWidth',
method addr () returns addr external name 'Address',
method addr (s_parm varchar(50), z_parm char(10)) returns addr

external name 'Address',
method to_string () returns varchar(255) external name ‘toString’,
method remove_leading_blanks () returns addr self as result

external name ‘removeLeadingBlanks’,
static method contiguous (A1 addr, A2 addr) returns char(3)

SQLJ Part 2 — SQL Types using the Java  Programming Language

Page 10

external name 'contiguous';
create type addr_2_line

under addr
external name 'address_classes_jar:Address2Line'
language java
as(line2_attr varchar(100) external name 'line2')
method addr_2_line () returns addr_2_line external name 'Address2Line',
method addr_2_line

(s_parm varchar(50), s2_parm char(100), z_parm char(10))
returns addr_2_line
external name 'Address2Line',

method to_string () returns varchar(255) external name 'toString',
method remove_leading_blanks () returns addr_2_line self as result

external name ‘removeLeadingBlanks’,
method strip () returns addr_2_line self as result

external name 'removeLeadingBlanks';
These create type statements are an extension of the SQL create type statement. The above
extensions add the external clauses, which are patterned after the external clause of the SQL
create procedure/function statement, and the method clauses, which are patterned after SQL
create procedure/function statements.
In this section we’ll describe the basic elements of these create type statements, and defer to later
sections discussions of the following less intuitive clauses:

• The Java static field recommendedWidth of the Address class is represented in the SQL create
type by a static method with no arguments, named rec_width. This is described in section
4.3.17, “Static fields”.

• The Java void method removeLeadingBlanks of the Address class is represented in the SQL
create type for the addr type by a method, remove_leading_blanks that specifies returns self
as result. The removeLeadingBlanks and strip methods of the Address2Line class are treated
similarly. This is described in section 4.3.18, “Instance-update methods”. The strip method is
included to illustrate that multiple SQL methods can reference a single Java method.

• The other clauses of the create type statements are straightforward transliterations of the
“signatures” of the Java classes.

The external clause following the create type clause must reference a Java class that is in a jar
installed in the current catalog. This is referred to as the subject Java class, and the SQL datatype is
the subject SQL datatype.
If the external clause of a method clause references a Java constructor method (i.e. a method with
no explicitly specified return type whose name is the same as the class name), then the SQL
method name must be the same as the SQL datatype name. I.e. the same conventions for
constructor function calls will be used in SQL as in Java.

Tutorial

Page 11

SQL datatypes such as addr and addr_2_line that are defined on Java classes are referred to as
external Java datatypes.

4.3.3 Multiple SQL types for a single Java class
You can define more than one SQL datatype on a given Java class. For example:

create type another_addr
external name 'address_classes_jar:Address'
language java
as(zip_part char(10) external name 'zip',
street_part varchar(50) external name 'street')
static method rec_width_part () returns integer

external variable name 'recommendedWidth',
method another_addr () returns another_addr external name 'Address',
method another_addr (s_parm varchar(50), z_parm char(10))

returns another_addr external name 'Address',
method string_rep () returns varchar(255) external name ‘toString’,
static method contig (A1 another_addr, A2 another_addr) returns char(3)

external name 'contiguous'
The SQL datatype another_addr is a different datatype than the addr datatype. The two datatypes
aren’t comparable, assignable, or union compatible. You can include or omit an SQL datatype that
is a subtype of the another_addr type for “2 line” data. If you define such a subtype, with a name
such as another_2_line, then instances of another_2_line are specializations of another_addr, and
not of addr.

4.3.4 “Collapsing” subclasses
Given Java classes and subclasses such as Address and Address2Line, you can either define SQL
datatypes for each such class, or for a subset of those classes.
Assume that in SQL you only want to use the Java class Address2Line. You can define an SQL
datatype for that class, without a corresponding SQLdatatype for the Address class. For example:

create type complete_addr
external name 'address_classes_jar:Address2Line'
language java
as(zip_attr char(10) external name 'zip',
street_attr varchar(50) external name 'street',
line2_attr varchar(100) external name 'line2')
static method rec_width () returns integer

external variable name 'recommendedWidth',
method complete_addr () returns complete_addr

external name 'Address2Line',

SQLJ Part 2 — SQL Types using the Java  Programming Language

Page 12

method complete_addr
(s_parm varchar(50), s2_parm char(100), z_parm char(10))
 returns complete_addr
external name 'Address2Line',

static method contiguous (A1 complete_addr, A2 complete_addr)
returns char(3) external name 'contiguous'

method to_string () returns varchar(255) external name 'toString',
method strip () returns complete_addr self as result

external name 'removeLeadingBlanks';
Note that this create type includes attribute and method definitions for attributes and methods of
the superclass, Addr. You can include such superclass attributes and methods in a create type only
if the create type does not specify under. I.e. if a create type specifies a supertype with an under
clause, then the create type can only include attributes and methods of its immediate subject java
class.
The subsets of the classes that you can specify in create type statements are restricted. For
example, assume that you install a hierarchy of classes Person, Employee, Manager, and Director,
where each is a subclass of the preceding. You can then define SQL datatypes for the following
subsets of the classes:
• Person, Employee, Manager, and Director: This is the full subset. Each SQL datatype can

include only members of its subject Java class.
• Any one of Person, Employee, Manager, or Director. That type can include members from any

of its superclasses, whether immediate or indirect.
• Manager and Director: The SQL datatype for Manager can include members from Person and

Employee. The SQL datatype for Director can include only members of Director.
• Employee, Manager, and Director: The SQL datatype for Employee can include members from

Person. The SQL datatypes for Manager and Director can include only members of those
classes.

• Employee and Manager. The SQL datatype for Employee can include members from Person.
The SQL datatypes for Manager can include only members of that class.

• Person, Employee, and Manager, or Person and Employee. Each class can include only
members of its subject Java class.

The subsets that are not allowed are those that omit an intermediate level of subclass. I.e. you
cannot define SQL datatypes for (only) the following subsets of the classes:
• Person and Manager, or Person, Manager, and Director.
• Person and Director.
• Person, Employee, and Director, or Employee and Director.
The rule is simpler than the explanation:

Tutorial

Page 13

If a create type statement for SQL type S2 specifies “under S1”, then the subject Java
class of S1 must be the immediate superclass of the subject Java class of S2.

Section 4.3.3, “Multiple SQL types for a single Java class” described how you can define multiple
SQL datatypes on a single Java class. This also can be done for subtype hierarchies. For example,
let Pi, Ei, Mi, and Di be SQL datatypes defined on Person, Employee, Manager, and Director. For a
given number “i” each type is defined to be a subtype of the preceding “i” type. You can define
SQL datatypes such as:
• E1 and M1, and P2 and E2. I.e. M1 is defined to be a subtype of E1 and E2 is defined to be a

subtype of P2. In this case, E1 and E2 are different types. Instances of E1 are not
specializations of P2.

• P1, E1, and M1, and M2 and D2. I.e. E1 is defined to be a subtype of P1, M1 is defined to be a
subtype of E1, and D2 is defined to be a subtype of M2. In this case, M1 and M2 are different
types. Instances of M2 are not specializations of either P1 or E1, and instances of D2 are not
specializations of either P1, E1, or M1.

4.3.5 GRANT and REVOKE statements for datatypes
After you have performed the create type statements shown in the preceding section, you can
perform normal SQL grant statements to grant the SQL usage privilege on the new datatype:

grant usage on type addr to public;
grant usage on type addr2line to admin;

The syntax and semantics for grant and revoke of the usage privilege for user-defined types are as
specified in SQL99, and are not further described by this standard.

4.3.6 Deployment descriptors for classes
As described in SQLJ: SQL Routines, you may want to perform the same set of SQL create and
grant statements in any SQL system in which you install a given jar file of Java classes, together
with the corresponding SQL drop and revoke statements when you remove that jar file. You can
automate this process by specifying those SQL statements in a deployment descriptor file in the jar
file. A deployment descriptor file contains a list of create and grant statements to be executed
when the jar file is installed, and a list of revoke and drop statements to be executed when the jar
file is removed.
The following is an example deployment descriptor file for the above Java classes and SQL create
and grant statements.

SQLActions[] = {
"BEGIN INSTALL

create type addr
external name 'address_classes_jar:Address'
language java
as(zip_attr char(10) external name 'zip',

street_attr varchar(50) external name 'street')

SQLJ Part 2 — SQL Types using the Java  Programming Language

Page 14

static method rec_width() returns integer
external variable name 'recommendedWidth',

method addr () returns addr external name 'Address',
method addr (s_parm varchar(50), z_parm char(10)) returns addr

external name 'Address',
method to_string () returns varchar(255) external name 'toString',
method remove_leading_blanks () returns addr self as result

external name ‘removeLeadingBlanks’,
method strip () returns addr self as result

external name 'removeLeadingBlanks',
static method contiguous (a1 addr, a2 addr) returns char(3)

external name 'contiguous' ;
grant usage on type addr to public;
create type addr_2_line under addr

external name 'address_classes_jar:Address2Line'
language java
as(line2_attr varchar(100) external name 'line2')
method addr_2_line () returns addr_2_line

 external name 'Address2Line',
method addr_2_line

(s_parm varchar(50), s2_parm char(100), z_parm char(10))
returns addr_2_line
external name 'Address2Line',

method to_string () returns varchar(255) external name 'toString',
method remove_leading_blanks ()

returns addr_2_line self as result
external name ‘removeLeadingBlanks’,

method strip () returns addr_2_line self as result
external name 'removeLeadingBlanks' ;

grant usage on type addr_2_line to admin;
END INSTALL",
“BEGIN REMOVE

revoke usage on type addr from public restrict;
drop type addr restrict;
revoke usage on type addr_2_line from admin restrict;
drop type addr_2_line restrict;

END REMOVE”
}

Tutorial

Page 15

4.3.7 Using Java classes as datatypes
After you have installed a set of Java classes with the sqlj.install_jar procedure, and executed the
appropriate SQL create statements to specify SQL types defined on the Java classes, you can
specify those external Java datatypes as the datatypes of SQL columns. For example:

create table emps (
name varchar(30),
home_addr addr,
mailing_addr addr_2_line

)
In this table, the name column is an ordinary SQL character string, and the home_addr and
mailing_addr columns are instances of the external Java datatypes..
SQL columns whose datatypes are external Java datatypes are referred to as SQLJ columns.
Alternatively, if the SQLJ implementation supports typed tables as specified in SQL99, you can use
the SQL type to create a typed table. Other tables can then reference the objects in the typed table.
This representation allows the objects in the typed table to be shared (i.e., referenced from multiple
objects).
For example, you could store objects of type addr in a typed table addresses and reference them
from one or more other tables:

create table addresses of addr
(ref is id system generated

);

create table companies (
name varchar(100),
address ref(addr) scope addresses

);

create table emps2 (
name varchar(30),
home_addr ref(addr) scope addresses,
mailing_addr addr_2_line

);
In a typed table such as addresses, each attribute of the type becomes a separate column of the
same name in the typed table. In addition, the typed table has an implicit identifier column, which
identifies a row (i.e. an object) in the table. In the example above, the name of this column is id and
the values for the column are automatically generated by the database system. SQL99 supports
additional generation mechanisms for object identifiers, which can be defined through extended
syntax in the create type statement (see section 5.1, “CREATE TYPE statement” and the SQL99
specification for more details).

SQLJ Part 2 — SQL Types using the Java  Programming Language

Page 16

You can store references to the objects of the addresses table in columns of type ref(addr). The
definition for these columns also identifies the addresses table as the scope of the reference
column.

4.3.8 SELECT, INSERT, and UPDATE
After you have specified SQLJ columns such as emps.home_addr and emps.mailing_addr, the
values that you assign to those columns must be Java instances. Such instances are initially
generated by calls to constructor methods, using the new operator as in Java. For example:
insert into emps values('John Doe', new addr(), new addr_2_line())
insert into emps values('Bob Smith', new addr('432 Elm Street', '95123'),

 new addr_2_line('PO Box 99', 'attn: Bob Smith', '99678')
The initial values specified for the SQLJ columns are the results of constructor function calls. Note
the use of the new keyword, whose role is the same in the SQLJ: SQL Types facilities as in Java.
Values of SQLJ columns can also be copied from one table to another. For example, assume the
following additional table:

create table trainees (
name char(30),
home_addr addr,
mailing_addr addr_2_line

);
insert into emps

(select * from trainees
where name in ('Bill Baker', 'Chuck Morgan', 'Frank Jones'));

Inserting objects into typed tables uses the same syntax as for regular base tables. For example:
insert into addresses

values (‘1357 Ocean Blvd.’, ‘99111’)
Reference values can be obtained either directly from the referenced table (using the identifier
column), or from other reference columns. For example, the following statement obtains a
reference value stored in the companies table and inserts it into the emps2 table. This results in a
situations where the addr object is “shared” by multiple referencing parties, thereby avoiding
multiple redundant copies of the same addr object.

insert into emps2
 values(‘Rob White’, new addr(‘165 Oak Street’, ‘95234’),

(select address from companies
 where name = ‘eBiz Unlimited’))

Tutorial

Page 17

4.3.9 Referencing Java fields and methods in SQL
You can invoke the methods and reference and update the fields of SQLJ columns such as
emps.home_addr and emps.mailing_addr using SQL field qualification.

select home_addr.to_string(), mailing_addr.to_string()
from emps
where name = 'Bob Smith';

select name, home_addr.zip_attr
from emps
where home_addr.street_attr= '456 Shoreline Drive';

update emps
set home_addr.street_attr = '457 Shoreline Drive',

home_addr.zip_attr = '99323'
where home_addr.to_string() like '%456%Shore%';

You can also access columns of objects in typed tables and invoke methods on objects in typed
tables through references by using the dereference operator (‘->’).

select name, mailing_addr->to_string()
from emps2
where name = ‘Bob Smith’;

select name, mailing_addr->street_attr
from emps2
where mailing_addr->zip_attr = ‘99111’;

4.3.10 Extended visibility rules
We have now defined SQL datatypes on the Java classes Address and Address2Line, and shown
how you can use those classes as the datatypes of SQL columns.
Defining those SQL datatypes on the Java classes has one additional effect. Those SQL datatypes
and the Java classes that they are defined upon are now added to the list of corresponding Java and
SQL datatypes, so that we can now use Java methods whose datatypes are those Java classes. For
example:

public class Utility {
// A function version of the removeLeadingBlanks method of Address.
public static Address stripLeadingBlanks(Address a) {

return a.removeLeadingBlanks();
}

SQLJ Part 2 — SQL Types using the Java  Programming Language

Page 18

// A function version of the removeLeadingBlanks method of Addr2Line.
public static Addr2Line stripLeadingBlanks(Addr2Line a) {

return a.removeLeadingBlanks();
}

}

create function strip(a addr) returns addr
external name 'address_classes_jar:Utility.stripLeadingBlanks'
language java parameter style java;

create function strip(a addr_2_line) returns addr_2_line
external name 'address_classes_jar:Utility.stripLeadingBlanks'
language java parameter style java;

Note that the create function statement has no syntax to indicate that the referenced method
specifies self as result. Because the referenced methods have that specification, the two strip
functions both return copies of their input parameters.

4.3.11 Logical representation of Java instances in SQL
We saw in section 4.3.8, “SELECT, INSERT, and UPDATE” that the values assigned to such
SQLJ columns are assigned from other SQLJ columns or from the results of calling Java
constructors or other methods. Hence, the values assigned to SQLJ columns are ultimately derived
from values constructed by Java methods in the Java VM. Such values are represented in SQLJ
columns by a value that is obtained from either the Java interface java.io.Serializable or the Java
interface java.sql.SQLData. One or both of those interfaces must be implemented by a Java class
that is used as a datatype in SQL. The value obtained from that interface is effectively a copy of the
Java instance.
For example:

insert into emps
values ('Don Green', new addr('234 Stone Road', '99777'),

 new addr_2_line())
The addr constructor method with the new operator constructs an addr instance and returns a
reference to it. However, since the target is an SQLJ column, the SQL system uses the interface
java.io.Serializable or java.sql.SQLData to obtain data that is effectively a copy of the new Java
value, and copies that value into the new row of the emps table.
The addr_2_line constructor method operates the same way as the addr method, except that it
returns a default instance rather than an instance with specified parameter values. The action taken
is, however, the same as for the addr instance.
Note that the values stored into SQLJ columns are copies of Java instances, not references. For
example:

insert into emps (name, home_addr)

Tutorial

Page 19

values ('Sally Green',
(select home_addr from emps e2 where e2.name='Don Green')

)
This insert statement copies the home_addr column from the 'Don Green' row to the new 'Sally
Green' row. Note that the column value, which contains a copy of the Java instance, is itself copied.
Thus, the home_addr columns of the 'Sally Green' row and the 'Don Green' row are independent
copies, not references to a shared copy. In particular, the following statement has no effect on the
'Sally Green' home_addr:

update emps
set home_addr.zip_attr = '94608'
where name = 'Don Green';

The values stored in SQLJ columns are "reassembled" when a column is passed as a parameter to a
function that is defined on a Java method. For example:

update emps
set home_addr = strip(home_addr)
where substring(home_addr.street_attr, 1, 1) = ' '

The strip function is an SQL function defined on the Java static method Utility.stripLeadingBlanks.
The parameter datatype of the function is the addr datatype. When we pass the home_addr column
as an argument, the value in the current row is reassembled into the Java VM, and a reference to the
reassembled value is passed to the method Utility.stripLeadingBlanks. The result of that function is
of datatype Address, which corresponds with the SQL datatype addr. The Java interface
java.io.Serializable or java.sql.SQLData is applied to this returned value, and the result is copied
back into the column.
Finally, consider the role of SQL nulls. For example:

insert into emps (name)
values ('Mike Green');

The insert statement specifies no values for the home_addr or mailing_addr columns, so those
columns will be set to null, in the same manner as any other SQL column whose value is not
specified in an insert. This null value is generated entirely in SQL, and initialization of the
mailing_addr column does not involve the Java VM at all.

4.3.12 Converting objects between SQL and Java
While application programmers or end users manipulating Java objects in the database through
SQL statements need not be aware of the specific mechanism used to achieve that conversion, the
developer of the Java class itself needs to prepare for it in the form of implementing special Java
interfaces (i.e., Serializable or SQLData). The create type statement introduces a clause for
specifying the mechanism or interface for converting or communicating object state information
between the SQL database and Java in the scope of SQL statements. As mentioned above, a
conversion from SQL to Java can potentially take place when an object that has been persistently
stored in the SQL database is accessed from inside an SQL statement to retrieve attribute (or field)
values, or to invoke a method on the object, or when the object is used as an input argument in the
invocation of a method. A conversion in the opposite direction, from Java to SQL, may be required

SQLJ Part 2 — SQL Types using the Java  Programming Language

Page 20

when a newly created or modified object, or an object that is the return value of a method invo-
cation needs to be persistently stored in the database.

SQLJ supports two different options to specify object state conversion, which appear immediately
after the “language java” clause.

• If the create type statement specifies using serializable, then the Java interface
java.io.Serializable is used for object state conversion.

• If the create type specifies using sqldata, then the Java interface java.sql.SQLData defined in
JDBC 2.0 is used for object state conversion.

• If the create type does not specify a using clause, then it is implementation-defined whether
the Java interface java.io.Serializable or the Java interface java.sql.SQLData will be used for
object state conversion.

4.3.13 USING SERIALIZABLE
If the using clause of a create type statement specifies serializable, then object state
communication is based on the Java interface java.io.Serializable. The Java class referenced in the
external name clause of the create type statement must specify “implements Serializable” and
must provide a niladic constructor.

In this case, the SQL object state that is stored persistently and made available to methods of the
SQL type is defined entirely by the Java serialized object state. The attributes defined for the SQL
type must correspond to public fields of the corresponding Java class, which must be listed in the
attribute external name clauses. Consequently, the SQL attributes define access to those portions of
the object state that are intended to become visble inside SQL statements, but might not comprise
the complete state of the object (which may include additional private or public fields in the Java
class).

4.3.14 USING SQLDATA
If the using clause of a create type statement specifies sqldata, then object state communication is
based on the Java interface java.sql.SQLData defined in JDBC 2.0. The Java class referenced in the
external name clause of the create type statement must specify ‘implements java.sql.SQLData’
and must provide a niladic constructor.

In this case, the attributes defined in the statement comprise the complete state of the SQL object
type. Additional public or private attributes defined in the Java class do not become part of the
SQLJ object state. The Java object representation may be entirely different from the SQL object
attributes, if desired. For example, an SQL Point type may define a geometric point in terms of
cartesian coordinates, while the corresponding Java class defines it using polar coordinates. The
only requirement to be met by the implementor of the Java class is that the implementation of the
SQLData read/writeSQL methods reads/ writes the attributes in the same order in which they are
defined in the create type statement.

Tutorial

Page 21

To improve portability, is is possible to also specify external names for SQL attributes, even if
using sqldata is specified. However, the external name clauses are ignored in this case, because
they are not needed for implementing attribute access in SQL or for converting objects between
SQL and Java.

4.3.15 Developing for Portability
The following guidelines provide maximum portability of Java classes across different SQLJ
implementations that may not support both the serializable and the sqldata options:

• The Java class used for implementing the SQL type should implement both java.io.Serializable
and java.sql.SQLData.

• The Java class should define the complete object state that needs to become persistent or has to
be preserved across invocations as public Java fields.

• The external names of the SQL attributes should be specified.
• The using clause should be omitted in the create type statement, so that an implementation that

does not support both interfaces can default to the interface that it supports.

4.3.16 Static methods
The methods of a Java class can be specified as either static or non-static. For example, in the
Address class, the toString method is non-static and the contiguous method is static.
The method clauses of SQL create type statements can also specify that a method is static or non-
static. For example, the create type for the addr SQL type specifies that to_string is a non-static
method and contiguous is a static method.
In Java and SQL, a non-static method is referenced by qualification on an instance of the
class/type. For example, assume that JAI and SAI are respectively Java and SQL variables of
type/class Address or addr. You would reference the toString or to_string methods of those
instances by the expressions JAI.toString() or SAI.to_string().
In Java, a static method can be referenced by qualification on either the class or on an instance of
the class. For example, you can reference the contiguous method as either Address.contiguous(…)
or as JAI.contiguous(…)
In SQL, a static method is referenced by qualification on the type, not on an instance. For example,
you reference the contiguous method as addr::contiguous(…). You cannot reference the SQL
contiguous method as e.g. SAI.contiguous(..). Note that in SQL, static method qualification on the
type name specifies a double-colon as the qualification punctuation, rather than a single dot. This
avoids ambiguities with other SQL constructs.
Note: In addition to referencing static methods by such field qualification, you can also reference
static methods by specifying standalone procedures or functions, using the facilities of SQLJ: SQL
Routines. For example:

create function contig_function (A1 addr, A2 addr) returns char(3)
external name 'address_classes_jar:Address.contiguous’
language java parameter style java;

SQLJ Part 2 — SQL Types using the Java  Programming Language

Page 22

4.3.17 Static fields
The fields of a Java class can be specified as either static or non-static. In the example Address
class, the street and zip fields are non-static and the recommendedWidth field is static.
The static fields of a java class can be specified as final, which makes them read-only. Non-final
fields can be updated. Users do not always specify the final clause for read-only static fields.
The SQL create type does not include a facility for specifying atributes to be static. This is
because of the difficulty in specifying what the scope, persistence, and transactional properties of
static fields would be in a database environment.
The SQL create type does, however, provide a shorthand mechanism for read-only access to the
values of Java static fields. This is illustrated in the create type for addr, which specifies a static
method clause for the recommendedWidth field:

create type addr external name 'address_classes_jar:Address'
language java
using serializable
as(zip_attr char(10) external name 'zip',

street_attr varchar(50) external name 'street')
static method rec_width () returns integer

external variable name 'recommendedWidth',
…

The static method clause for rec_width specifies that it is an integer-valued method with no
parameters. The external clause for a static method would normally specify the name of a static
method of the Java class. In this case, however, the external clause specifies the keyword variable,
and gives the name of a static field of the Java class. When a static method clause specifies
external variable, the method must have no parameters, and the specified Java name must be that
of a static field. Such a static method is invoked in the normal manner, and returns the value of the
specified Java static field.
Given such a declaration, you can reference the rec_width method in the same manner as other
static methods, and access the recommendedWidth field:

select * from emps
where length(home_addr.street_attr) > addr::rec_width()

SQL provides no way to update the values of Java static fields.

4.3.18 Instance-update methods
A non-static Java class method is invoked by qualification on an instance of the class. For example,
assuming that JAI is an instance of the Java Address class, you would reference the toString or
removeLeadingBlanks methods as JAI.toString() or JAI.removeLeadingBlanks().

Tutorial

Page 23

Such non-static methods generally reference the fields of the instance that qualifies the method
reference, e.g. the instance JAI. The toString method references the instance JAI in a read-only
manner, returning a string representation of that instance. The removeLeadingBlanks method,
however, references the qualifying instance in a manner that updates the value of the instance. That
update is intended to be a side-effect of the method invocation.
Read-only methods such as toString fit naturally into SQL. For example, given the above emps
table:

select name, home_addr.to_string()
from emps
where home_addr.to_string() <> x;

1) As described in section 4.3.11, “Logical representation of Java instances in SQL”, Java
instances stored in SQL columns and variables are copies of the Java values, not references to such
values. Therefore, methods such as removeLeadingBlanks that have side-effects on the qualifying
instances do not fit naturally into the SQL framework. For this reason, the SQL create type for a
Java class provides a special mechanism for referencing Java methods that have side effects. This is
illustrated by the method clause for remove_leading_blanks:

create type addr external name 'address_classes_jar:Address'
language java
using serializable
as (…)
method remove_leading_blanks () returns addr self as result

external name ‘removeLeadingBlanks’;
Recall that the removeLeadingBlanks method of the Java Address class is a void method. You
might therefore expect to specify the SQL remove_leading_blanks as a void method, i.e. a
“procedure method”. However, the SQL create type does not provide a way to specify void
methods or “procedure methods”. This is because such methods would almost always perform side
effects on the qualifying instance, and would therefore not be suitable for a value-oriented SQL
context.
The SQL remove_leading_blanks method specifies the clause returns self as result. This clause
has the following significance:

• The returns type of the method is defined to be the containing SQL datatype. I.e. the SQL
remove_leading_blanks method is an addr-valued method. This is the case irrespective of the
returns type of the underlying Java method. In the typical case, the underlying Java method will
be a void method, but as we will discuss below, this is not required.

• At runtime, the specified java method is invoked in the normal manner, and updates the fields
of a copy of the qualifying instance. When the invocation is complete, the SQL system then
makes a copy of the updated value of the qualifying instance, and returns that copy as the result
of the method.

As example invocation of remove_leading_blanks is as follows:
update emps
set home_addr = home_addr.remove_leading_blanks()

SQLJ Part 2 — SQL Types using the Java  Programming Language

Page 24

where …
Such an update statement proceeds in the normal manner to process each row of the emps table,
and to perform the set actions in each row for which the where clause is true. For such a row, the
value of the home_addr column is passed to the Java virtual machine, which evaluates the
removeLeadingBlanks method for that instance of the Address class. That method performs side
effects on the fields of that copy of the current home_addr column, and returns. The SQL system
then makes a copy of that updated value of the Address instance, and returns that copy as the result
of the call to remove_leading_blanks. That copy is then assigned back to the home_addr column of
the current row.
Consider a somewhat different invocation of remove_leading_blanks:

select name, home_addr.remove_leading_blanks().street_attr
from emps
where …

This select statement processes the emps rows, and evaluates the select-list for selected rows. The
second element of that select-list invokes the remove_leading_blanks method of the home_addr
column. As above, this invocation passes a copy of the home_addr value to the Java VM, where the
removeLeadingBlanks method updates the copy. The SQL system then returns a copy of that
updated copy, and extracts the street_attr attribute. That street_attr attribute will reflect the
removal of leading blanks that has been done. However, these actions do not affect the value of the
home_addr column in the emps table.
This self as result mechanism provides a general way for SQL to apply the side-effects of arbitrary
Java methods.
Java methods that update the qualifying instance will commonly be written as void methods. In
some cases, however, such methods are written to return e.g. integer values that provide some sort
of status feedback, e.g. an “OK” indication. For this reason, you can specify the returns self as
result clause for arbitrary Java methods, irrespective of the returns type of the method. Note,
however, that this return value that the method invocation explicitly provides is simply discarded
by the SQL system, which replaces that explicit returned value with the implicit copy of the
qualifying instance.

4.3.19 Subtypes in SQLJ data
Recall the example Java classes Address and Address2Line., and the corresponding SQL datatypes
addr and addr_2_line. The Address2Line class is a subclass of the Address class, so you can make
use of the substitutability and method overloading characteristics of Java.
For example, you can assign addr_2_line values to addr columns. We can illustrate this with the
emps table, in which the home_addr column is an addr and the mailing_addr column is an
addr_2_line:

update emps
set home_addr = mailing_addr
where home_addr is null

For the rows in which we perform the above set clause, the home_addr column will contain an
addr_2_line, even though the declared type of home_addr is addr.

Tutorial

Page 25

Such an assignment implicitly converts an instance of a class to an instance of a superclass of that
class.
A conversion from a class to one of its superclasses is called a widening conversion, and a
conversion from a class to one of its subclasses is called a narrowing conversion.
Widening conversions do not have to be specified explicitly. They can be done implicitly with
normal assignments. Narrowing conversions must be performed by calling Java methods that
perform the narrowing internally and return the narrowed result.

Note: It would be possible to extend the SQL cast function to support narrowing
conversions.

Neither widening conversions nor narrowing conversions modify the actual instance value or its
runtime datatype. Widening and narrowing conversions (assuming no exceptions) simply specify
the class to be used for the compile-time type. Thus, when you store addr_2_line values from the
mailing_addr column into the home_address column, those values still have the run-time type of
addr_2_line. The effect of this can be seen in the following example.
Recall that that the addr type and the addr_2_line subtype both have a method named toString,
which returns a String form of the complete address data.
Consider the following call of the to_string method:

select name, home_addr.to_string() from emps
where home_addr.to_string() not like '%Line2=%'

For each row of emps, the declared type of the home_addr column is addr, but the runtime typc of
the home_addr value will be either addr or addr_2_line, depending on the effect of the previous
update statement. For rows in which the runtime value of the home_addr column is an addr, the
to_string method of the addr class will be invoked, and for rows in which the runtime value of the
home_addr column is an addr_2_line, the to_string method of the addr_2_line subclass will be
invoked.
The way that this runtime selection of the to_string method is performed is as follows:
• At compile time, the SQL system determines that the calls of home_addr.to_string() are

syntactically correct, and that the result type is suitable (e.g. for the like predicate).
• At runtime, the SQL system will process the calls of home_addr.to_string() for each row of

emps in the following steps:
� The value of the home_addr column for the row is reassembled into the Java VM, and a

reference R for that reassembled value is obtained.
� The invocation R.toString() is passed to the Java VM for evaluation. The Java VM

performs the run time selection of the appropriate toString method, and returns the
result.

4.3.20 References to fields and methods of null instances
Assume that you insert the following row into the emps table:

insert into emps (name) values ('Charles Green')

SQLJ Part 2 — SQL Types using the Java  Programming Language

Page 26

Note that the home_address and mailing_address columns are both null, since no values were
specified for them.
Consider the following select statement:

select name, home_addr.zip_attr from emps
where home_addr.zip_attr in ('95123', '95125', '95128')

The intention of this select is to retrieve the given values of those emps rows for which the zip field
of home_addr as one of the specified values. This would not include the rows of emps for which
home_addr is null.
When we execute this select statement, the where clause will be evaluated for each row of emps,
including the rows in which the home_addr column is null. In Java, and other programming
languages, if you attempt to reference a field of a null instance, an exception is raised. If we use
that rule in SQL, then the above select would raise an exception if the home_addr column if any
row of emps were null. Note that this is an exception for the entire select statement, not for
particular rows. To get the desired effect, we would have to write the select as follows:

select name, home_addr.zip_attr from emps
where case when home_addr is not null then home_addr.zip_attr else null end

in ('95123', '95125', '95128')
In fact, if we specify that field references to null instances raise an exception, then virtually all
where clause references to fields would have to be written with such a case expression. This would
be exceedingly tedious, so the SQLJ rule for field references to null instances is different from
Java:

If the value of the instance specified in a field reference is null, then the field reference is
null.

This rule is equivalent to specifying that the above case expression is implicit.
This rule therefore allows you to write the select in the original form. For rows whose home_addr
column is null, the field reference home_addr.zip_attr will be null.
This rule for field references with null instances only applies to field references in ‘value’, or
‘right-hand-side’ contexts, not to field references that are targets of assignments or set clauses.
For example:

update emps
set home_addr.zip_attr = '99123'
where name = 'Charles Green'

This where clause will obviously be true for the 'Charles Green' row, so the update statement will
try to perform the given set clause. This will raise an exception, since you cannot assign a value to
a field of a null instance. This is because the null instance has no field to which a value can be
assigned.
In other words, field references to fields of null instances are valid and return the null value in
right-hand-side contexts, and cause exceptions in left-hand-side contexts.
Exactly the same considerations apply to invocations of methods of null instances, and the same
rule is applied.

Tutorial

Page 27

For example, suppose that we modify the previous example and invoke the to_string method of the
home_addr column:

select name, home_addr.to_string() from emps
where home_addr.to_string() = 'Street=234 Stone Road ZIP=99777'

If we apply the strict Java rule, then invocations of the to_string method for rows in which the
home_addr column is null will raise an exception. We would therefore, as above, need to code the
select as follows:

select name, home_addr.to_string() from emps
where case when home_addr is not null

 then home_addr.to_string() else null end
= 'Street=234 Stone Road ZIP=99777'

We therefore extend the Java rule for method invocation in the same manner that we extended the
Java rule for field references:

If the value of the instance specified in an instance method invocation is null, then the result
of the invocation is null.

4.3.21 Ordering of SQLJ data
In an earlier section we created the emps table, with columns home_addr and mailing_addr whose
datatypes are declared to be the Java classes, respectively, Address and Address2Line. Now
suppose that you reference those columns in statements such as the following:

select distinct * from emps E1, emps E2
where E1.home_addr = E2.home_addr
and E1.mailing_addr > E2.mailing_addr

union
select distinct * from emps E1, emp E2

where E1.mailing_addr = E2.mailing_addr
and E1.home_addr > E2.home_addr
group by home_addr
order by home_addr, mailing_addr

 This statement involves numerous references to home_addr and mailing_addr that imply ordering
relationships:
1) The distinct keyword is defined in terms of equality of rows, which is specified as a pairwise

comparison of corresponding columns. I.e. to determine if two rows of emps are distinct, you
have to compare their respective home_addr and mailing_addr columns.

2) The direct comparisons using “=” and “>” etc all require ordering properties.
3) The union operator doesn’t specify union all, so it will eliminate duplicates. This will require

the same kind of comparisons as the distinct clause.
4) The group by requires partitioning the rows into sets with equal values of the grouping column.
5) The order by requires determination of the ordering properties of the order columns.

SQLJ Part 2 — SQL Types using the Java  Programming Language

Page 28

When you create an external Java datatype with a create type…external language java
statement, the new external Java datatype has no ordering capability. I.e. its “ordering form” is
“none”. Instances of an external Java datatype whose ordering form is none cannot be used in any
of the above ordering relationships.
To define ordering for an external Java datatype, you use the create ordering statement:

create_ordering_statement ::=
create ordering for sql_datatype_name ordering_form

ordering_form ::=
equals only by ordering_category
| order full by ordering_category

ordering_category ::=
map with ordering_routine
| relative with ordering_routine
| relative with comparable interface
| state

The significance of the equals only and full alternatives is as follows:
• equals only specifies that instances of the associated class can be referenced in equals (=) and

not equals (<>) operations, select distinct, union with duplicate elimination, and group by, but
not in other ordering contexts.

• full specifies that instances of the associated class can be referneced in any ordering context.
The state clause specifies that instances will be ordered on the values of the attributes of the type.
The map clause specifies the name of a method or function that will map instances of the
associated class to values of some built-in SQL datatype, whose ordering defines the ordering of
the associated class. The map routine needn’t define a 1-1 into correspondence. It can map distinct
instance values to the same result. This would be done in order to equate 6/8 and ¾ for a class that
implements rational numbers. It can also be done for folded comparisons, and other cases where it
is desirable to equate distinct instances.
The relative with ordering_routine clause specifies the name of a method or function that
compares instances of the associated class and returns an integer result. The runtime result value
for two instances X and Y is —1, 0, or +1 to indicate respectively that X is less than, equal to, or
greater than Y.
The relative with comparable interface clause may be used only in orderings for SQL datatypes
whose subject Java class implements java.lang.Comparable. The int compareTo method of the
subject Java class determines the relative ordering for two instances X and Y, returning —1, 0, or
+1 to indicate respectively that X is less than, equal to, or greater than Y.

SQL elements

Page 29

5. SQL ELEMENTS

5.1 CREATE TYPE statement

Function
Specify an SQL name for a Java class.

Syntax
create_type_statement ::=

create type sql_datatype_name
[under sql_datatype_name]
external name 'class_name'
language java
[using interface_spec]
as sql_representation
[instantiable | not instantiable]
final | not final
[reference_type_specification]
 [method_spec_list]

sql_datatype_ name ::= [[identifier1.]identifier2.]identifier3
sql_representation ::= (attribute_spec [{ , attribute_spec}…])
interface_spec ::= sqldata | serializable
reference_type_specification ::=

ref is system generated
| ref from (sql_attribute_name [{, sql_attribute_name}…])
| ref using sql_predefined_type [ref_cast]

ref_cast ::=
[cast (source as ref) with identifier]
[cast (ref as source) with identifier]

attribute_spec ::=
sql_attribute_name sql_datatype [external name 'java_field_name']

method_spec_list ::= method_spec [{ , method_spec}…]
method_spec ::= function_method_spec | static_field_method_spec
function_method_spec ::=

 [static] method sql_method_name sql_function_signature
method_spec_characteristic …

SQLJ Part 2 — SQL Types using the Java  Programming Language

Page 30

method_spec_characteristic ::=
data_access_indication
| { deterministic | not deterministic }
| { returns null on null input | called on null input }
| external name 'java_method_name [java_signature]’

data_access_indication ::=
no sql
| contains sql
| reads sql data
| modifies sql data

static_field_method_spec ::=
 static method sql_method_name () returns sql_datatype
external variable name 'java_field_name’

sql_function_signature ::= ([sql_parameters]) returns sql_datatype [self as result]
sql_parameters ::= (sql_parameter [{, sql_parameter}…])
sql_parameter ::= [in] [sql_identifier] sql_datatype
class_name ::= jar_id:java_class_name
java_class_name ::= [packages.]class_identifier
jar_id ::= sql_identifier
packages ::= package_identifier[.package_identifier]…
package_identifier ::= java_identifier
class_identifier ::= java_identifier
java_field_name ::= java_identifier
java_method_name ::= java_identifier
java_signature ::= --Defined in SQLJ: SQL Routines

Definitions and Rules

create type — A form of the create statement that specifies an SQL type name for a Java class.

sql_datatype_name — The qualified SQL name of the SQL type.
The sql_datatype_name is referred to as the subject SQL datatype name, and the SQL
datatype that it defines is referred to as the subject SQL datatype.
The identifiers identifier1, identifier2, and identifier3 are the three elements of an SQL 3-
part name. The defaults for identifier1 and identifier2 are determined by normal SQL rules.

sql_datatype — An SQL data type.

under sql_datatype_name — Specifies that the subject sql_datatype_name is a subtype of the SQL
datatype identified by the sql_datatype_name.

SQL elements

Page 31

The create_type_statement for the sql_datatype_name specified for under must not specify
final
The sql_datatype_name specified after the under keyword is referred to as the immediate
SQL supertype name, and the SQL datatype that it identifies is referred to as the immediate
SQL supertype.
Rules for the immediate SQL supertype are specified in the Description below.

external — Specifies that the create statement defines an SQL name for a datatype defined in a
programming language other than SQL.

name - Specifies the name of a Java class in a jar installed in the current catalog. A reference to the
SQL datatype name is effectively a synonym for the specified Java class.

jar_id — The name of a jar in the current catalog and schema.

java_class_name — The fully-qualified name of a Java class in the specified jar.
The java_class_name is referred to as the subject Java class name, and the Java class that it
identifies is referred to as the subject Java class.
Rules for the subject Java class are specified in the Description below.

language java — Specifies that the external datatype is written in Java.
An SQL datatype that is defined with a create type that specifies external language java is
referred to as an external Java datatype.
All methods defined for an external Java datatype are implicitly parameter style java.
Note that parameter style java cannot be explicitly specified in the
method_spec_characteristic.

using — Specifies the interface and mechanism used when converting between an instance of the
subject SQL type and a Java object. Such conversions are performed when an SQLJ column
is specified as a (subject) parameter in a method or function invocation, or when a Java
object returned from a method or function invocation is stored in an SQLJ column.

If a using clause is not specified, then the default interface_spec is implementation-defined.

serializable — Specifies that conversions between Java objects and SQL representations is
performed as specified by the Java interface java.io.Serializable. The method
java.io.Serializable.writeObject() is effectively used to convert a Java object to an SQL
representation, and the method java.io.Serializable.readObject() is effectively used to
convert an SQL representation to a Java object.

If serializable is specified, then the subject Java class must implement the Java interface
java.io.Serializable.

SQLJ Part 2 — SQL Types using the Java  Programming Language

Page 32

sqldata — Specifies that conversions between Java objects and SQL representation is performed as
specified by the Java interface java.sql.SQLData, as defined in JDBC 2.0. The method
java.sql.SQLData.writeSQL() is effectively used to convert a Java object to an SQL
representation, and the method java.sql.SQLData.readSQL() is effectively used to convert
an SQL representation to a Java object..

If sqldata is specified, then the subject Java class must implement the Java interface
java.sql.SQLData.

as sql_representation — Specifies the SQL attributes of the subject SQL datatype.

instantiable — Specifies that instances of the subject SQL datatype may be constructed. See
section 5.5, "SQLJ method call".

not instantiable — Specifies that instances of the subject SQL datatype may not be constructed.
See section 5.5, "SQLJ method call".

final — Specifies that no create_type_statement may specify the sql_datatype_name of the subject
SQL datatype in the under clause.

not final — Specifies that create_type_statements may specify the sql_datatype_name of the
subject SQL datatype in the under clause.

sql_predefined_type — An SQL predefined type.

reference_type_specification — Specifies how references (or object identifiers) are generated when
the subject SQL datatype is the target type of a reference. References can be system-
generated, derived from one or more attributes of the subject SQL datatype, or user-
generated. For user-generated references, a predefined type is specified as the representation
type of the reference, and cast functions can be specified that cast between the reference
type and its representation type.

attribute_spec — Specifies an attribute of the subject SQL datatype.
The sql_attribute_name is the SQL name of the attribute.
The sql_datatype is the datatype of the attribute.
If the interface_spec is explicitly or implicitly serializable, then each attribute_spec must
specify the java_field_name. The java_field_name is referred to as the corresponding Java
field name of the sql_attribute_name. Rules for the corresponding Java field name of an
sql_attribute_name are specified in the Description below.

method_spec_list — Specifies the methods of the subject SQL datatype.

method_spec — Specifies a method of the subject SQL datatype.
The sql_method_name is the SQL name of the method.

function_method_spec — A method of the SQL type that corresponds to a method of the java class.
I.e. a method that is not a static_field_method_spec.

SQL elements

Page 33

self as result — Specifies that the SQL method has a result type that is the subject SQL datatype,
and that the result of a call of the method will be a copy of the state of the instance after
completion of the call. See the Description below and section 4.3.18, “Instance-update
methods”.

method_spec_characteristic — Specifies properties of the SQL method.

data_access_indication — Specifies the SQL facilities that the Java method is allowed to perform.
The restrictions apply directly to the specified method itself and to any methods that it
invokes, directly or indirectly.
If you don't specify a data_access_indication, then contains sql is the default.

no sql — The method cannot invoke SQL operations.

contains sql — The method can invoke SQL operations, but cannot read or modify SQL data. I.e.
the method cannot perform SQL open, close, fetch, select, insert, update, or delete
operations. The contains sql option is the default data_access_indication.

reads sql data — The method can invoke SQL operations, and can read SQL data, but cannot
modify SQL data. I.e. the method cannot perform SQL insert, update, or delete operations.

modifies sql data — The method is allowed to invoke SQL operations and to read and modify
SQL data.

deterministic — Specifies that for a given set of argument values, the method always returns the
same result. The implementation is therefore permitted to retain lists of argument and result
values from an invocation of the method, and to return those result values for subsequent
invocations that specify the same argument values without executing the method on those
subsequent invocations.

not deterministic — Specifies that the method does not have the deterministic property. This is
the default, if neither deterministic nor not deterministic is specified.

returns null on null input — Specifies the action to be taken for an invocation of the method that
specifies a null member_reference or any null in or inout parameter. See section 5.5, "SQLJ
method call".

called on null input — Specifies the action to be taken for an invocation of the method that
specifies any null in or inout parameter. See section 5.5, "SQLJ method call".

java_method_name — Specifies the method of the subject Java class that the sql_method_name
references. The java_method_name is referred to as the corresponding Java method name of
the sql_method_name.
Rules for the corresponding Java method name of an sql_method_name are specified in the
Description below.

static — Specifies that the method is static.

SQLJ Part 2 — SQL Types using the Java  Programming Language

Page 34

If static is specified, then the method is called a type method. If static is not specified, then
the method is called an instance method.
Type methods are referenced by qualification on the type name. Instance methods are
referenced by qualification on instance expressions.

static_field_method_spec — A static method of the SQL type that returns the value of the Java
static field specified in the external variable name clause. This is a shorthand that provides
read-only SQL access to static fields of the Java class.

sql_parameter — Specifies a parameter of the routine.

Description
1) The rules for the sql_datatype_name, sql_attribute_names, and sql_method_names are as

specified in SQL.
2) The character set supported, and the maximum length of the class_name, the java_field_name,

and java_method_name, are implementation-defined.
3) Let SDT be an external Java datatype, and JC be the subject Java class of SDT.
4) The Java class JC can be the subject Java class of other external Java datatypes. Each such

external Java datatype is a distinct datatype.
5) The Java class JC must be a public class.
6) The Java class JC must implement the Java interface java.io.Serializable or the Java interface

java.sql.SQLData or both.
7) If SDT specifies an SQL supertype SSDT, then:

a) The SQL datatype SSDT must be an external Java datatype.
b) The Java class JC must be an immediate subclass of the subject Java class of SSDT.

8) If the interface_spec is explicitly or implicitly serializable, then for each attribute_spec, AS, of
SDT:
a) Let JFN be the java_field_name of AS.
b) JFN must be the name of a field of JC or a superclass of JC. Let JF be that field of JC or a

superclass of JC that would be referenced by Java name resolution for dynamic fields.
c) JF must not be the subject field of any other attribute_spec of SDT, and if under is

specified, then JF must not be the subject field of any supertype of SDT.
d) JF must be a public field.
e) Let SAT be the sql_datatype of AS, and JFT be the Java datatype of JF.
f) SAT and JFT must be simply mappable or object mappable, as defined in the section

“CREATE PROCEDURE/FUNCTION Statement” of “SQLJ: SQL Routines”.
g) JF is the subject field of attribute AS.

9) For each function_method_spec, FMS, of SDT:
a) Let JMN be the java_method_name of FMS.

SQL elements

Page 35

b) If FMS specifies self as result, then
i) FMS must not specify static.
ii) The returns datatype of FMS must be the subject SQL datatype.

c) If JMN is the same as JC, then the sql_method_name must be the subject SQL datatype
name.

Note: This restriction retains the characteristic that constructor methods have the same
name as the type.

d) Let SS be the sql_signature of FMS.
e) If FMS specifies a Java signature, then let JS be that Java signature. Otherwise, a Java

signature, JS, is determined from SS as specified in the Description section of the create
procedure/function statement of SQLJ: SQL Routines.

f) The method name JMN and Java signature JS must identify exactly one Java method in
class JC or the supertypes of class JC, using Java overloading resolution. Let JM be that
Java method. JM must be visible.

g) If FMS specifies static then JM must be static. If FMS does not specify static, then JM
must not be static.

h) JM is the subject Java method of FMS.
i) If FMS does not specify self as result, then:

• Let SFR be the returns sql_datatype of FMS. Let JFR be the Java return datatype of
JM.

• SFR and JFR must be simply mappabble or object mappable, as defined in the section
"CREATE PROCEDURE/FUNCTION statement" of "SQLJ: Routines".

10) For each static_field_method_spec, SFMS, of SDT:
a) Let JFN be the java_field_name of SFMS. Let FI be the identifier specified in JFN. If JFN

specifies a java_class_name, then let SFC be that class name; otherwise, let SFC be JC.
b) FI must be the name of a field of SFC. Let JSF be that field.
c) JSF must be a public static field.
d) Let SRT be the sql_datatype specified in the returns clause of SFMS. Let JFT be the Java

datatype of JSF.
e) SRT and JFT must be simply mappable or object mappable, as defined in the section

“CREATE PROCEDURE/FUNCTION Statement” of “SQLJ: SQL Routines”.
f) JSF is the subject static field of SFMS.

11) JC may contain fields and methods (public and private) for which no corresponding attribute or
method is specified in SDT.

12) The subject SQL datatype initially has an ordering form of none.

SQLJ Part 2 — SQL Types using the Java  Programming Language

Page 36

 Note: The ordering form of a datatype indicates what comparisons and ordering operations
are allowed for instances of the datatype. The initial default ordering form is none. Other
ordering forms are specified with the create ordering statement. See section 4.3.21,
“Ordering of SQLJ data”.

13) A create type statement specifying a subject SQL datatype ST and a subject Java class JC
implicitly extends the datatype mappings defined in the JDBC mapping tables. A row (ST, JC)
is added to the table “JDBC Types Mapped to Java Object Types”, and a row (JC, ST) is added
to the table “Java Object Types Mapped to JDBC Types”.

Privileges
The privilege rules are those of the SQL create type statement.

Optional features
1) The create type statement can be specified either within a deployment descriptor file, as an

SQL DDL statement, or by an implementation-defined mechanism that achieves the same
effect as the create type statement. An implementation must support one or more of these
techniques. It is implementation-defined which of these techniques an implementation supports.

2) If the implementation does not support overloading, then the sql_method_name of a
method_spec must not be the same as the sql_method_name of any other method_spec in the
same create type statement.

3) Support of the static_field_method_spec is optional.
4) Support of the reference_type_specification is optional.
5) An implementation must support an interface_spec of serializable or SQLData or both.

SQL elements

Page 37

5.2 CREATE ORDERING statement

Function
Specify an ordering for a Java-SQL datatype.

Syntax
create_ordering_statement ::=

create ordering for sql_datatype_name ordering_form
ordering_form ::=

equals only by ordering_category
| order full by ordering_category

ordering_category ::=
map with ordering_routine
| relative with ordering_routine
| relative with comparable interface
| state

ordering_routine ::=
function sql_function_name
| method sql_method_name

sql_datatype_ name ::= [[identifier1.]identifier2.]identifier3
sql_function_ name ::= [[identifier1.]identifier2.]identifier3
sql_method_name ::= See section 5.1, “CREATE TYPE statement“

Definitions and Rules

sql_datatype_name — The qualified SQL name of an SQL datatype. That SQL datatype is referred
to as the subject SQL datatype.

ordering_form — Specifies the ordering properties of the subject SQL datatype.
Rules for the ordering_form are specified in the Description below.

ordering_category — Specifies the function that performs the map transformation or the relative
comparison for the subject SQL datatype.
Rules for the ordering_category are specified in the Description below.

Description
1) The rules for the sql_datatype_name and sql_function_names are as specified in SQL.

SQLJ Part 2 — SQL Types using the Java  Programming Language

Page 38

2) The subject SQL datatype must be an external Java datatype. Let JC be the subject Java class of
that external Java datatype.

3) The current ordering form of the subject SQL datatype must be none.
4) If map with function is specified, then:

a) Let MF be the sql_function_name specified in the map clause.
b) There must be exactly one function MF that has exactly one parameter, and whose

parameter datatype is the subject SQL datatype.
c) The result datatype of MF must be a predefined SQL datatype.
d) For any given instances X and Y of the subject SQL datatype, and any ordering relation R:

X R Y if and only if MF(X) R MF(Y)
5) If map with method is specified, then:

a) Let MM be the sql_method_name specified in the map clause.
b) The subject datatype must have exactly one method M that has no parameters.
c) The result datatype of MM must be a predefined SQL datatype.
d) For any given instances X and Y of the subject SQL datatype, and any ordering relation R:

X R Y if and only if X.MM() R Y.MM()
6) If relative with function is specified, then:

a) Let RF be the sql_function_name specified in the map clause.
b) There must be exactly one function RF that has exactly two parameters, and whose

parameter datatypes are both the subject SQL datatype.
c) The result datatype of RF must be SQL INTEGER.
d) For any given instances X and Y of JC:

X < Y if and only if RF(X, Y) = -1
X = Y if and only if RF(X, Y) = 0
X > Y if and only if RF(X, Y) = 1

7) If relative with method is specified, then:
a) Let RM be the sql_method_name specified in the map clause.
b) The subject SQL datatype must have exactly one method RM that has exactly one

parameter, whose parameter datatype is the subject SQL datatype.
c) The result datatype of RM must be SQL INTEGER.
d) For any given instances X and Y of JC:

X < Y if and only if X.RM(Y) = -1
X = Y if and only if X.RM(Y) = 0
X > Y if and only if X.RM(Y) = 1

8) If relative with comparable interface is specified, then:

SQL elements

Page 39

a) JC must implement the Java interface java.lang.Comparable. That Java interface requires
an implementing Java class to have a method named compareTo, whose result datatype is
Java int.

b) For any given instances X and Y of JC:
X < Y if and only if X.compareTo(Y) = -1
X = Y if and only if X.compareTo(Y) = 0
X > Y if and only if X.compareTo(Y) = 1

9) If state is specified, then
a) Let A1, A2,…, An be the sql_attribute_names specified in the attribute_specs, in order.
b) Each Ai must be the name of an attribute of the subject SQL datatype.
c) For each attribute Ai, let Di be the datatype of Ai.

i) If the create_ordering_statement specifies order equals only, then no Di that is an
external Java datatype may have an ordering form of none.

ii) If the create_ordering_statement specifies order full, then each Di that is an external
Java datatype must have an ordering form of order full.

d) For any given instances X and Y of JC, and any ordering relation R:
X R Y if and only if (X.A1, X.A2,…, X.An) R (Y.A1, Y.A2, …, Y.An)

Optional features
1) The create ordering statement is optional.

SQLJ Part 2 — SQL Types using the Java  Programming Language

Page 40

5.3 DROP TYPE statement

Function
Drop an external-Java datatype.

Syntax
drop_datatype_statement ::=

drop type sql_datatype_name restrict

Definitions and Rules

sql_datatype_name — The SQL name that is the name of an SQL datatype. That SQL datatype is
referred to as the subject SQL datatype.

Description
1) The SQL rules for restrict are enforced.
2) The definition of the subject SQL datatype is deleted from the SQL system catalogs.

Privileges
1) The current user must be the owner of the subject SQL datatype.

Optional Features
1) The drop type statement can be specified either within a deployment descriptor file, as an SQL

DDL statement, or by an implementation-defined mechanism that achieves the same effect as
the drop type statement. An implementation must support one or more of these techniques. It is
implementation-defined which of these techniques an implementation supports.

SQL elements

Page 41

5.4 SQLJ member references

Function
Reference a field or method of a class instance or a method of a class.

Syntax
member_reference ::=

instance_expression.member_name
| sql_datatype_name::sql_method_name
| reference_expression->member_name

instance_expression ::=
sql_expression
| member_reference

reference_expression ::=
sql_expression

member_name ::= sql_attribute_name | sql_method_name

Definitions and Rules

member_reference — An expression that denotes a field or method of a class instance or a method
of a class.

instance_expression — An expression whose datatype is an instance of an external Java datatype.
The member_reference is a reference to a method or field of the given instance.

reference_expression — An expression whose datatype is an SQL reference type.

sql_expression — An SQL expression whose datatype is an external Java datatype.

sql_datatype_name — An SQL datatype name. This must be an SQL datatype that is an external
Java datatype.

sql_method_name — The name of a static method of the external Java datatype denoted by the
sql_datatype_name.

member_name — The name of an attribute or method of the class instance denoted by the
instance_expression.

Description
1) Case:

SQLJ Part 2 — SQL Types using the Java  Programming Language

Page 42

a) If a member_reference immediately contains an instance_expression, then the datatype
or signature of the member_reference is the datatype or signature of the attribute or
method of the instance denoted by the instance_expression whose name is the
member_name.

b) If a member_reference immediately contains an sql_datatype_name, then the signature
of the member_reference is the signature of the method of the datatype denoted by the
sql_datatype_name whose name is the sql_method_name .

c) If a member_reference immediately contains a reference_expression, then the datatype
or signature of the member_reference is the datatype or signature of the attribute or
method of the instance denoted by the reference_expression whose name is the
member_name.

2) If the instance_expression or reference expression of a member_reference whose
member_name is a field_name is a null instance value, then:
a) If the member_reference is the target of a data transfer in a fetch, select or update

command, or as the argument of an output parameter in a procedure call, then an exception
is raised.

b) Otherwise, the member_reference has the null value.
3) If a member_reference specifies an instance_expression, then:

a) If the create type statement that defined the SQL type of the instance_expression implicitly
or explicitly specified serializable, then Java serialization is effectively used to obtain a
Java object from the value of the instance_expression, and the Java field that corresponds to
the attribute specified in the member_name is accessed.

b) If the create type statement that defined the SQL type of the instance_expression implicitly
or explicitly specified SQLData, then the member of the instance expression is directly
accessible by the SQLJ implementation and its value is returned as the value of that
member_reference.,

4) The “.” qualification takes precedence over any operator, such as “+”, “=”, etc. For example, an
expression such as

X.A1.B1 + X.A1.B2
In such an expression, the plus operation is performed after the members have been referenced.

Optional features
1) Support for reference_expression and the "->" operator is optional..

SQL elements

Page 43

5.5 SQLJ method call

Function
Invoke a method of an instance of an external Java type. A method call can be used wherever an
SQLJ function call can be used.

Syntax
method_call ::=

 member_reference ([parameters])
| new sql_datatype_name ([parameters])

parameters ::= parameter [{, parameter}…]
parameter ::= expression

Definitions and Rules

method_call — Invocation of a static or dynamic method or a datatype constructor.

member_reference — A member reference that denotes a method.

parameters — The list of parameters to be passed to the method. If there are no parameters, then
the empty parentheses must be included.

Actions
1) If the member_reference immediately contains an sql_datatype_name, then let T be that

datatype. Otherwise, let T be the datatype of the instance_expression immediately contained in
the member_reference.

2) If new is not specified, then:
a) SQL overloading rules are applied to the non-constructor methods of datatype T, the

member_name MN, and the number and datatypes of the arguments to identify a
particular method_spec MS.

b) If MS is a static_field_method_spec, then:
(1) Let SSF be the subject static field of MS.
(2) Return the value of SSF as the result of the SQLJ method call.
(3) Do not perform the remaining actions of this section.

c) Let JM be the subject Java method of MS.
3) If new is specified, then:

a) The create_type_statement for T must not specify not instantiable.

SQLJ Part 2 — SQL Types using the Java  Programming Language

Page 44

b) SQL overloading rules are applied to the constructor methods of datatype T, the
sql_datatype_name, and the number and datatypes of the arguments to identify a
particular method_spec MS.

c) Let JM be the subject Java method of MS.
d) JM must be a constructor method. That method constructs a new instance of the

specified SQLJ class in the Java VM and returns a reference JR to that new instance.
e) The Java object referenced by JR is effectively converted to an SQL representation

using the interface specified in the explicit or implicit using clause of the create type
statement for T.

4) If the value of the member_reference is null (i.e. a reference to a member of a null instance),
then the result of the invocation is null.

5) If MS specifies returns null on null input, then if the runtime value of any in or inout
argument is null, return a null value as the result of the function. In this case the following steps
of this Description do not apply to this call of the function.

6) If MS specifies called on null input, or specifies neither returns null on null input nor called
on null input, then for each parameter of JF whose Java datatype is boolean, byte, short, int,
long, float, or double, if the runtime value of the corresponding argument is an SQL null, then
an exception is raised: Java execution—invalid null.

7) The SQL object identified by the instance_expression of the member_reference and all of the
parameters of the member_reference are effectively converted to a Java representation. For the
instance_expression and all parameters whose types are SQLJ types, the conversion is
performed as specified by the Java interface specified in the create type statement that the
defined the SQLJ type.

8) Execute the Java method JM.
a) Whether this execution is performed with the user-name of the user who created the

create function statement CF, or with the user-name of the current user is
implementation defined.

b) The scope and persistence of any modifications of static variables that are made during
the execution is implementation-dependent.

c) If an SQL exception is raised during this execution, then the effect on the outermost
containing SQL statement execution is implementation-defined.
 Note: For portability, a java method executed in an SQL system should re-throw any
SQL exception that it catches.

9) If the method execution completes with an uncaught Java exception, E, then:
a) An SQL exception is raised with the SQLSTATE value specified in section 7.2,

"SQLSTATE".
b) Perform no further actions for the function call.

10) Case:
a) If MS does not specify self as result, then return the value of the method execution as

the value of the method_call.

SQL elements

Page 45

b) If MS specifies self as result, then let SI be the value of the instance_expression of the
member_reference of the method_call. Return the state of SI after the method execution
as the value of the method_call.

11) If the method_call resulted in a Java object that corresponds to an SQLJ type, then the resulting
Java object is effectively converted to an SQL representation as specified by the Java interface
specified by the explicit or implicit using clause of the create type for T.

Optional Features
1) Support of the syntax "new sql_datatype_name([parameters])" is optional. If it is not supported,

then the mechanism used to invoke a constructor is implementation-defined.

Java topics

Page 47

6. JAVA TOPICS

6.1 Deployment descriptor files

Function
Supply information for actions to be taken by the sqlj.install_jar and sqlj.remove_jar procedures.

Model
As specified in SQLJ: SQL Routines, a deployment descriptor file is a text file contained in a jar
file, which is specified with the following property in the manifest for the jar file:

Name: file_name
SQLJDeploymentDescriptor: TRUE

Properties
1) As specified in SQLJ: SQL Routines, the text contained in a deployment descriptor file must

have the following form:
descriptor_file ::=

SQLActions [] = { [“action_group” [, “action_group”]] }
action_group ::= install_actions | remove_actions
install_actions ::=

BEGIN INSTALL [command ;]…END INSTALL
remove_actions ::=

BEGIN REMOVE [command ;]…END REMOVE
command ::= sql_statement | implementor_block
sql_statement ::= --See below
implementor_block ::=

BEGIN implementor_name sql_token… END implementor_name
implementor_name ::= sql_identifier
sql_token ::= --See below

2) In addition to the sql_statements specified in SQLJ: SQL Routines, an sql_statement specified
in an install_actions must be either:
a) A create type statement that specifies external…language java. The types created by

those statements are called the deployed types of the deployment descriptor file.
b) A grant statement that specifies the usage privilege for a deployed type.
c) A create ordering statement that specifies ordering for a deployed type.

SQLJ Part 2 — SQL Types using the Java  Programming Language

Page 48

3) In addition to the sql_statements specified in SQLJ: SQL Routines, an sql_statement specified
in a remove_actions must be either:
a) A drop type statement for a deployed type.
b) A revoke statement for the usage privilege on a deployed type.

Status codes

Page 49

7. STATUS CODES

7.1 Class and subclass values for uncaught Java exceptions
When the execution of a Java method completes with an uncaught Java exception, E, then:
1) Let EM be the result of the Java method call “E.getMessage()”
2) EM is the message test associated with the SQL exception.
3) Case:

a) If the class of E is java.sql.SQLException, then let SS be the result of the Java method call
“E.getSQLState()”:
i) If the length of SS is 5 or more, and the first two characters of SS are “38”, and the

third, fourth, and fifth characters are not “000”, then let C be “38” and let SC be the
third, fourth, and fifth characters of SS.

ii) Otherwise, let C be “39” and SC be “001”.
b) If the class of E is not java.sql.SQLException, then let C be “38” and SC be “000”.

4) C and SC are the class and subclass of the SQLSTATE for the SQL exception.

SQLJ Part 2 — SQL Types using the Java  Programming Language

Page 50

7.2 SQLSTATE
The SQLSTATE class and subclass values for SQLJ: SQL Routines and SQLJ: SQL Types facilities
are as follows:

Condition Class Subcondition Subclass
Java DDL 46 Invalid URL 001
Java DDL 46 Invalid jar name 002
Java DDL 46 Invalid class deletion 003
Java DDL 46 Invalid jar name 004
Java DDL 46 Invalid replacement 005
Java DDL 46 Invalid grantee 006
Java DDL 46 Invalid signature 007
Java DDL 46 Invalid method specification 008
Java DDL 46 Invalid REVOKE 009
Java execution 46 Invalid null value 101
Java execution 46 Invalid jar name in path 102
Java execution 46 Unresolved class name 103
Java execution 46 Too many result sets 104
Uncaught Java exception 38 (no subclass) 000
User-defined (see above) 38 User-defined (see above) mmm

Table 1: SQLSTATE class and subclass values

	To Be Supplied
	To Be Supplied
	To Be Supplied
	S
	Scope
	Normative references
	Introduction
	SQLJ
	Technical components
	SQLJ: SQL Routines using the Java™ Programming Language
	SQLJ: SQL Types using the Java™ Programming Language

	Conformance
	Organization of the document

	Tutorial
	Overview
	Example Java classes
	Using Java classes in SQL: introduction
	Installing Address and Address2Line in an SQL system
	CREATE TYPE for Address and Address2Line
	Multiple SQL types for a single Java class
	“Collapsing” subclasses
	GRANT and REVOKE statements for datatypes
	Deployment descriptors for classes
	Using Java classes as datatypes
	SELECT, INSERT, and UPDATE
	Referencing Java fields and methods in SQL
	Extended visibility rules
	Logical representation of Java instances in SQL
	Converting objects between SQL and Java
	USING SERIALIZABLE
	USING SQLDATA
	Developing for Portability
	Static methods
	Static fields
	Instance-update methods
	Subtypes in SQLJ data
	References to fields and methods of null instances
	Ordering of SQLJ data

	SQL elements
	CREATE TYPE statement
	CREATE ORDERING statement
	DROP TYPE statement
	SQLJ member references
	SQLJ method call

	Java topics
	Deployment descriptor files

	Status codes
	Class and subclass values for uncaught Java exceptions
	SQLSTATE

