
Date: 2000-02-29

ISO/IEC FDIS 13249-2:2000 (E)

ISO/IEC JTC 1/SC 32/WG 4

Secretariat: U.S.A.

Information technology — Database languages —

SQL Multimedia and Application Packages —

Part 2: Full-Text

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved iii

Contents Page

FOREWORD ix

INTRODUCTION x

1 SCOPE 1

2 NORMATIVE REFERENCES 3

2.1 International standards 3

2.2 Publicly available standards 3

3 DEFINITIONS, NOTATIONS, AND CONVENTIONS 5

3.1 Definitions 5
3.1.1 Definitions provided in Part 1 5
3.1.2 Definitions provided in Part 2 5
3.1.3 Definitions taken from ISO/IEC 9075 5
3.1.4 Definitions taken from ANSI/NISO Z39.19 6

3.2 Notations 6

3.3 Conventions 6

4 CONCEPTS 7

4.1 Text model 7

4.2 Text identification facilities 7
4.2.1 Single word patterns (patterns of the form <word>) 8
4.2.2 Single phrase patterns (patterns of the form <phrase>) 8
4.2.3 Patterns representing sets of single words 9
4.2.4 Patterns formed by sets of single phrases 11
4.2.5 Patterns specifying context conditions 13
4.2.6 Patterns involving Boolean operators 14
4.2.7 Identification of FullText values which are pertinent to a given text 15

4.3 Text ranking facilities 15

4.4 Language aspects 16
4.4.1 Multilingual texts and patterns 16
4.4.2 Treatment of stop words 17

4.5 Word normalization 17

4.6 Types and routines provided by this part of ISO/IEC 13249 18
4.6.1 Types and routines intended for public use 18

ISO/IEC FDIS 13249-2:2000 (E)

iv © ISO/IEC 2000 - All rights reserved

4.6.2 Types and routines for definition 18
4.6.3 Technique for defining the semantics of Category 1 Contains methods 18

5 FULL-TEXT TYPES 21

5.1 FullText Type and Routines 21
5.1.1 FullText Type 21
5.1.2 Contains Methods 24
5.1.3 Rank Methods 26
5.1.4 Tokenize Method 28
5.1.5 TokenizePosition Method 29
5.1.6 Segmentize Method 31
5.1.7 TokenizeAndStem Method 32
5.1.8 TokenizePositionAndStem Method 33
5.1.9 FullText Methods 35
5.1.10 FullText_to_Character Function 36
5.1.11 StrctPattern_to_FT_Pattern Function 37

5.2 FT_TokenPosition Type and Routines 38
5.2.1 FT_TokenPosition Type 38

5.3 FT_Pattern Type and Routines 39
5.3.1 FT_Pattern Type 39
5.3.2 FT_Pattern Key Words 55

6 STRUCTURED SEARCH PATTERN TYPES 57

6.1 FT_Any Type and Routines 58
6.1.1 FT_Any Type 58
6.1.2 Contains Method 59
6.1.3 FT_Any Method 61

6.2 FT_Primary Type and Routines 62
6.2.1 FT_Primary Type 62
6.2.2 Contains Method 63
6.2.3 StrctPattern_to_FT_Pattern Method 64

6.3 FT_WordOrPhrase Type and Routines 65
6.3.1 FT_WordOrPhrase Type 65
6.3.2 Contains Method 66
6.3.3 StrctPattern_to_FT_Pattern Method 67
6.3.4 getWordArray Method 68

6.4 FT_TextLiteral Type and Routines 69
6.4.1 FT_TextLiteral Type 69
6.4.2 Contains Method 71
6.4.3 StrctPattern_to_FT_Pattern Method 73
6.4.4 matches Method 74
6.4.5 Tokenize Method 75
6.4.6 getWordArray Method 76
6.4.7 FT_TextLiteral Methods 77
6.4.8 EliminateDQS Function 78
6.4.9 InsertDQS Function 79

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved v

6.5 FT_StemmedWord Type and Routines 80
6.5.1 FT_StemmedWord Type 80
6.5.2 Contains Method 82
6.5.3 StrctPattern_to_FT_Pattern Method 84
6.5.4 TokenizeAndStem Method 85
6.5.5 FT_StemmedWord Methods 86

6.6 FT_Phrase Type and Routines 87
6.6.1 FT_Phrase Type 87
6.6.2 Contains Method 89
6.6.3 StrctPattern_to_FT_Pattern Method 93
6.6.4 getWordArray Method 94
6.6.5 TokenizePosition Method 95
6.6.6 FT_Phrase Methods 96
6.6.7 matches Function 98
6.6.8 prune Function 100

6.7 FT_StemmedPhrase Type and Routines 101
6.7.1 FT_StemmedPhrase Type 101
6.7.2 Contains Method 103
6.7.3 StrctPattern_to_FT_Pattern Method 107
6.7.4 TokenizePositionAndStem Method 109
6.7.5 FT_StemmedPhrase Methods 110

6.8 FT_Proxi Type and Routines 112
6.8.1 FT_Proxi Type 112
6.8.2 Contains Method 113
6.8.3 StrctPattern_to_FT_Pattern Method 116
6.8.4 FT_Proxi Method 117

6.9 FT_Soundex Type and Routines 118
6.9.1 FT_Soundex Type 118
6.9.2 Contains Method 119
6.9.3 StrctPattern_to_FT_Pattern Method 120
6.9.4 FT_Soundex Method 121
6.9.5 GetSoundsSimilar Function 122

6.10 FT_BroaderTerm Type and Routines 123
6.10.1 FT_BroaderTerm Type 123
6.10.2 Contains Method 125
6.10.3 StrctPattern_to_FT_Pattern Method 126
6.10.4 FT_BroaderTerm Method 127
6.10.5 GetBroaderTerms Function 128

6.11 FT_NarrowerTerm Type and Routines 131
6.11.1 FT_NarrowerTerm Type 131
6.11.2 Contains Method 133
6.11.3 StrctPattern_to_FT_Pattern Method 134
6.11.4 FT_NarrowerTerm Method 135
6.11.5 GetNarrowerTerms Function 136

6.12 FT_Synonym Type and Routines 139
6.12.1 FT_Synonym Type 139
6.12.2 Contains Method 141
6.12.3 StrctPattern_to_FT_Pattern Method 142

ISO/IEC FDIS 13249-2:2000 (E)

vi © ISO/IEC 2000 - All rights reserved

6.12.4 FT_Synonym Method 143
6.12.5 GetSynonymTerms Function 144

6.13 FT_PreferredTerm Type and Routines 146
6.13.1 FT_PreferredTerm Type 146
6.13.2 Contains Method 148
6.13.3 StrctPattern_to_FT_Pattern Method 149
6.13.4 FT_PreferredTerm Method 150
6.13.5 GetPreferredTerms Function 151

6.14 FT_RelatedTerm Type and Routines 153
6.14.1 FT_RelatedTerm Type 153
6.14.2 Contains Method 154
6.14.3 StrctPattern_to_FT_Pattern Method 155
6.14.4 FT_RelatedTerm Method 156
6.14.5 GetRelatedTerms Function 157

6.15 FT_TopTerm Type and Routines 159
6.15.1 FT_TopTerm Type 159
6.15.2 Contains Method 160
6.15.3 StrctPattern_to_FT_Pattern Method 161
6.15.4 FT_TopTerm Method 162
6.15.5 GetTopTerms Function 163

6.16 FT_IsAbout Type and Routines 165
6.16.1 FT_IsAbout Type 165
6.16.2 Contains Method 166
6.16.3 StrctPattern_to_FT_Pattern Method 167
6.16.4 FT_IsAbout Method 168

6.17 FT_Context Type and Routines 169
6.17.1 FT_Context Type 169
6.17.2 Contains Method 170
6.17.3 StrctPattern_to_FT_Pattern Method 173
6.17.4 FT_Context Method 175

6.18 FT_ParExpr Type and Routines 176
6.18.1 FT_ParExpr Type 176
6.18.2 Contains Method 177
6.18.3 StrctPattern_to_FT_Pattern Method 178
6.18.4 FT_ParExpr Method 179

6.19 FT_Term Type and Routines 180
6.19.1 FT_Term Type 180
6.19.2 Contains Method 181
6.19.3 StrctPattern_to_FT_Pattern Method 182
6.19.4 FT_Term Method 183

6.20 FT_Expr Type and Routines 184
6.20.1 FT_Expr Type 184
6.20.2 Contains Method 185
6.20.3 StrctPattern_to_FT_Pattern Method 186
6.20.4 FT_Expr Method 187

6.21 FT_PhraseList Type and Routines 188

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved vii

6.21.1 FT_PhraseList Type 188
6.21.2 Contains Method 189
6.21.3 StrctPattern_to_FT_Pattern Method 191
6.21.4 FT_PhraseList Method 192

7 FULLTEXT_TOKEN TYPE 193

7.1 FullText_Token Type 193

8 SQL/MM FULL-TEXT THESAURUS SCHEMA 195

8.1 Introduction 195

8.2 FT_THESAURUS Schema 196

8.3 TERM_DICTIONARY base table 197

8.4 TERM_HIERARCHY base table 198

8.5 TERM_SYNONYM base table 199

8.6 TERM_RELATED base table 200

9 SQL/MM FULL-TEXT INFORMATION SCHEMA 201

9.1 Introduction 201

9.2 FT_FEATURES view 202

9.3 FT_Schemata view 202

10 SQL/MM FULL-TEXT DEFINITION SCHEMA 203

10.1 Introduction 203

10.2 FT_FEATURES base table 204

10.3 FT_SCHEMATA base table 207

11 STATUS CODES 209

12 CONFORMANCE 211

12.1 Requirements for conformance 211

12.2 Claims of conformance 211

ANNEX A 213

ISO/IEC FDIS 13249-2:2000 (E)

viii © ISO/IEC 2000 - All rights reserved

ANNEX B 219

INDEX 220

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved ix

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members
of ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take
part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC
JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national
bodies for voting. Publication as an International Standard requires approval by at least 75 % of the
national bodies casting a vote.

Attention is drawn to the possibility that some elements of this part of ISO/IEC 13249 may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

International Standard ISO/IEC 13249-2 was prepared by Joint Technical Committee ISO/IEC JTC 1,
Information Technology, Subcommittee SC32, Data Management and interchange .

ISO/IEC 13249 consists of the following parts, under the general title Information technology — Database
languages — SQL Multimedia and Application Packages:

- Part 1: Framework

- Part 2: Full-Text

- Part 3: Spatial

- Part 5: Still Image

Annexes A and B of this part of ISO/IEC 13249 are for information only.

ISO/IEC FDIS 13249-2:2000 (E)

x © ISO/IEC 2000 - All rights reserved

Introduction

The purpose of this International Standard is to define multimedia and application specific types and their
associated routines using the user-defined features in ISO/IEC 9075.

This document is based on the content of ISO/IEC International Standard Database Language (SQL).

The organization of this part of ISO/IEC 13249 is as follows:

1) Clause 1, "Scope", specifies the scope of this part of ISO/IEC 13249.

2) Clause 2, "Normative references", identifies additional standards that, through reference in this part of
ISO/IEC 13249, constitute provisions of this part of ISO/IEC 13249.

3) Clause 3, "Definitions, notations, and conventions", defines the notations and conventions used in this
part of ISO/IEC 13249.

4) Clause 4, "Concepts", presents concepts used in the definition of this part of ISO/IEC 13249.

5) Clause 5, "Full-Text Types", defines the full-text user-defined types and associated routines.

6) Clause 6, "Structured Search Pattern Types", defines a family of user-defined types to provide for the
construction of structured search patterns.

7) Clause 7, "FullText_Token Type and Routines", defines the user-defined FullText_Token type.

8) Clause 8, "SQL/MM Full-Text Thesaurus Schema", defines the SQL/MM Full-Text thesaurus schema
used to define the thesaurus related routines.

9) Clause 9, "SQL/MM Full-Text Information Schema", defines the SQL/MM Full-Text Information
Schema.

10) Clause 10, "SQL/MM Full-Text Definition Schema", defines the SQL/MM Full-Text Definition
Schema.

11) Clause 11, "Status Codes", defines the SQLSTATE codes used in this part of ISO/IEC 13249.

12) Clause 12, "Conformance", defines the criteria for conformance to this part of ISO/IEC 13249.

13) Annex A, "Implementation-defined elements", is an informative Annex. It lists those features for
which the body of this part of ISO/IEC 13249 states that the syntax or meaning or effect on the
database is partly or wholly implementation-defined, and describes the defining information that an
implementor shall provide in each case.

14) Annex B, "Implementation-dependent elements", is an informative Annex. It list those features which
the body of this part of ISO/IEC 13249 states explicitly that the syntax or meaning or effect on the
database is implementation-dependent.

In the text of this part of ISO/IEC 13249, Clauses begin a new odd-numbered page, and in Clause 5, "Full-
Text Types", through Clause 12, "Conformance", Subclauses begin a new page. Any resulting blank space
is not significant.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Scope 1

Information technology — Database languages —
SQL Multimedia and Application Packages —
Part 2: Full-Text

1 Scope

This part of ISO SQL/MM:

a) introduces the Full-Text part of ISO/IEC 13249,

b) gives the references necessary for this part of ISO/IEC 13249,

c) defines notations and conventions specific to this part of ISO/IEC 13249,

d) defines concepts specific to this part of ISO/IEC 13249,

e) defines the full-text user-defined types and their associated routines.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Normative references 3

2 Normative references

The following standards and publicly available specifications contain provisions that, through reference in
this text, constitute provisions of this part of ISO/IEC 13249. For dated references, subsequent amendments
to, or revisions of, any of these publications do not apply. However, parties to agreements based on this
part of ISO/IEC 13249 are encouraged to investigate the possibility of applying the most recent editions of
the normative documents indicated below. For undated references, the latest edition of the normative
document referred to applies. Members of IEC and ISO maintain registers of currently valid International
Standards.

2.1 International standards

ISO/IEC 9075-1:1999, Information technology — Database languages — SQL — Part 1: Framework
(SQL/Framework).

ISO/IEC 9075-2:1999, Information technology — Database languages — SQL — Part 2: Foundation
(SQL/Foundation).

ISO/IEC 9075-4:1999, Information technology — Database languages — SQL — Part 4: Persistent Stored
Modules (SQL/PSM).

ISO/IEC 13249-1:1999, Information technology — Database languages — SQL Multimedia and
Application Packages — Part 1: Framework.

2.2 Publicly available standards

ANSI/NISO Z39.19-1993, American National Standard for Information Systems/National Information
Standards Organization, Guidelines for the Construction, Format, and Management of Monolingual
Thesauri.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Definitions, notations, and convetions 5

3 Definitions, notations, and conventions

3.1 Definitions

For the purpose of this part of ISO/IEC 13249, the following definitions apply.

3.1.1 Definitions provided in Part 1

This part of ISO/IEC 13249 makes use of all terms defined ISO/IEC 13249-1.

3.1.2 Definitions provided in Part 2

3.1.2.1
broader term
A superordinate term in a hierarchical relation (e.g. a broader term for "SQL" is "Database Language").

3.1.2.2
coordinate relation
A formal relation juxtaposing terms or classes of terms.

3.1.2.3
hierarchical relation
A formal relation between two terms or classes in which one term is subordinate to the other term.

3.1.2.4
narrower term
A subordinate term in a hierarchical relation (e.g. a narrower term for "SQL" is "SQL/MM").

3.1.2.5
preferred term
A term chosen as a descriptor from a set of equivalent terms (e.g. a preferred term for "Structured Query
Language" is "SQL").

3.1.2.6
related term
A term connected to another term by a coordinate relation (e.g. a related term for "SQL" is "DB2").

3.1.2.7
soundex term
A term having a different form though its pronunciation is similar to another term. (e.g. a soundex term for
"there" is "their").

3.1.2.8
synonym term
A term having a different form but a similar meaning to another term (e.g. a synonym term for "SQL/MM"
is "SQL Multimedia and Application Packages").

3.1.2.9
top term
The broadest term in a hierarchical relation. If it is defined that "Computer Language" is a broader term of
"Database Language, then the top term of "SQL" is "Computer Language".

3.1.3 Definitions taken from ISO/IEC 9075

ISO/IEC FDIS 13249-2:2000 (E)

6 Definitions, notations, and conventions © ISO/IEC 2000 - All rights reserved

This part of ISO/IEC 13249 makes use of the following terms defined in ISO/IEC 9075:

3.1.3.1
contain

3.1.3.2
immediately contain

3.1.3.3
simply contain

3.1.3.4
SQL-invoked routine

3.1.4 Definitions taken from ANSI/NISO Z39.19

This part of ISO/IEC 13249 makes use of the following terms defined in ANSI/NISO Z39.19:

3.1.4.1
thesaurus

3.2 Notations

The notations used in this part of ISO/IEC 13249 are defined in ISO/IEC 13249-1.

3.3 Conventions

The conventions used in this part of ISO/IEC 13249 are defined in ISO/IEC 13249-1.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Concepts 7

4 Concepts

4.1 Text model

Text as modeled by the types and routines of this part of ISO/IEC 13249 is any sequence of characters
which represents one of the following:

• a single word,

• a sequence of words,

• a single sentence,

• a sequence of sentences,

• a single paragraph,

• a sequence of paragraphs.

A sentence consists of one or more words. A paragraph consists of one or more sentences.

When modeled as a value of the FullText type of this part of ISO/IEC 13249 a text value is associated with
a specific language. The recognition of word, sentence and paragraph boundaries is largely governed by
language specific rules, conventions, and heuristics. It is implementation-defined which of these rules,
conventions, and heuristics are applied by a given implementation.

4.2 Text identification facilities

For identifying specific FullText values in collections of FullText values this part of ISO/IEC 13249
provides facilities for testing whether a text represented by a given FullText value matches a certain pattern
(i.e. whether that pattern occurs in that text).

Like text, patterns are sequences of characters, representing one of the following:

• a single word (patterns of the form <word>),

• a set of words (patterns of the form <word> with wild card characters, patterns of the form <token list>,
patterns of the form <stemmed word>, patterns of the form <expansion function invocation>, or certain
patterns of the form <text literal list>),

• a phrase, i.e. a representation of a sequence of words (patterns of the form <phrase>),

• a set of phrases (patterns of the form <phrase> with wild card characters, patterns of the form <stemmed
phrase>, patterns of the form <expansion function invocation>, or certain patterns of the form <text
literal list>),

• a set of words and/or phrases (patterns of the form <text literal list> or patterns of the form <expansion
function invocation>),

• sets of two or more patterns, each either consisting of a single word or phrase, or a set composed of
context patterns (patterns of the form <Proximity expansion>, or patterns of the form <context
condition>),

• patterns formed by patterns and Boolean operators for negation, conjunction, or disjunction (patterns of
the form <search expression> | <search term>, patterns of the form <search term> & <search factor>,
or patterns of the form NOT <search primary>).

Each word pattern and single phrase pattern is either explicitly or implicitly associated with a specific
language.

ISO/IEC FDIS 13249-2:2000 (E)

8 Concepts © ISO/IEC 2000 - All rights reserved

To illustrate the effects of patterns the following text samples represented by values of the FullText type (to
be referred to as firstSample, secondSample, and thirdSample) will be used:

firstSample:

As assumed by this International Standard, every text value is
associated with a specific language. The recognition of word,
sentence and paragraph boundaries is largely governed by language
specific rules, conventions, and heuristics; it is implementation-
defined which of these rules, conventions, and heuristics are applied
by a given implementation.

secondSample:

The test
firstSample.Contains(’ "International" ’) = 1

succeeds since the word International is contained in this text
sample.

thirdSample:

die ≅ Würfel

4.2.1 Single word patterns (patterns of the form <word>)

Single word patterns are the most basic pattern and they consist of a sequence of characters which are for a
given language admissible in words. That sequence of characters is decorated by a leading and trailing
double quote character, as in the following example:

' "International" '

NOTE 1 - The blank characters outside of double quote characters in the above example are not significant.
They have been added simply to ensure readability of the example text.

NOTE 2 - A list of <key word>s that can be used in patterns is given in Subclause 5.3.2, "FT_Pattern Key
Words". Although these <key word>s are shown in upper case in subsequent examples, methods that
accept arguments containing these <key word>s are invariant to the case of these <key word>s.

A text value matches a word pattern if it contains at least one word which matches that pattern. Thus, the
test:

firstSample.Contains(' "International" ') = 1

succeeds since the word International is contained in firstSample.

4.2.2 Single phrase patterns (patterns of the form <phrase>)

Single phrase patterns represent a sequence of words. Each such word is represented in the same way as the
word in a single word pattern. Where needed by a given language an implementation-defined word
separator is used. In the following example the word separator is a blank character. Like single word
patterns, single phrase patterns are decorated by a leading and trailing double quote character, as in the
following example:

' "International Standard" '

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Concepts 9

A text value matches a single phrase pattern if it contains at least one sequence of words, such that, for
every word in that sequence, the i-th word of the sequence matches the i-th word of the phrase pattern.
Thus, the test:

firstSample.Contains(’ "International Standard" ’) = 1

succeeds since the word sequence International Standard is contained in firstSample.

4.2.3 Patterns representing sets of single words

Patterns representing a set of words can be specified in one of the following ways:

4.2.3.1 Patterns of the form <word> with wild card characters

By using the wild card characters underscore (_) or percent (%) in any character position of a single word
pattern a possibly unlimited number of single word patterns are effectively specified. For instance, in the
following example:

’ "Standard_" ’

the underscore stands for any single character. Accordingly this pattern represents as many words (not all
of them necessarily meaningful) as there are characters. When the percent wild card is used, the number of
virtually represented single word patterns is infinite since this wild card character represents any sequence
of characters (including the empty one). A text value matches such a pattern if it contains at least one word
which matches one word out of the set of word patterns effectively represented by that pattern. Thus the
test:

firstSample.Contains(’ "Standard%" ’) = 1

succeeds since the pattern matches the word Standard (note that the word Standards would also be
matched). The test:

firstSample.Contains(’ "Standard_" ’) = 1

fails since there is no word in firstSample which starts with Standard and ends with some other character
(such as "s").

4.2.3.2 Expansion facility patterns

Expansion facility patterns enable one to effectively generate a set composed of single word (and/or single
phrase) patterns from a starting term which represents a single word such as database (note that a single
phrase is also admissible as the starting term). Depending on the specific generation being specified the
generated terms (i.e. single word or single phrase patterns) may be:

• terms which sound similar to the generating term,

• terms which are broader terms for the generating term,

• terms which are narrower terms for the generating term,

• terms which are synonyms of the generating term,

• terms which are preferred terms for the generating term,

• terms which are related to the generating term,

• terms which are top terms of the generating term.

ISO/IEC FDIS 13249-2:2000 (E)

10 Concepts © ISO/IEC 2000 - All rights reserved

A text value matches such a pattern if it contains at least one word which matches the single word patterns
effectively represented by that pattern. Thus if the thesaurus computer science has been set up in such a
way that list and sequence are synonyms to each other the test:

firstSample.Contains(’ THESAURUS "computer science"
 EXPAND SYNONYM TERM OF "list" ’) = 1

(which uses a synonym expansion pattern) will succeed.

4.2.3.3 Enumeration of single word patterns (<token list> and certain <text literal list> patterns)

An enumeration of single word patterns consists of a comma separated list of single word patterns, as in the
following example:

’ ("Standard", "International", "method") ’

Any of the single word patterns may contain wild card characters, as in the following example:

’ ("Standard", "International_", "method") ’

When wild card characters are used the number of words effectively represented by a pattern is larger than
the number of its constituent single word patterns.

A text value matches such a <token list> pattern if it matches at least one of its constituent patterns. <token
list> patterns can only be used as constituent patterns of <Proximity expansion> patterns.

4.2.3.4 Patterns representing sets of words with a common base reduced form (patterns of the form
<stemmed word>)

Patterns of the form [STEMMED] FORM OF <word> are effectively treated as a set of <word> patterns,
such that all elements of that set have the same base reduced form. For example:

STEMMED FORM OF ’ "mice" ’

will be treated as if

’ ("mouse" , "mice" ’)

had been specified.

Therefore a text value matches a <stemmed word> pattern if it matches the equivalent <token list> pattern.
A text value matches a <stemmed word> pattern if it contains at least one word which when replaced by its
base reduced form matches the base reduced form word pattern represented by that pattern. Thus, the test:

firstSample.Contains(’STEMMED FORM OF "Standards" ’) = 1

succeeds since the base reduced form of Standards is Standard which in turn is contained in firstSample.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Concepts 11

4.2.4 Patterns formed by sets of single phrases

Patterns representing a set of phrases can be specified in one of the following ways:

4.2.4.1 Patterns of the form <phrase> with wild card characters

Within single phrase patterns wild card characters may be used as follows:

• within every constituent word representation any wild card character may be used as in the following
example:

’ "International Standard%" ’

Effectively a multitude of single phrase patterns is generated this way such that every possible
combination of generated word representations and word representations without wild card characters
(taking the proper word positions into account) are reflected by one of the resulting single phrase
patterns.

• instead of a word representation a single percent (%) wild card character may be used as in the
following example:

’ "this % Standard" ’

Used this way the wild card character represents an arbitrary optional word. Thus the above pattern
effectively represents a two word phrase, i.e.:

’ "this Standard" ’

and an infinite number of three word phrases each having this and Standard as its first and last word,
respectively.

The two styles of using wild card characters can be combined.

A text value matches a single phrase pattern with wild card characters if it matches at least one of the
patterns effectively generated from that pattern. Thus the test:

firstSample.Contains(’ "this % Standard%" ’) = 1

succeeds since the pattern represents (among others) the word sequence this International Standard which
is contained in firstSample.

4.2.4.2 Expansion facility patterns

Expansion facility patterns enable one to effectively generate a set composed of single phrase (and/or single
word) patterns given a starting term which represents a phrase such as data base (note that a single word is
also admissible as the starting term). Depending on the specific generation being specified the generated
terms (i.e. single word or single phrase patterns) may be:

• terms which sound similar to the generating term,

• terms which are broader terms for the generating term,

• terms which are narrower terms for the generating term,

• terms which are synonyms of the generating term,

• terms which are preferred terms for the generating term,

ISO/IEC FDIS 13249-2:2000 (E)

12 Concepts © ISO/IEC 2000 - All rights reserved

• terms which are related to the generating term,

• terms which are top terms of the generating term.

A text value matches such a pattern if it contains at least one phrase which matches one of the single phrase
patterns effectively represented by that pattern. Thus, if the thesaurus computer science has been set up in
such a way that rule of thumb and heuristics are synonyms to each other then the test:

firstSample.Contains(’ THESAURUS "computer science"
 EXPAND SYNONYM TERM OF "rule of thumb" ’) = 1

(which uses a synonym expansion pattern) will succeed.

4.2.4.3 Enumeration of single phrase patterns (certain <text literal list> patterns)

An enumeration of single phrase patterns consists of a comma separated list of single phrase patterns as in
the following example:

’ ("this % Standard", "International Standards") ’

If one of the constituent patterns contains wild card symbols then the number of phrase patterns effectively
represented by this pattern is larger than the number of its constituent single phrase patterns.

A text value matches such a <text literal list> pattern if it matches at least one of its constituent patterns.
<text literal list> patterns can only be used as constituent patterns of <context condition> patterns.

Note that a <text literal list> pattern may contain both single word patterns and single phrase patterns.

4.2.4.4 Patterns representing phrases with common base reduced forms (patterns of the form
<stemmed phrase>)

Patterns of the form [STEMMED] FORM OF <phrase> are effectively treated as a set SPP of <phrase>
patterns, which is constructed as follows:

Let N be the number of <phrase part representation>s PPRi simply contained in <stemmed phrase>. Let Ni
be 1 (one) if PPRi represents an optional word. Otherwise, let Ni be the number of <phrasepart
representation>s WPij that share the base reduced form of PPRi. Let SPP be such that SPP contains N1 *
... * NN <phrase> patterns.

For a given <phrasepart representation> i there are only occurrences of WPij and every WPij occurs in that
position. For example,

’ STEMMED FORM OF GERMAN "Internationale Standards" ’

is treated as

’ (GERMAN "International Standard",
 GERMAN "Internationaler Standard",
 GERMAN "Internationales Standard",
 GERMAN "Internationalem Standard",
 GERMAN "Internationale Standard",
 GERMAN "Internationalen Standard",
 ...) ’

Therefore a text matches a <stemmed phrase> pattern if it matches one of the <phrase> patterns of SPP.
This condition can be rephrased as: A text value matches a <stemmed phrase> pattern if it contains at least

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Concepts 13

one phrase which when replacing each contained word by its base reduced form matches the transformed
phrase pattern that is obtained from the <stemmed phrase> by replacing each contained <phrasepart
representation> by one of its base reduced forms. Thus, the test:

firstSample.Contains(’ STEMMED FORM OF GERMAN
 "Internationale Standards" ’) = 1

succeeds since the phrase International Standards is contained in firstSample.

4.2.5 Patterns specifying context conditions

Patterns for context conditions specify first a set of two or more subpatterns each effectively specifying a set
of single word and/or single phrase patterns, and second a window inside of which all subpatterns must be
matched.

4.2.5.1 <Proximity expansion> patterns

A <Proximity expansion> pattern is characterized by:

1. a first and second pattern each representing either a single word pattern or a set of single word patterns,
2. a window width which is specified by an integral number of structural units; predefined units are

characters, words, sentences, and paragraphs.
3. an indication whether the matches are required to occur in order or not.

For reference purposes these constituents are marked in the example below:

’ ("Standards", "International") -- first pattern
 NEAR "language" -- second pattern
 WITHIN 0 -- number of units
 SENTENCES -- kind of unit
 IN ORDER -- matches to occur in order
)’

A text value matches a <Proximity expansion> pattern if all the conditions below are met:

1. The text value matches the first pattern.

2. Let SubS be a substring of the text value such that:
• it starts with the first specified unit (character, word, etc.) that is or contains the first character of

the portion that matches the first pattern,
• its length is 1 (one) plus the number of units as specified in the <Proximity expansion> pattern.

3. SubS matches the second pattern.

4. If order has been specified then the portion matching the second pattern must not precede the portion
matching the first pattern.

Thus the test:

firstSample.Contains(’ ("Standards", "International")
 NEAR "language"
 WITHIN 0 SENTENCES
 IN ORDER ’) = 1

ISO/IEC FDIS 13249-2:2000 (E)

14 Concepts © ISO/IEC 2000 - All rights reserved

succeeds since the first sentence of firstSample contains the words International and language such that the
first one occurs prior to the second one. Note that the text matches the pattern although it does not contain
the word Standards.

4.2.5.2 <context condition> patterns

A <context condition> pattern is characterized by:

1. two or more patterns Si each representing either a single word pattern, a set of single word patterns, a

single phrase pattern, a set of single phrase patterns, or a set the elements which are single word and/or
single phrase patterns.

2. a specification of a window which may be 1 (one) SENTENCE or 1 (one) PARAGRAPH wide.

Using this notation the example pattern of the previous Subclause is respecified as:

 ’ ("Standards", "International") -- first pattern
 IN SAME SENTENCE AS -- window specification
 "language" ’ -- second pattern

<context condition> and <Proximity expansion> patterns complement each other. The <Proximity
expansion> pattern is more flexible with respect to the window and order specifications but allows for two
subpatterns only. In contrast, the <context condition> pattern is more restrictive with respect to the
windows that can be specified but allows for more than two patterns to be matched within a given window.

A text value matches such a <context condition> pattern if it contains at least one sentence (paragraph)
which matches every pattern Si.

4.2.6 Patterns involving Boolean operators

4.2.6.1 Patterns involving OR operators

Subpatterns of any form can be combined into new patterns by forming an "|" separated list of those
subpatterns as in the following example:

’ "Standard" | "International" | "language" ’

A text value matches such a pattern if it matches at least one of its subpatterns. Thus the test:

 secondSample.Contains(’ "Standard" | "International" | "language" ’)=1

succeeds since secondSample contains the word International.

4.2.6.2 Patterns involving AND operators

Subpatterns of the form <search factor> can be combined into new patterns by forming an "&" separated
list of those subpatterns as in the following example:

’ "Standard" & "International" & "language" ’

A text value matches such a pattern if it matches all of its subpatterns at least once. Thus the test:

 firstSample.Contains(’ "Standard" & "International" & "language" ’)=1

succeeds since firstSample contains each of the words Standard, International, and language.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Concepts 15

4.2.6.3 Patterns involving negation

Patterns of the form <search primary> can be negated by prefixing them with NOT as in the following
example:

’NOT "International Standard" ’

A text value matches such a pattern if the pattern prefixed by NOT does not match that text. Thus the test:

secondSample.Contains(’NOT "International Standard" ’) = 1

succeeds since the text secondSample does not contain the phrase International Standard.

4.2.6.4 Precedence of Boolean operators

Boolean operators take precedence over each other in the following order:

• NOT

• &

• |

Thus the test:

secondSample.Contains(’ NOT "International Standard" & "test" ’) = 1

succeeds since the text secondSample contains the word test but not the phrase International Standard.

The precedence can be overridden by putting parenthesis around subpatterns. For example if the previous
test is changed by putting the pattern following NOT into parenthesis:

secondSample.Contains(’ NOT ("International Standard" & "test") ’)=1

then this test will succeed since the text secondSample does not simultaneously contain both the word test
and the phrase International Standard.

4.2.7 Identification of FullText values which are pertinent to a given text

Patterns of the form IS ABOUT <phrase> allow for the identification of FullText values which in an
implementation-defined way "is about" or is pertinent to <phrase>. Depending on the criteria an
implementation applies when evaluating a pattern, the test

firstSample.Contains(’ IS ABOUT "International Standard on text
 search facilities" ’) = 1

will succeed or not.

4.3 Text ranking facilities

When a text value matches a certain pattern there is no indication on how well the text is characterized by
that pattern. For instance a text matches the pattern:

’ ("Standard", "International", "method") ’

ISO/IEC FDIS 13249-2:2000 (E)

16 Concepts © ISO/IEC 2000 - All rights reserved

if at least one of the pattern’s words (e.g. Standard) occurs at least once in that text. The method Contains
used for performing the test gives no indication about the number of matching words or about the number of
occurrences of these words in the text value.

For that end this part of ISO/IEC 13249 provides a Rank method for the FullText type. This method takes
any pattern that can also be used for text identification as in the following example:

firstSample.Rank(’ ("Standard", "International", "method") ’)

The Rank method returns a relevance measure as a non-negative floating point number where larger
numbers mean a better match between the text value (firstSample in the above example) and the given
pattern. The exact relationship between a text value and a pattern and the associated rank value is
implementation-defined.

4.4 Language aspects

All values of the FullText type are associated with a specific language. The same effectively holds for
patterns of the forms:

• <word>,

• <stemmed word>,

• <phrase>,

• <stemmed phrase>.

Language information is required for:

• recognition of word, sentence, and paragraph boundaries,

• expansion of words into sets of patterns composed of similarly sounding words,

• recognition of matches using base reduced forms,

• treatment of stop words,

• word normalization.

4.4.1 Multilingual texts and patterns

Patterns may be composed of subpatterns that are associated with different languages as in the following
example:

' ENGLISH "die" & GERMAN "Würfel" '

Multilingual patterns can be very useful. In a setting with German as the default language the word die
would be ignored as a stop word while it is not when marked as an English word.

In contrast text values of the FullText type are associated with a single language only. However, a
conforming implementation is not required to enforce that the text contents of a FullText value is strictly
monolingual. Instead any language specific processing of this text is performed according to the rules,
conventions, and heuristics (which in turn are implementation-defined) of the language associated with the
given FullText value.

When matching text values against patterns differing text and pattern languages may be appropriate as in the
test:

thirdSample.Contains(' ENGLISH "die" & GERMAN "Würfel" ') = 1

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Concepts 17

This test will succeed if the language of thirdSample happens to be English and Würfel is accepted as a
word according to structural criteria. The test will not succeed if the language is German and die is
recognized as a stop word. Note that die (i.e. the feminine form of the) is most likely to be one of the
implementation-defined stop words.

4.4.2 Treatment of stop words

Stop words are words that occur in text values at a probability which makes these words useless for text
identification purposes. It primarily depends on the language whether some word (e.g. die) is to be treated
as a stop word or not. Other factors such as the universe of discourse may also be taken into account.

The set of stop words for a given language is implementation-defined.

Stop words in patterns affect the identification of text values according to the following rules:

• A pattern of the form <word> or <stemmed word> must not represent a stop word unless it is part of a
pattern of the form <phrase> or the form <token list>.

• If a pattern of the form <token list> or <text literal list> simply contains a subpattern of the form
<word> or <stemmed word> that represents a stop word then it is implementation-defined whether the
stop word is ignored or causes an error.

• It is implementation-defined whether the distance separating two words W1 and W2 in a pattern of the
form <phase> or <stemmed phrase> is exactly or at most one more than the number of consecutive stop
words between W1 and W2. In the latter case, the stop words effectively behave like optional words.

• Let P be a pattern of the form <phrase > or <stemmed phrase> simply containing n <phrasepart
representation>s some of which represent stop words. If stops words do not behave like optional
words, then a text value text matches P if text contains a contiguous sequence of n words starting at
some position (j+1) such that every (j+i)-th word of text is a stop word if the i-th word of P is a stop
word, or otherwise is matched by the i-th word of P.

Thus the test:

firstSample.Contains(’ ("sentence or paragraph") ’) = 1

succeeds since firstSample contains the phrase sentence and paragraph.

It is implementation-defined whether phrases are admissible that have a stop word as their first or last
word or that consist of stop words only. If the latter case is supported then the test:

firstSample.Contains(’ ("this and that") ’) = 1

would succeed if firstSample contained three consecutive stop words (which is actually not the case).

4.5 Word normalization

When evaluating Rank or Contains method invocations conforming implementations are allowed to
normalize word patterns in an implementation-defined way provided that the words contained in the text
values being tested or ranked by the Rank or Contains methods are effectively processed in the same way.
For instance, the word pattern

' "Müller" '

ISO/IEC FDIS 13249-2:2000 (E)

18 Concepts © ISO/IEC 2000 - All rights reserved

may be replaced by

’ "Mueller" ’

This pattern will be matched by any text value containing at least one occurrence of Müller since this word
is effectively replaced by Mueller before performing the test.

Normalization can possibly result in more matches than would be observed without normalization. In
German texts the word Mueller (as opposed to Müller) has a low occurrence probability. If text values
containing Mueller are to be identified then unwanted texts (i.e. those containing Müller but not Mueller)
will eventually be identified as well.

4.6 Types and routines provided by this part of ISO/IEC 13249

The types and routines provided by this part of ISO/IEC 13249 are divided into two major Categories:

1. types and routines which are for public use,
2. definition oriented types and routines that are used to capture the semantics of the Category 1 types and

routines, except for Rank methods (see Subclause 5.3.1, "FT_Pattern type").

4.6.1 Types and routines intended for public use

The following types and routines are intended for public use:

• FullText type with
• methods Language,
• methods Contains,
• methods Rank,
• methods FullText,
• function FullText_to_Character to cast a FullText value into a character string,

• FT_Pattern type.

4.6.2 Types and routines for definition

All other types and routines that are not covered by Subclause 4.6.1, "Types and routines intended for
public use" are used to specify the semantics of the Category 1 types and routines. Implementations
conforming to this part of ISO/IEC 13249 do not need to provide these types or routines for public use.

4.6.3 Technique for defining the semantics of Category 1 Contains methods

As far as possible, types and routines of this part of ISO/IEC 13249 are defined by the facilities ISO/IEC
9075. For the Category 1 Contains methods this is done in an indirect way. Using the definitional facilities
of ISO/IEC 9075, Contains methods are defined for the structural patterns of Clause 6. "Structured Search
Pattern Types". For a given pattern accepted by a Category 1 Contains method, the meaning is defined in
terms of an equivalent structural pattern. For example the following pattern:

'ENGLISH "die" & GERMAN "Würfel" '

is equivalent to the structural pattern:

NEW FT_Term(ARRAY[NEW FT_TextLiteral('die', 'ENGLISH'),
 NEW FT_TextLiteral('Würfel', 'GERMAN')])

which in turn is captured by the fact that:

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Concepts 19

NEW FT_Term(ARRAY[NEW FT_TextLiteral(’die’, ’ENGLISH’),
NEW FT_TextLiteral('Würfel', 'GERMAN')]).StrctPattern_to_FT_Pattern()

returns a pattern which is equal except for some white space characters to the pattern:

' ENGLISH "die" & GERMAN "Würfel" '

under question. Finally the meaning of

thirdSample.Contains(' ENGLISH "die" & GERMAN "Würfel" ') = 1

is defined by the meaning of:

NEW FT_Term(ARRAY[NEW FT_TextLiteral('die', 'ENGLISH'),
 NEW FT_TextLiteral('Würfel', 'GERMAN')]).Contains(thirdSample)

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Full-Text Types 21

5 Full-Text Types

The types in this family provide for the construction of text and search patterns for searching of text.

5.1 FullText Type and Routines

5.1.1 FullText Type

Purpose

The FullText type provides for the construction of text, for testing whether text contains specified patterns,
and for turning text into character strings.

Definition

CREATE TYPE FullText
AS (

Contents CHARACTER VARYING(FT_MaxTextLength),
Language CHARACTER VARYING(FT_MaxLanguageLength)

DEFAULT FT_DefaultLanguage
)
INSTANTIABLE
NOT FINAL

METHOD Contains(pattern FT_Pattern)
RETURNS INTEGER
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT,

METHOD Contains(pattern CHARACTER VARYING(FT_MaxPatternLength))
RETURNS INTEGER
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT,

METHOD Rank(pattern FT_Pattern)
RETURNS DOUBLE PRECISION
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT,

METHOD Rank(pattern CHARACTER VARYING(FT_MaxPatternLength))
RETURNS DOUBLE PRECISION
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT,

METHOD Tokenize()
RETURNS FullText_Token ARRAY[FT_MaxArrayLength]
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
RETURNS NULL ON NULL INPUT,

METHOD TokenizePosition(unit FullText_Token)
RETURNS FT_TokenPosition ARRAY[FT_MaxArrayLength]

ISO/IEC FDIS 13249-2:2000 (E)

22 Full-Text Types © ISO/IEC 2000 - All rights reserved

LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
RETURNS NULL ON NULL INPUT,

METHOD Segmentize(unit FullText_Token)
RETURNS FullText ARRAY[FT_MaxArrayLength]
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
RETURNS NULL ON NULL INPUT,

METHOD TokenizeAndStem()
RETURNS FullText ARRAY[FT_MaxArrayLength]
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
RETURNS NULL ON NULL INPUT,

METHOD TokenizePositionAndStem()
RETURNS FullText ARRAY[FT_MaxArrayLength]
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
RETURNS NULL ON NULL INPUT,

METHOD FullText(string CHARACTER VARYING(FT_MaxTextLength))
RETURNS FullText
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT,

METHOD FullText
(string CHARACTER VARYING(FT_MaxTextLength),
 Language CHARACTER VARYING(FT_MaxLanguageLength)
)
RETURNS FullText
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

CREATE CAST (FullText AS CHARACTER VARYING(FT_MaxTextLength)
WITH FUNCTION FullText_to_Character(FullText)

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Full-Text Types 23

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

2) FT_MaxTextLength is the implementation-defined maximum length for the character representation of
a FullText value.

3) FT_MaxPatternLength is the implementation-dependent maximum length for the character
representation of an FT_Pattern value.

4) FT_MaxLanguageLength is the implementation-defined maximum length for the character
representation of a language specification.

5) FT_DefaultLanguage is an implementation-defined character string literal which denotes the
implementation-defined default language. The length of FT_DefaultLanguage does not exceed
FT_MaxLanguageLength.

Description

1) The FullText type provides for public use:

a) an attribute Language,
b) a method Contains(FT_Pattern),
c) a method Contains(CHARACTER VARYING),
d) a method Rank(FT_Pattern),
e) a method Rank(CHARACTER VARYING),
f) a method FullText(CHARACTER VARYING) to initialize a FullText value from a character string,
g) a method FullText(CHARACTER VARYING, CHARACTER VARYING) to initialize a FullText

value from a character string and a language specification,
h) a function FullText_to_Character(FullText) to cast a FullText value into a character string.

2) The attribute Contents is not for public use. There are no GRANT statements granting EXECUTE
privilege to the observer or mutator method for Contents.

ISO/IEC FDIS 13249-2:2000 (E)

24 Full-Text Types © ISO/IEC 2000 - All rights reserved

5.1.2 Contains Methods

Purpose

Search a FullText value for a linear search pattern.

Definition

CREATE METHOD Contains(pattern FT_Pattern)
RETURNS INTEGER
FOR FullText
BEGIN

--
-- !! See Description
--

END

CREATE METHOD Contains
(pattern CHARACTER VARYING(FT_MaxPatternLength))
RETURNS INTEGER
FOR FullText
RETURN SELF.Contains(CAST(pattern AS FT_Pattern))

Definitional Rules

1) FT_MaxPatternLength is the implementation-dependent maximum length for the character
representation of an FT_Pattern value.

Description

1) The method Contains(FT_Pattern) takes the following input parameters:

a) an FT_Pattern value pattern.

2) The method Contains(CHARACTER VARYING) takes the following input parameters:

a) a CHARACTER VARYING value pattern.

3) The result of the invocation Contains(CHARACTER VARYING) or Contains(FT_Pattern) is
determined as follows:

Case:

a) If the value of pattern does not have the format of a <search expression>, then an exception
condition is raised: SQL/MM Full-Text - invalid search expression.

NOTE 4 - <search expression> is defined in Subclause 5.3.1, “FT_Pattern Type”.

b) If pattern contains a pattern that meets one of the following conditions, then it is implementation-
defined whether an exception condition is raised: SQL/MM Full-Text - invalid search expression:

i) A pattern of the form <word> or <stemmed word> specifies a stop word.

ii) A pattern of the form <phrase> or <stemmed phrase> contains only stop words, or contains
leading or trailing stop words.

iii) A pattern of the form <text literal list> contains only stop words.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Full-Text Types 25

NOTE 3 - The subrules i), ii), and iii) reflect the behavior of the Contains methods for the types
FT_TextLiteral, FT_StemmedWord, FT_Phrase, FT_StemmedPhrase, and FT_Any.

c) Otherwise:

Case:

i) If SELF, SELF.Contents, or pattern is the null value, then the null value.

ii) If the length of SELF.Contents is 0 (zero), then 0 (zero).

iii) Otherwise, let s_pattern be the structured pattern of type FT_Expr, such that

pattern = s_pattern.StrctPattern_to_FT_Pattern()

Then the result of

SELF.Contains(pattern)

is

Case:

A) 1 (one), if

s_pattern.Contains(SELF)

is true.

B) 0 (zero), if

s_pattern.Contains(SELF)

is false.

C) Otherwise, the null value.

4) The result of invocation of Contains(FT_Pattern) is invariant to the case of the <key word>s in
FT_Pattern.

NOTE 5 - A list of FT_Pattern <key word>s is given in Subclause 5.3.2, "FT_Pattern Key Words".

ISO/IEC FDIS 13249-2:2000 (E)

26 Full-Text Types © ISO/IEC 2000 - All rights reserved

5.1.3 Rank Methods

Purpose

Search a FullText value for a linear search pattern and give the relevance of the pattern.

Definition

CREATE METHOD Rank(pattern FT_Pattern)
RETURNS DOUBLE PRECISION
FOR FullText
BEGIN

--
-- !! See Description
--

END

CREATE METHOD Rank
(pattern CHARACTER VARYING(FT_MaxPatternLength))
RETURNS DOUBLE PRECISION
FOR FullText
RETURN SELF.Rank(CAST(pattern AS FT_Pattern))

Definitional Rules

1) FT_MaxPatternLength is the implementation-dependent maximum length for the character
representation of an FT_Pattern value.

Description

1) The method Rank(FT_Pattern) takes the following input parameters:

a) an FT_Pattern value pattern.

2) The method Rank(CHARACTER VARYING) takes the following input parameters:

a) a CHARACTER VARYING value pattern.

3) The result of the invocation Rank(CHARACTER VARYING) or Rank(FT_Pattern) is determined as
follows:

Case:

a) If the value of pattern does not have the format of a <search expression>, then an exception
condition is raised: SQL/MM Full-Text - invalid search expression.

NOTE 6 - <search expression> is defined in Subclause 5.3.1, “FT_Pattern Type”.

b) Otherwise:

Case:

i) If SELF, SELF.Contents, or pattern is the null value, the null value.

ii) Otherwise, an implementation-dependent DOUBLE PRECISION value constrained by
implementation-defined minimum and maximum values. The size of this value is an
indication of how relevant SELF is for the given pattern.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Full-Text Types 27

4) The result of invocation of Rank(FT_Pattern) is invariant to the case of the <key word>s in
FT_Pattern.

NOTE 7 - A list of FT_Pattern <key word>s is given in Subclause 5.3.2, "FT_Pattern Key Words".

ISO/IEC FDIS 13249-2:2000 (E)

28 Full-Text Types © ISO/IEC 2000 - All rights reserved

5.1.4 Tokenize Method

Purpose

Convert a FullText value into a sequence of normalized FullText_Token values.

Definition

CREATE METHOD Tokenize()
RETURNS FullText_Token ARRAY[FT_MaxArrayLength]
FOR FullText
BEGIN

--
-- !! See Description
--

END

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The method Tokenize() has no input parameters.

2) Tokenize() returns an array representing a sequence of normalized FullText_Token items. The result of
Tokenize() is the null value if SELF or SELF.Contents is the null value.

3) If the length of SELF.Contents is 0 (zero), then Tokenize() returns an empty array.

4) Further details of the relationship between input and output are implementation-defined. Though not
enforced by this standard, it is intended that Tokenize() reflects the language structure of the input text
being processed. That language is denoted by SELF.Language.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Full-Text Types 29

5.1.5 TokenizePosition Method

Purpose

Convert a FullText value into a sequence of FT_TokenPosition values.

Definition

CREATE METHOD TokenizePosition(unit FullText_Token)
RETURNS FT_TokenPosition ARRAY[FT_MaxArrayLength]
FOR FullText
BEGIN

--
-- !! See Description
--

END

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The method TokenizePosition(FullText_Token) takes the following input parameters:

a) a FullText_Token value unit identifying a unit of text.

2) The unit information supported is ’CHARACTERS’, ’WORDS’, ’SENTENCE’, ’SENTENCES’,
’PARAGRAPH’ and ’PARAGRAPHS’.

3) If the length of SELF.Contents is 0 (zero), then TokenizePosition(FullText_Token) returns an empty
array.

4) TokenizePosition(FullText_Token) returns an array representing a set of FT_TokenPosition items with
the attributes:

a) A FullText_Token value token representing a normalized word occurring in SELF.
b) An INTEGER value position identifying the position of an occurrence of token in terms of the unit

information specified (e.g. “third sentence”).
c) An INTEGER value corrVal. This value is intended to support the computation of the distance

between two words as identified by two FT_TokenPosition items. corrVal is zero for the distance
units 'WORDS', 'SENTENCES' and 'PARAGRAPHS'; its value is implementation-defined for
distance unit 'CHARACTERS'. In the latter case, possible values are zero, or values related to the
length of the associated token.

Let t1 and t2 be two FT_TokenPosition values. An implementation shall define the contents of the
attribute corrVal in such a way that the distance between t1.token and t2.token is given by:

t2.position - t1.position - t1.corrVal

provided t1 precedes t2 (i.e. t2.position >= t1.position).

5) The result of TokenizePosition(FullText_Token) shall be the null value if:

a) SELF or SELF.Contents is the null value.
b) unit is the null value or a value not supported by the implementation.

ISO/IEC FDIS 13249-2:2000 (E)

30 Full-Text Types © ISO/IEC 2000 - All rights reserved

6) It is implementation-defined whether no stop words of SELF.Contents, all stop words of
SELF.Contents, or all stop words of SELF.Contents other than leading and trailing stop words are
effectively included in the result of SELF.TokenizePosition(FullText_Token). If stop words are
included, then it is implementation-defined how they are effectively represented, provided their
representation is such that the result of comparing any two stop words is true.

7) Let W1 and W2 be two words contained in SELF.Contents and let TLE1 and TLE2 be the
corresponding elements in the result of TokenizePosition(FullText_Token). The distance between W1
and W2 shall be properly captured by TLE1 and TLE2 regardless of whether some word between W1
and W2 is a stop word and regardless of whether stop words are included in the result of
TokenizePosition(FullText_Token) or not.

8) For all words adopted from SELF (whether they are stop words or not) their position relative to each
other shall be properly reflected in the result of TokenizePosition(FullText_Token).

9) Let TLE be the element of SELF.TokenizePosition(FullText_Token) with the lowest Position value.
The value of TLE.Position shall be 1 (one). In particular this means that the result of
TokenizePosition(FullText_Token) shall be the same for two values SELF1 and SELF2 which are
different with one respect only: the Contents attribute of SELF1 has leading stop words while
SELF2.Contents has none.

10) Further details of the relationship between input and output are implementation-defined. Though not
enforced by this standard, it is intended that TokenizePosition(FullText_Token) reflects the language
structure of the input text being processed. That language is denoted by SELF.Language.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Full-Text Types 31

5.1.6 Segmentize Method

Purpose

Convert a FullText value into a sequence of FullText values.

Definition

CREATE METHOD Segmentize(unit FullText_Token)
RETURNS FullText ARRAY[FT_MaxArrayLength]
FOR FullText
BEGIN

--
-- !! See Description
--

END

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The method Segmentize(FullText_Token) takes the following input parameters:

a) a FullText_Token value unit.

2) The unit shall be either ’SENTENCE’ or ’PARAGRAPH’.

NOTE 8 - If an implementation does not support the distance unit ’SENTENCE’ and ’PARAGRAPH’,
then it is not required to support the method Segmentize(FullText_Token). If any of these distance units
is supported, the method Segmentize(FullText_Token) shall effectively be supported with that distance
unit.

3) If the length of SELF.Contents is 0 (zero), then Segmentize(FullText_Token) returns an empty array.

4) Segmentize(FullText_Token) returns an array of FullText values, which are either sentences or
paragraphs of text. For every sentence (paragraph) of text there shall be exactly one element in the
resulting array the content of which equals the content of this sentence (paragraph). The relative order
of resulting array elements shall be the same as the order of the associated sentences (paragraphs).

5) Further details of the relationship between input and output are implementation-defined. Though not
enforced by this standard, it is intended that Segmentize(FullText_Token) reflects the language structure
of the input text being processed. That language is denoted by SELF.Language.

ISO/IEC FDIS 13249-2:2000 (E)

32 Full-Text Types © ISO/IEC 2000 - All rights reserved

5.1.7 TokenizeAndStem Method

Purpose

Convert a FullText value into a sequence of normalized and stem-reduced FullText_Token values.

Definition

CREATE METHOD TokenizeAndStem()
RETURNS FullText_Token ARRAY[FT_MaxArrayLength]
FOR FullText
BEGIN

--
-- !! See Description
--

END

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The method TokenizeAndStem() has no input parameters.

2) TokenizeAndStem() returns an array representing a sequence of normalized and stem-reduced
FullText_Token values. The result of TokenizeAndStem() is the null value if SELF or SELF.Contents is
the null value.

3) If the length of SELF.Contents is 0 (zero), then TokenizeandStem() returns an empty array.

4) Further details of the relationship between input and output are implementation-defined. Though not
enforced by this standard, it is intended that TokenizeAndStem() reflects the language structure of the
input text being processed. That language is denoted by SELF.Language.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Full-Text Types 33

5.1.8 TokenizePositionAndStem Method

Purpose

Convert a FullText value into a sequence of FT_TokenPosition values.

Definition

CREATE METHOD TokenizePositionAndStem()
RETURNS FT_TokenPosition ARRAY[FT_MaxArrayLength]
FOR FullText
BEGIN

--
-- !! See Description
--

END

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The method TokenizePositionAndStem() has no input parameters.

2) TokenizePositionAndStem() returns an array representing a set of FT_TokenPosition values with the
attributes:

a) A FullText_Token value token representing a word occurring in SELF; that word is represented in
a normalized way and is reduced to its stemmed form.

b) An INTEGER value position identifying the position of an occurrence of token in terms of words.
c) An INTEGER value corrVal set to zero.

3) The result of TokenizePositionAndStem() shall be the null value if SELF or SELF.Contents is the null
value.

4) If the length of SELF.Contents is 0 (zero), then TokenizePositionAndStem() returns an empty array.

5) It is implementation-defined whether no stop words of SELF.Contents, all stop words of
SELF.Contents, or all stop words of SELF.Contents other than leading and trailing stop words are
effectively included in the result of SELF.TokenizePositionAndStem(). If stop words are included, then
it is implementation-defined how they are effectively represented, provided their representation is such
that the result of comparing any two stop words is true.

6) Let W1 and W2 be two words contained in SELF.Contents and let TLE1 and TLE2 be the
corresponding elements in the result of TokenizePositionAndStem(). The distance between W1 and W2
shall be properly captured by TLE1 and TLE2, regardless of whether some word between W1 and W2 is
a stop word and regardless of whether stop words are included in the result of
TokenizePositionAndStem() or not.

7) Let TLE be the element of SELF.TokenizePositionAndStem() with the lowest Position value. The value
of TLE.Position shall be 1 (one). In particular this means that the result of TokenizePositionAndStem()
shall be the same for two values SELF1 and SELF2, which are different with one respect only: the
Contents attribute of SELF1 has leading stop words while SELF2.Contents has none.

ISO/IEC FDIS 13249-2:2000 (E)

34 Full-Text Types © ISO/IEC 2000 - All rights reserved

8) Further details of the relationship between input and output are implementation-defined. Though not
enforced by this standard, it is intended that TokenizePositionAndStem(FullText_Token) reflects the
language structure of the input text being processed. That language is denoted by SELF.Language.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Full-Text Types 35

5.1.9 FullText Methods

Purpose

Return a specified FullText value.

Definition

CREATE METHOD FullText(string CHARACTER VARYING(FT_MaxTextLength))
RETURNS FullText
FOR FullText
RETURN SELF.Contents(string)

CREATE METHOD FullText
(string CHARACTER VARYING(FT_MaxTextLength),
 Language CHARACTER VARYING(FT_MaxLanguageLength)
)
RETURNS FullText
FOR FullText
BEGIN

DECLARE InvalidLanguage CONDITION FOR SQLSTATE ’XXF02";

IF Language IS NULL OR
Language = ’’ OR
--
-- if Language does not specify a supported language
--

THEN
SIGNAL InvalidLanguage

SET MESSAGE_TEXT = ’invalid language specification’;
END IF;

RETURN SELF.Contents(string).Language(Language);
END

Definitional Rules

1) FT_MaxTextLength is the implementation-defined maximum length for the character representation of
a FullText value.

2) FT_MaxLanguageLength is the implementation-defined maximum length for the character
representation of a language specification.

Description

1) The method FullText(CHARACTER VARYING) takes the following input parameters:

a) a CHARACTER VARYING value string.

2) The method FullText(CHARACTER VARYING, CHARACTER VARYING) takes the following input
parameters:

a) a CHARACTER VARYING value string,
b) a CHARACTER VARYING value Language.

3) If the value of Language is the empty string or the null value or Language does not specify a supported
language, then the method FullText(CHARACTER VARYING, CHARACTER VARYING) raises an
exception condition: SQL/MM Full-Text - invalid language specification .

ISO/IEC FDIS 13249-2:2000 (E)

36 Full-Text Types © ISO/IEC 2000 - All rights reserved

5.1.10 FullText_to_Character Function

Purpose

Return the character representation of a FullText value.

Definition

CREATE FUNCTION FullText_to_Character (text FullText)
RETURNS CHARACTER VARYING(FT_MaxTextLength)
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT
STATIC DISPATCH
RETURN text.Contents

Definitional Rules

1) FT_MaxTextLength is the implementation-defined maximum length for the character representation of
a FullText value.

Description

1) The function FullText_to_Character(FullText) takes the following input parameters:

a) a FullText value text.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Full-Text Types 37

5.1.11 StrctPattern_to_FT_Pattern Function

Purpose

Convert a sequence of FT_WordOrPhrase values to an FT_Pattern value.

Definition

CREATE FUNCTION StrctPattern_to_FT_Pattern
(woparray FT_WordOrPhrase ARRAY[FT_MaxArrayLength])
RETURNS FT_Pattern
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
RETURNS NULL ON NULL INPUT
STATIC DISPATCH
BEGIN

DECLARE result CHARACTER VARYING(FT_MaxPatternLength);
DECLARE i INTEGER;

SET i = 1;
SET result = ’(’;
WHILE i <= CARDINALITY(woparray) DO

SET result = result
|| CAST(woparray[i].StrctPattern_to_FT_Pattern()

AS CHARARACTER VARYING(FT_MaxPatternLength))
|| ’,’;

SET i = i + 1;
END WHILE;
SET result = TRIM(TRAILING ’,’ FROM result) || ’)’;
RETURN CAST(result AS FT_Pattern);

END

Definitional Rules

1) FT_MaxPatternLength is the implementation-dependent maximum length for the character
representation of an FT_Pattern value.

2) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The function StrctPattern_to_FT_Pattern(FT_WordOrPhrase ARRAY) takes the following input
parameters:

a) an array woparray whose elements are FT_WordOrPhrase values.

2) StrctPattern_to_FT_Pattern(FT_WordOrPhrase ARRAY) returns an FT_Pattern value of the form
<token list>.

3) If the input argument woparray is the null value, then StrctPattern_to_FT_Pattern(FT_WordOrPhrase
ARRAY) returns the null value.

ISO/IEC FDIS 13249-2:2000 (E)

38 Full-Text Types © ISO/IEC 2000 - All rights reserved

5.2 FT_TokenPosition Type and Routines

5.2.1 FT_TokenPosition Type

Purpose

The FT_TokenPosition type provides facilities for the construction of data items intended to represent
occurrences of words in some text.

Definition

CREATE TYPE FT_TokenPosition
AS (

token FullText_Token,
position INTEGER,
corrVal INTEGER

)
INSTANTIABLE
NOT FINAL

Description

1) The FT_TokenPosition type provides:

a) an attribute token,
b) an attribute position,
c) an attribute corrVal.

2) The purpose of the FT_TokenPosition attributes is described in Subclause 5.1.5, “TokenizePosition
Method” which is used to initialize these attributes.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Full-Text Types 39

5.3 FT_Pattern Type and Routines

5.3.1 FT_Pattern Type

Purpose

The FT_Pattern type provides for linear search patterns.

Definition

CREATE TYPE FT_Pattern
AS CHARACTER VARYING(FT_MaxPatternLength)
FINAL

Definitional Rules

1) FT_MaxPatternLength is the implementation-dependent maximum length for the character
representation of an FT_Pattern value.

Description

1) The FT_Pattern type provides for public use a CHARACTER VARYING value.

2) Values of FT_Pattern type are meant as input to the method Contains(FT_Pattern) of the FullText
type.

NOTE 9 - The FullText type is described in Subclause 5.1.1, "FullText Type".

3) Values of FT_Pattern must be producible from the following BNF for <search expression>.

<search expression> ::=
 <search term>
| <search expression> <vertical bar> <search term>

<vertical bar> ::= |

<search term> ::=
 <search factor>
| <search term> <ampersand> <search factor>

<ampersand> ::= &

<search factor> ::=
[NOT] <search primary>

<search primary> ::=
 <text literal>
| <text function invocation>
| <context condition>
| <left paren> <search expression> <right paren>

<text literal> ::=
 <word>
| <phrase>
| <stemmed word>
| <stemmed phrase>

<word> ::=
[<language specification>] <double quote>

ISO/IEC FDIS 13249-2:2000 (E)

40 Full-Text Types © ISO/IEC 2000 - All rights reserved

<word representation> <double quote>
[<escape specification>]

<language specification> ::= !! See Description

<double quote> ::=
!! See Subclause 5.1, <SQL terminal character>,
!! in part 2 of ISO/IEC 9075

<escape specification> ::=
ESCAPE <double quote> <escape representation character>

<double quote>

<escape representation character> ::= !! See Description

<phrase> ::=
[<language specification>] <double quote>

<phrase representation> <double quote>
[<escape specification>]

<word representation> ::= <word representation part> ...

<word representation part> ::=
 <word representation character>
| <doublequote symbol>

<word representation character> ::= !! See Description

<doublequote symbol> ::=
!! See Subclause 5.2, <token> and <separator>, in part 2
!! of ISO/IEC 9075

<phrase representation> ::=
<phrasepart representation> [<word separator>] <phrasepart
representation>
[{ [<word separator>] <phrasepart representation>} ...]

<phrasepart representation> ::=
 <word representation>
| <optional word representation>

<optional word representation> ::= %

<word separator> ::= !! See Description

<stemmed word> ::=
[STEMMED] FORM OF <word>

<stemmed phrase> ::=
[STEMMED] FORM OF <phrase>

<text function invocation> ::=
 <Proximity expansion>
| <about expansion>
| <expansion function invocation>

<expansion function invocation> ::=
 <Soundex expansion>
| <Broader_Term expansion>
| <Narrower_Term expansion>
| <Synonym expansion>
| <Preferred_Term expansion>
| <Related_Term expansion>
| <Top_Term expansion>

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Full-Text Types 41

<Proximity expansion> ::=
<token list1> NEAR <token list2> WITHIN <distance> <unit> <order>

<token list1> ::=
 <token list>
| <expansion function invocation>

<token list2> ::=
 <token list>
| <expansion function invocation>

<token list> ::=
<left paren> <word specification>

[{ <comma> <word specification> }...] <right paren>

<left paren> ::= (

<right paren> ::=)

<comma> ::= ,

<word specification> ::=
 <word>
| <stemmed word>

<distance> ::= <unsigned integer>

<unsigned integer> ::=
!! See Subclause 5.3, <literal>, in part 2 of ISO/IEC 9075

<unit> ::=
 CHARACTERS
| WORDS
| SENTENCES
| PARAGRAPHS

<order> ::=
 ANY ORDER
| IN ORDER

<Soundex expansion> ::=
SOUNDS LIKE <word>

<Broader_Term expansion> ::=
THESAURUS <thesaurus specification>

EXPAND BROADER TERM OF <text literal>
[FOR <thesaurus expansion count> { LEVEL | LEVELS }]

<thesaurus specification> ::=
<double quote> <thesaurus name representation> <double quote>

<thesaurus name representation> ::= <thesaurus name character>...

<thesaurus name character> ::= !! See Description

<thesaurus expansion count> ::= <unsigned integer>

<Narrower_Term expansion> ::=
THESAURUS <thesaurus specification>

EXPAND NARROWER TERM OF <text literal>
[FOR <thesaurus expansion count> { LEVEL | LEVELS }]

<Synonym expansion> ::=

ISO/IEC FDIS 13249-2:2000 (E)

42 Full-Text Types © ISO/IEC 2000 - All rights reserved

THESAURUS <thesaurus specification>
EXPAND SYNONYM TERM OF <text literal>

<Preferred_Term expansion> ::=
THESAURUS <thesaurus specification>

EXPAND PREFERRED TERM OF <text literal>

<Related_Term expansion> ::=
THESAURUS <thesaurus specification>

EXPAND RELATED TERM OF <text literal>

<Top_Term expansion> ::=
THESAURUS <thesaurus specification>

EXPAND TOP TERM OF <text literal>

<context condition> ::=
<context argument> IN SAME <context unit> AS
<context argument> [{ AND <context argument> } ...]

<context unit> ::=
 SENTENCE
| PARAGRAPH

<context argument> ::=
 <text literal>
| <text literal list>
| <expansion function invocation>

<text literal list> ::=
<left paren> <text literal>
 [{ <comma> <text literal> } ...] <right paren>

<about expansion> ::=
IS ABOUT <word or phrase>

<word or phrase> ::=
 <word>
| <phrase>

NOTE 10 - A list of FT_Pattern <key word>s is given in Subclause 5.3.2, "FT_Pattern Key Words".
Although these <key word>s are shown above in upper case, methods that accept FT_Pattern
arguments are invariant to the case of these <key word>s.

a) A <word representation> is a non-empty sequence of <word representation part>s. A <word
representation part> is either a <word representation character> or a <doublequote symbol>. The
set of <word representation character>s does not contain <double quote>. Other than that, the set
of <word representation character>s is implementation-defined; though not enforced by this
standard, it is intended that the corresponding rules reflect the characteristics of the specific
language from which the word has been taken. Wild card characters ’_’ and ’%’ shall be among the
admissible characters; however, a <word representation> shall contains at least one character that
is not treated as a wild card character.

If a <word representation> WR is immediately contained in a <word> or <phrase> which
immediately contains an <escape specification> ES, then let E be the <escape representation
character> immediately contained in ES. E must be followed by either E, ‘%’, or ‘_’. If WR
contains either a '%' or an '_' that is preceded by E, those characters represent a '%' or an '_', and
not a wild card character. If an E is preceded by an E, the second E does not represent an <escape
representation character>. E must be followed by either E. ‘%’, or ‘_’.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Full-Text Types 43

A <Broader_Term expansion>, <Narrower_Term expansion>, <Synonym_Term expansion>,
<Preferred_Term expansion>, <Related_Term expansion>, or <Top_Term expansion> shall not
contain a <stemmed word> or <stemmed phrase>.

b) A <phrase representation> is a sequence (two or more items) of <phrasepart representation>s. It is
implementation-defined whether a specific <word separator> character is needed between two
consecutive <phrasepart representation>s; though not enforced by this standard, it is intended that
the corresponding rules reflect the characteristics of the specific language in which the phrase is
being expressed. A <phrasepart representation> shall contain at least one <word representation>.

NOTE 11 - If a <phrasepart representation> PPR is simply contained in a <phrase> which
specifies an <escape specification> ES, then let E be the <escape character> immediately
contained in ES. If PPR is E% then PPR does not represent an optional word.

c) Each <word>, <stemmed word>, <phrase>, or <stemmed phrase> instance is associated with some
language. This language is either explicitly or implicitly specified. The details of the <language
specification>, as well as the default language is implementation-defined.

d) A <word> simply contained in a <Soundex expansion>, and a <text literal> simply contained in a
<Broader_Term expansion>, <Narrower_Term expansion>, <Synonym expansion>,
<Preferred_Term expansion>, <Related_Term expansion>, or <Top_Term expansion> shall not
simply contain a <word representation character> that is treated as a wild card character, nor shall
it simply contain an <escape specification>.

e) A <stemmed word> or <stemmed phrase> shall not simply contain a <word representation
character> that is treated as a wild card character, nor shall it simply contain an <escape
specification>.

f) <unit> and <context unit> instance denote document units. Document units are:

CHARACTERS
WORDS
SENTENCE
SENTENCES
PARAGRAPH
PARAGRAPHS

A conforming implementation must support at least one predefined document unit. Functionality
depending on a certain document unit need only be supported if that document unit is supported.
The document units supported are implementation-defined.

4) The characters <thesaurus name character> that can be used to construct thesaurus names are
implementation-defined.

5) Let T and P be a FullText value and an FT_Pattern value respectively. The value of T.Contains(P) is
determined by the following:

a) If P is a <search expression> of the form SE <vertical bar> ST, then the result of

T.Contains(P)

is

Case:

ISO/IEC FDIS 13249-2:2000 (E)

44 Full-Text Types © ISO/IEC 2000 - All rights reserved

i) 1 (one), if

(T.Contains(SE) = 1) OR (T.Contains(ST) = 1)

is true.

ii) 0 (zero), if

(T.Contains(SE) = 1) OR (T.Contains(ST) = 1)

is false.

iii) Otherwise, the null value.

b) If P is a <search term> of the form ST <ampersand> SF, then the result of

T.Contains(P)

is

Case:

i) 1 (one), if

(T.Contains(ST) = 1) AND (T.Contains(SF) = 1)

is true.

ii) 0 (zero), if

(T.Contains(ST) = 1) AND (T.Contains(SF) = 1)

is false.

iii) Otherwise, the null value.

c) If P is a <search factor> of the form NOT SP, then the result of

T.Contains(P)

is

Case:

i) 1 (one), if

NOT T.Contains(SP)

is true.

ii) 0 (zero), if

NOT T.Contains(SP)

is false.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Full-Text Types 45

iii) Otherwise, the null value.

d) If P is a <word> W or a <stemmed word> W, then:

i) If W does not immediately contain a <language specification>, then augment W with
<language specification> denoting the default language.

ii) If P is <stemmed word> and W does not specify the optional key word STEMMED then
augment W with the optional key word STEMMED.

Let STL be an FT_TextLiteral or an FT_StemmedWord value such that

W = STL.StrctPattern_to_FT_Pattern()

The result of

T.Contains(W)

is

Case:

i) 1 (one), if

STL.Contains(T)

is true.

ii) 0 (zero), if

STL.Contains(T)

is false.

iii) Otherwise, the null value.

(i.e. Contains returns 1 (one) if T contains at least one token which matches W (if no <stemmed
word> has been specified), or T contains at least one token the stem of which matches the stem of
W (if <stemmed word> has been specified).)

NOTE 12 - A word pattern W may contain wild card characters ’_’ (denoting a single character
from the character set of <search expression>) or ’%’ (denoting a string of any length (zero or
more) composed of characters from the character set of <search expression>).

e) If P is a <phrase> PHR or a <stemmed phrase> PHR, then:

i) If PHR does not immediately contains a <language specification>, then augment PHR with
<language specification> denoting the default language.

ii) If P is <stemmed phrase> and PHR does not specify the optional key word STEMMED then
augment PHR with the optional key word STEMMED.

Let SPP be an FT_Phrase or an FT_StemmedPhrase value such that

PHR = SPP.StrctPattern_to_FT_Pattern()

then the result of

ISO/IEC FDIS 13249-2:2000 (E)

46 Full-Text Types © ISO/IEC 2000 - All rights reserved

T.Contains(PHR)

is

Case:

i) 1 (one), if

SPP.Contains(T)

is true.

ii) 0 (zero), if

SPP.Contains(T)

is false.

iii) Otherwise, the null value.

(i.e. Contains returns 1 (one) if T contains a sequence of tokens which match PHR. The match
condition details are given in Subclause 6.6, FT_Phrase Type and Routines, and in Subclause 6.7,
FT_StemmedPhrase Type and Routines .)

NOTE 13 - A token of PHR may be composed of wild card characters only. If such a token
consists of one or more ’%’s, then it denotes an optional word.

f) If P is a <Proximity expansion> PFI, then let TL1 be <token list1> and TL2 be <token list2>.
Augment both TL1 and TL2 such that every occurrence of a <word>, <stemmed word>, <phrase>,
or a <stemmed phrase> which does not specify a <language specification> is adorned by a
<language specification> denoting the default language. Additionally augment both TL1 and TL2
such that every occurrence of <stemmed word> or <stemmed phrase> which does not specify the
optional key word STEMMED is adorned by this missing optional key word.

Case:

i) If TL1 is a <Broader_Term expansion>, let SBT be an FT_BroaderTerm value such that TL1 is
equal to SBT.StrctPattern_to_FT_Pattern(). Replace TL1 in PFI by the result of:

StrctPattern_to_FT_Pattern(GetBroaderTerms(SBT.thesaurus,
SBT.startingTerm, SBT.expansionCnt))

If TL2 is a <Broader_Term expansion>, let SBT be an FT_BroaderTerm value such that TL2 is
equal to SBT.StrctPattern_to_FT_Pattern(). Replace TL2 in PFI by the result of:

StrctPattern_to_FT_Pattern(GetBroaderTerms(SBT.thesaurus,
SBT.startingTerm, SBT.expansionCnt))

ii) If TL1 is a <Narrower_Term expansion>, let SNT be an FT_NarrowerTerm value such that
TL1 is equal to SBT.StrctPattern_to_FT_Pattern(). Replace TL1 in PFI by the result of:

StrctPattern_to_FT_Pattern(GetNarrowerTerms(SNT.thesaurus,
SNT.startingTerm, SNT.expansionCnt))

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Full-Text Types 47

If TL2 is a <Narrower_Term expansion>, let SNT be an FT_NarrowerTerm value such that
TL2 is equal to SNT.StrctPattern_to_FT_Pattern(). Replace TL2 in PFI by the result of:

StrctPattern_to_FT_Pattern(GetNarrowerTerms(SNT.thesaurus,
SNT.startingTerm, SNT.expansionCnt))

iii) If TL1 is a <Synonym expansion>, let SST be an FT_Synonym value such that TL1 is equal to
SST.StrctPattern_to_FT_Pattern(). Replace TL1 in PFI by the result of:

StrctPattern_to_FT_Pattern(GetSynonymTerms(SST.thesaurus,
SST.startingTerm))

If TL2 is a <Synonym expansion>, let SST be an FT_Synonym value such that TL2 is equal to
SST.StrctPattern_to_FT_Pattern(). Replace TL2 in PFI by the result of:

StrctPattern_to_FT_Pattern(GetSynonymTerms(SST.thesaurus,
SST.startingTerm))

iv) If TL1 is a <Preferred_Term expansion>, let SPT be an FT_PreferredTerm value such that
TL1 is equal to SPT.StrctPattern_to_FT_Pattern(). Replace TL1 in PFI by the result of:

StrctPattern_to_FT_Pattern(GetPreferredTerms(SPT.thesaurus,
SPT.startingTerm))

If TL2 is a <Preferred_Term expansion>, let SPT be an FT_PreferredTerm value such that
TL2 is equal to SPT.StrctPattern_to_FT_Pattern(). Replace TL2 in PFI by the result of:

StrctPattern_to_FT_Pattern(GetPreferredTerms(SPT.thesaurus,
SPT.startingTerm))

v) If TL1 is a <Related_Term expansion>, let SRT be an FT_RelatedTerm value such that TL1 is
equal to SRT.StrctPattern_to_FT_Pattern(). Replace TL1 in PFI by the result of:

StrctPattern_to_FT_Pattern(GetRelatedTerms(SRT.thesaurus,
SRT.startingTerm))

If TL2 is a <Related_Term expansion>, let SRT be an FT_RelatedTerm value such that TL2 is
equal to SRT.StrctPattern_to_FT_Pattern(). Replace TL2 in PFI by the result of:

StrctPattern_to_FT_Pattern(GetRelatedTerms(SRT.thesaurus,
SRT.startingTerm))

vi) If TL1 is a <Top_Term expansion>, let STT be an FT_TopTerm value such that TL1 is equal to
STT.StrctPattern_to_FT_Pattern(). Replace TL1 in PFI by the result of:

StrctPattern_to_FT_Pattern(GetTopTerms(STT.thesaurus,
STT.startingTerm))

If TL2 is a <Top_Term expansion>, let STT be an FT_TopTerm value such that TL2 is equal to
STT.StrctPattern_to_FT_Pattern(). Replace TL2 in PFI by the result of:

StrctPattern_to_FT_Pattern(GetTopTerms(STT.thesaurus,
STT.startingTerm))

vii) If TL1 is a <Soundex expansion>, let SPHT be an FT_Soundex value such that TL1 is equal to
SPHT.StrctPattern_to_FT_Pattern(). Replace TL1 in PFI by the result of:

StrctPattern_to_FT_Pattern(GetSoundsSimilar(SPHT.spoken))

ISO/IEC FDIS 13249-2:2000 (E)

48 Full-Text Types © ISO/IEC 2000 - All rights reserved

If TL2 is a <Soundex expansion>, let SPHT be an FT_Soundex value such that TL2 is equal to
SPHT.StrctPattern_to_FT_Pattern(). Replace TL2 in PFI by the result of:

StrctPattern_to_FT_Pattern(GetSoundsSimilar(SPHT.spoken))

Let SPR be an FT_Proxi value such that

PFI = SPR.StrctPattern_to_FT_Pattern()

then the result of

T.Contains(PFI)

is

Case:

i) 1 (one), if

SPR.Contains(T)

is true.

ii) 0 (zero), if

SPR.Contains(T)

is false.

iii) Otherwise, the null value.

g) If P is a <context condition> CCD, let n be the number of <context argument>s immediately
contained in CCD. For i ranging from 1 to n, let Cai be these <context argument>s. In every Cai,
augment every occurrence of a <word>, <stemmed word>, <phrase>, or a <stemmed phrase>
which does not specify a <language specification> by a <language specification> that denotes the
default language. Additionally, in every Cai, augment every occurrence of <stemmed word> or
<stemmed phrase> which does not specify the optional key word STEMMED by this missing
optional key word. Let CCDC be the canonical form of CCD, which is obtained by replacing
every Cai as follows:

Case:

i) If Cai is a <text literal>, replace Cai by:

(Cai)

ii) If Cai is a <Broader_Term expansion>, let SBT be an FT_BroaderTerm value such that Cai is
equal to SBT.StrctPattern_to_FT_Pattern(). Replace Cai by the result of:

StrctPattern_to_FT_Pattern(GetBroaderTerms(SBT.thesaurus,
SBT.startingTerm, SBT.expansionCnt))

iii) If Cai is a <Narrower_Term expansion>, let SNT be an FT_NarrowerTerm value such that Cai
is equal to SNT.StrctPattern_to_FT_Pattern(). Replace Cai by the result of:

StrctPattern_to_FT_Pattern(GetNarrowerTerms(SNT.thesaurus,

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Full-Text Types 49

SNT.startingTerm, SNT.expansionCnt))

iv) If Cai is a <Synonym expansion>, let SST be an FT_Synonym value such that Cai is equal to
SST.StrctPattern_to_FT_Pattern(). Replace Cai by the result of:

StrctPattern_to_FT_Pattern(GetSynonymTerms(SST.thesaurus,
SST.startingTerm))

v) If Cai is a <Preferred_Term expansion>, let SPT be an FT_PreferredTerm value such that Cai
is equal to SPT.StrctPattern_to_FT_Pattern(). Replace Cai by the result of:

StrctPattern_to_FT_Pattern(GetPreferredTerms(SPT.thesaurus,
SPT.startingTerm))

vi) If Cai is a <Related_Term expansion>, let SRT be an FT_RelatedTerm value such that Cai is
equal to SRT.StrctPattern_to_FT_Pattern(). Replace Cai by the result of:

StrctPattern_to_FT_Pattern(GetRelatedTerms(SRT.thesaurus,
SRT.startingTerm))

vii) If Cai is a <Top_Term expansion>, let STT be an FT_TopTerm value such that Cai is equal to
STT.StrctPattern_to_FT_Pattern(). Replace Cai by the result of:

StrctPattern_to_FT_Pattern(GetTopTerms(STT.thesaurus,
STT.startingTerm))

viii) If Cai is a <Soundex expansion>, let SPHT be an FT_Soundex value such that Cai is equal to
SPHT.StrctPattern_to_FT_Pattern(). Replace Cai by the result of:

StrctPattern_to_FT_Pattern(GetSoundsSimilar(SPHT.spoken))

ix) Otherwise, Cai is left unchanged.

Let SCR be an FT_Context value such that

CCDC = SCR.StrctPattern_to_FT_Pattern()

Then the result of

T.Contains(CCDC)

is

Case:

i) 1 (one), if

SCR.Contains(T)

is true.

ii) 0 (zero), if

SCR.Contains(T)

is false.

ISO/IEC FDIS 13249-2:2000 (E)

50 Full-Text Types © ISO/IEC 2000 - All rights reserved

iii) Otherwise, the null value.

h) If P is of the form <left paren> <search expression> <right paren>, augment P such that every
occurrence of a <word>, <stemmed word>, <phrase>, or a <stemmed phrase> which does not
specify a <language specification> is adorned by a <language specification> denoting the default
language. Additionally augment P such that every occurrence of <stemmed word> or <stemmed
phrase> which does not specify the optional key word STEMMED is adorned by this missing
optional key word. Let SPSE be an FT_ParExpr value such that

P = SPSE.StrctPattern_to_FT_Pattern()

Then the result of

T.Contains(P)

is

Case:

i) 1 (one), if

SPSE.Contains(T)

is true.

ii) 0 (zero), if

SPSE.Contains(T)

is false.

iii) Otherwise, the null value.

i) If P is a <Soundex expansion> SFI, augment SFI such that every occurrence of a <word> or a
<phrase> which does not specify a <language specification> is adorned by a <language
specification> denoting the default language. Let SSO be an FT_Soundex value such that

SFI = SSO.StrctPattern_to_FT_Pattern()

then the result of

T.Contains(SFI)

is

Case:

i) 1 (one), if

SSO.Contains(T)

is true.

ii) 0 (zero), if

SSO.Contains(T)

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Full-Text Types 51

is false.

iii) Otherwise, the null value.

j) If P is a <Broader_Term expansion> BFI, augment BFI such that every occurrence of a <word> or
a <phrase> which does not specify a <language specification> is adorned by a <language
specification> denoting the default language. Let SBT be an FT_BroaderTerm value such that

BFI = SBT.StrctPattern_to_FT_Pattern()

then the result of

T.Contains(BFI)

is

Case:

i) 1 (one), if

SBT.Contains(T)

is true.

ii) 0 (zero), if

SBT.Contains(T)

is false.

iii) Otherwise, the null value.

NOTE 14 - If FOR <thesaurus expansion count> LEVELS has not been specified, then according
to the specification of Subclause 6.10.3, "StrctPattern_to_FT_Pattern Method" and Subclause
6.10.5 "GetBroaderTerms Function" the expansion of <text literal> immediately contained in
<Broader_Term expansion > is carried on until no further expansion term can be found.

k) If P is a <Narrower_Term expansion> NFI, augment NFI such that every occurrence of a <word>
or a <phrase> which does not specify a <language specification> is adorned by a <language
specification> denoting the default language. Let SNT be an FT_NarrowerTerm value such that

NFI = SNT.StrctPattern_to_FT_Pattern()

then the result of

T.Contains(NFI)

is

Case:

i) 1 (one), if

SNT.Contains(T)

ISO/IEC FDIS 13249-2:2000 (E)

52 Full-Text Types © ISO/IEC 2000 - All rights reserved

is true.

ii) 0 (zero), if

SNT.Contains(T)

is false.

iii) Otherwise, the null value.

NOTE 15 - If FOR <thesaurus expansion count> LEVELS has not been specified, then according
to the specification of Subclause 6.11.3, "StrctPattern_to_FT_Pattern Method" and Subclause
6.11.5 "GetNarrowerTerms Function" the expansion of <text literal> immediately contained in
<Narrower_Term expansion > is carried on until no further expansion term can be found.

l) If P is a <Synonym expansion> SYFI, augment SYFI such that every occurrence of a <word> or a
<phrase> which does not specify a <language specification> is adorned by a <language
specification> denoting the default language. Let SST be an FT_Synonym value such that

SYFI = SST.StrctPattern_to_FT_Pattern()

then the result of

T.Contains(SYFI)

is

Case:

i) 1 (one), if

SST.Contains(T)

is true.

ii) 0 (zero), if

SST.Contains(T)

is false.

iii) Otherwise, the null value.

m) If P is a <Related_Term expansion> RTFI, augment RTFI such that every occurrence of a <word>
or a <phrase> which does not specify a <language specification> is adorned by a <language
specification> denoting the default language. Let SRT be an FT_RelatedTerm value such that

RTFI = SRT.StrctPattern_to_FT_Pattern()

then the result of

T.Contains(RTFI)

is

Case:

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Full-Text Types 53

i) 1 (one), if

SRT.Contains(T)

is true.

ii) 0 (zero), if

SRT.Contains(T)

is false.

iii) Otherwise, the null value.

n) If P is a <Preferred_Term expansion> PTFI, augment PTFI such that every occurrence of a
<word> or a <phrase> which does not specify a <language specification> is adorned by a
<language specification> denoting the default language. Let SPT be an FT_PreferredTerm value
such that

PTFI = SPT.StrctPattern_to_FT_Pattern()

then the result of

T.Contains(PTFI)

is

Case:

i) 1 (one), if

SPT.Contains(T)

is true.

ii) 0 (zero), if

SPT.Contains(T)

is false.

iii) Otherwise, the null value.

o) If P is a <Top_Term expansion> TTFI, augment TTFI such that every occurrence of a <word> or a
<phrase> which does not specify a <language specification> is adorned by a <language
specification> denoting the default language. Let STT be an FT_TopTerm value such that

TTFI = STT.StrctPattern_to_FT_Pattern()

then the result of

T.Contains(TTFI)

is

ISO/IEC FDIS 13249-2:2000 (E)

54 Full-Text Types © ISO/IEC 2000 - All rights reserved

Case:

i) 1 (one), if

STT.Contains(T)

is true.

ii) 0 (zero), if

STT.Contains(T)

is false.

iii) Otherwise, the null value.

p) If P is an <about expansion> IAFI, augment IAFI such that the contained <word> or <phrase>, if
it does not specify a <language specification>, is adorned by a <language specification> denoting
the default language. Let SIA be an FT_IsAbout value such that

IAFI = SIA.StrctPattern_to_FT_Pattern()

then the result of

T.Contains(IAFI)

is

Case:

i) 1 (one), if

SIA.Contains(T)

is true.

ii) 0 (zero), if

SIA.Contains(T)

is false.

iii) Otherwise, the null value.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Full-Text Types 55

5.3.2 FT_Pattern Key Words

Purpose

This subclause contains a list of all the <key word>s allowed in the FT_Pattern type. They are provided
here for easy reference.

Definition

<key word> ::=
 ABOUT | AND | ANY | AS | BROADER | CHARACTERS | ESCAPE
| EXPAND | FOR |FORM | FROM | IN | IS | LEVEL | LEVELS
| LIKE | NARROWER | NEAR | NOT | OF | ORDER | PARAGRAPH
| PARAGRAPHS | PREFERRED | PROXIMITY | RELATED | SAME
| SENTENCE | SENTENCES | SOUNDS | STEMMED | SYNONYM | TERM
| THESAURUS | TOP | WITHIN | WORDS

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 57

6 Structured Search Pattern Types

The types in this family provide for the construction of structured search patterns. The types form the
following hierarchy:

FT_Any
FT_Primary (not instantiable)

FT_WordOrPhrase (not instantiable)
FT_TextLiteral

FT_StemmedWord
FT_Phrase

FT_StemmedPhrase
FT_Proxi
FT_Soundex
FT_BroaderTerm
FT_NarrowerTerm
FT_Synonym
FT_PreferredTerm
FT_RelatedTerm
FT_TopTerm
FT_IsAbout
FT_Context
FT_ParExpr

FT_Term
FT_Expr
FT_PhraseList

ISO/IEC FDIS 13249-2:2000 (E)

58 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.1 FT_Any Type and Routines

6.1.1 FT_Any Type

Purpose

The FT_Any type provides facilities for the construction of a structured search pattern that represents a
multiset of FT_WordOrPhrase values and for testing whether at least one member of such a multiset occurs
in a given FullText value.

Definition

CREATE TYPE FT_Any
AS (

Tokens FT_WordOrPhrase ARRAY[FT_MaxArrayLength]
)
INSTANTIABLE
NOT FINAL

METHOD Contains(text FullText)
RETURNS BOOLEAN
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT,

METHOD FT_Any(tokens FT_WordOrPhrase ARRAY[FT_MaxArrayLength])
RETURNS FT_Any
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The FT_Any type provides:

a) an attribute Tokens,
b) a method Contains(FullText),
c) a method FT_Any(FT_WordOrPhrase ARRAY).

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 59

6.1.2 Contains Method

Purpose

Search a FullText value for an FT_Any.

Definition

CREATE METHOD Contains(text FullText)
RETURNS BOOLEAN
FOR FT_Any
BEGIN

DECLARE result BOOLEAN;
DECLARE lent INTEGER;
DECLARE lena INTEGER;
DECLARE TokArray FullText_Token ARRAY[FT_MaxArrayLength];

SET TokArray = text.Tokenize();

IF TokArray IS NULL THEN
SET lent = CAST(NULL AS INTEGER);

ELSE
SET lent = CARDINALITY(TokArray);

END IF;
IF SELF IS NULL THEN

SET lena = CAST(NULL AS INTEGER);
ELSEIF SELF.Tokens IS NULL THEN

SET lena = CAST(NULL AS INTEGER);
ELSE SET lena = CARDINALITY(SELF.Tokens);
END IF;

IF lent IS NULL AND lena IS NULL THEN
RETURN UNKNOWN;

ELSEIF lent = 0 OR lena = 0 THEN
SET result = FALSE;

ELSEIF lent <> 0 AND lena IS NULL OR
lent IS NULL AND lena <> 0 THEN

RETURN UNKNOWN;
ELSE SET result =

(WITH RECURSIVE Tab2(ind, wop) AS
(VALUES(1, SELF.Tokens[1])

UNION
 SELECT ind + 1, SELF.Tokens[ind + 1]
 FROM Tab2
 WHERE ind < lena
),

Temp(BasI) AS
(SELECT MAX(BasI)
 FROM (VALUES(1) UNION
 SELECT CASE ta.wop.Contains(text)
 WHEN FALSE THEN 1
 WHEN TRUE THEN 3
 ELSE 2
 END
 FROM Tab2 ta) AS TT(BasI)
)

SELECT ARRAY[FALSE, UNKNOWN, TRUE][BasI] FROM Temp
);

END IF;
RETURN result;

END

ISO/IEC FDIS 13249-2:2000 (E)

60 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The method Contains(FullText) takes the following input parameters:

a) a FullText item text.

2) If SELF.Tokens meets all of the following conditions, then it is implementation-defined whether an
exception condition is raised: SQL/MM Full-Text - invalid search expression:

i) Every contained pattern of the form <word> or <stemmed word> specifies a stop word.

ii) Every contained pattern of the form <phrase> or <stemmed phrase> contains only stop words, or
contains leading or trailing stop words.

3) Contains(FullText) returns:

Case:

a) false, if either text.Tokenize() or SELF.Tokens is empty, or for every element B of SELF.Tokens

B.Contains(text)

is false.

b) true, if there exists one element B of SELF.Tokens, such that

B.Contains(text)

is true;

c) Otherwise, unknown. In particular, this result is obtained if:

i) Any of text or text.Tokenize() is the null value, and SELF or SELF.Tokens is the null value.

ii) text or text.Tokenize() is the null value, but SELF.Tokens is an non-empty array.

iii) SELF or SELF.Tokens is the null value, but text.Tokenize() is an non-empty array.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 61

6.1.3 FT_Any Method

Purpose

Return a specified FT_Any value.

Definition

CREATE METHOD FT_Any
(tokens FT_WordOrPhrase ARRAY[FT_MaxArrayLength])
RETURNS FT_Any
FOR FT_Any
RETURN SELF.Tokens(tokens)

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The method FT_Any(FT_WordOrPhrase ARRAY) takes the following input parameters:

a) an array tokens with elements of type FT_WordOrPhrase which represents a set of words or terms.

ISO/IEC FDIS 13249-2:2000 (E)

62 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.2 FT_Primary Type and Routines

6.2.1 FT_Primary Type

Purpose

The FT_Primary type is the root type of a number elementary search pattern types. It provides a facility for
negating any search pattern the type of which is a subtype of FT_Primary.

Definition

CREATE TYPE FT_Primary
AS (

NOT_tag BOOLEAN
)
NOT INSTANTIABLE
NOT FINAL

METHOD Contains(text FullText)
RETURNS BOOLEAN
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT,

METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

Description

1) The FT_Primary type provides:

a) an attribute NOT_tag,
b) a method Contains(FullText),
c) a method StrctPattern_to_Pattern().

2) Values of FT_Primary cannot be created. Only values of instantiable subtypes of FT_Primary can be
created.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 63

6.2.2 Contains Method

Purpose

Search a FullText value for an FT_Primary value.

Definition

CREATE METHOD Contains
(text FullText)
RETURNS BOOLEAN
FOR FT_Primary
RETURN TRUE

Description

1) The method Contains(FullText) takes the following input parameters:

a) a FullText value text.

2) The method Contains(FullText) is a dummy method that will never be called since there are no
FT_Primary values which are not values of a subtype of FT_Primary.

ISO/IEC FDIS 13249-2:2000 (E)

64 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.2.3 StrctPattern_to_FT_Pattern Method

Purpose

Convert an FT_Primary value to an FT_Pattern value.

Definition

CREATE METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern
FOR FT_Primary
BEGIN

DECLARE result CHARACTER VARYING(FT_MaxPatternLength);

SET result = ’" "’; -- dummy result
RETURN CAST(result AS FT_Pattern);

END

Definitional Rules

1) FT_MaxPatternLength is the implementation-dependent maximum length for the character
representation of an FT_Pattern value.

Description

1) The method StrctPattern_to_FT_Pattern() has no input parameters.

2) The method StrctPattern_to_FT_Pattern() is a dummy method that will never be called since there are
no FT_Primary values which are not values of a subtype of FT_Primary.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 65

6.3 FT_WordOrPhrase Type and Routines

6.3.1 FT_WordOrPhrase Type

Purpose

The FT_WordOrPhrase type is the root type for the types FT_TextLiteral and FT_Phrase; it is not
instantiable.

Definition

CREATE TYPE FT_WordOrPhrase
UNDER FT_Primary
NOT INSTANTIABLE
NOT FINAL

OVERRIDING METHOD Contains(text FullText)
RETURNS BOOLEAN,

OVERRIDING METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern,

METHOD getWordArray()
RETURNS FullText_Token ARRAY[FT_MaxArrayLength]
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The FT_WordOrPhrase type provides:

a) a method Contains(FullText),
b) a method StrctPattern_to_Pattern(),
c) a method getWordArray().

2) FT_WordOrPhrase values cannot be created. Only values of the subtypes of FT_WordOrPhrase can
be created.

ISO/IEC FDIS 13249-2:2000 (E)

66 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.3.2 Contains Method

Purpose

Search a FullText value for an FT_WordOrPhrase value.

Definition

CREATE METHOD Contains
(text FullText)
RETURNS BOOLEAN
FOR FT_WordOrPhrase
RETURN TRUE

Description

1) The method Contains(FullText) takes the following input parameters:

a) a FullText value text.

2) The method Contains(FullText) is a dummy method that will never be called since there are no
FT_WordOrPhrase values which are not values of a subtype of FT_WordOrPhrase.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 67

6.3.3 StrctPattern_to_FT_Pattern Method

Purpose

Convert an FT_WordOrPhrase value to an FT_Pattern value.

Definition

CREATE METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern
FOR FT_WordOrPhrase
BEGIN

DECLARE result CHARACTER VARYING(FT_MaxPatternLength);

SET result = ’" "’; -- dummy result
RETURN CAST(result AS FT_Pattern);

END

Definitional Rules

1) FT_MaxPatternLength is the implementation-dependent maximum length for the character
representation of an FT_Pattern value.

Description

1) The method StrctPattern_to_FT_Pattern() has no input parameters.

2) The method StrctPattern_to_FT_Pattern() is a dummy method that will never be called since there are
no FT_WordOrPhrase values which are not values of a subtype of FT_WordOrPhrase.

ISO/IEC FDIS 13249-2:2000 (E)

68 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.3.4 getWordArray Method

Purpose

Generate an array representation while preserving ordering from an FT_WordOrPhrase value where each
array element contains a FullText_Token value representing a word.

Definition

CREATE METHOD getWordArray()
RETURNS FullText_Token ARRAY[FT_MaxArrayLength]
FOR FT_WordOrPhrase
RETURN CAST(ARRAY[] AS FullText_Token ARRAY[FT_MaxArrayLength])

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The method getWordArray() has no input parameters.

2) The method getWordArray() is a dummy method that will never be called since there are no
FT_WordOrPhrase values which are not values of a subtype of FT_WordOrPhrase.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 69

6.4 FT_TextLiteral Type and Routines

6.4.1 FT_TextLiteral Type

Purpose

The FT_TextLiteral type provides facilities for the construction of literal search patterns and for searching
of occurrences of literals in text.

Definition

CREATE TYPE FT_TextLiteral
UNDER FT_WordOrPhrase
AS (

LitPart FullText_Token,
Language CHARACTER VARYING(FT_MaxLanguageLength),
EscapeSpec CHARACTER(1)

)
INSTANTIABLE
NOT FINAL

OVERRIDING METHOD Contains(text FullText)
RETURNS BOOLEAN,

OVERRIDING METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern,

METHOD matches(tok FullText_Token)
RETURNS BOOLEAN
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT,

METHOD Tokenize()
RETURNS FT_TextLiteral
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT,

METHOD FT_TextLiteral
(w FullText_Token,
 Language CHARACTER VARYING(FT_MaxLanguageLength))
RETURNS FT_TextLiteral
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT,

METHOD FT_TextLiteral
(w FullText_Token
 Language CHARACTER VARYING(FT_MaxLanguageLength),
 EscapeChar CHARACTER(1))
RETURNS FT_TextLiteral
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT,

ISO/IEC FDIS 13249-2:2000 (E)

70 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

OVERRIDING METHOD getWordArray()
RETURNS FullText_Token ARRAY[FT_MaxArrayLength]

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

2) FT_MaxLanguageLength is the implementation-defined maximum length for the character
representation of a language specification.

Description

1) The FT_TextLiteral type provides:

a) an attribute LitPart,
b) an attribute Language,
c) an attribute EscapeSpec,
d) a method Contains(FullText),
e) a method StrctPattern_to_FT_Pattern(),
f) a method matches(FullText_Token),
g) a method Tokenize(),
h) a method getWordArray(),
i) a method FT_TextLiteral(FullText_Token, CHARACTER VARYING) and a method

FT_TextLiteral(FullText_Token, CHARACTER VARYING, CHARACTER),
j) a function EliminateDQS(FullText_Token),
k) a function InsertDQS(FullText_Token).

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 71

6.4.2 Contains Method

Purpose

Search a FullText value for an FT_TextLiteral value.

Definition

CREATE METHOD Contains
(text FullText)
RETURNS BOOLEAN
FOR FT_TextLiteral
BEGIN

DECLARE result BOOLEAN;

IF text.Tokenize() IS NULL THEN
RETURN UNKNOWN;

END IF;
IF CARDINALITY(text.Tokenize()) = 0 THEN

SET result = FALSE;
ELSE

SET result = (WITH RECURSIVE tempTab(pos, token) AS
(VALUES(1, text.Tokenize()[1])

UNION
 SELECT tt.pos + 1, text.Tokenize()[tt.pos + 1]
 FROM tempTab tt
 WHERE tt.pos < CARDINALITY(text.Tokenize())
),

Temp(BasI) AS
(SELECT MAX(BasI)
 FROM (VALUES(1) UNION
 SELECT CASE SELF.Tokenize().matches(tt.token)
 WHEN FALSE THEN 1
 WHEN TRUE THEN 3
 ELSE 2
 END
 FROM TempTab tt) AS TT(BasI)
)

SELECT ARRAY[FALSE, UNKNOWN, TRUE][BasI] FROM Temp
);

END IF;
RETURN (SELF.NOT_tag = result);

END

Description

1) The method Contains(FullText) takes the following input parameters:

a) a FullText item text.

2) Let TL be the result of the invocation of text.Tokenize() and TLE be elements of TL, normalized in an
implementation-defined way, and with leading and trailing blanks removed. Let T be SELF.LitPart,
normalized in an implementation-defined way and with leading and trailing blanks removed. If
SELF.EscapeSpec is the null value, let TT be T; otherwise, let TT be T ESCAPE SELF.EscapeSpec.

a) Case:

i) If T contains a stop word, an exception condition is raised: SQL/MM Full-Text - invalid search
expression.

ISO/IEC FDIS 13249-2:2000 (E)

72 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

ii) If TL is empty, then let R be false.

iii) If

TLE NOT LIKE TT

is true for every element TLE of TL, with leading and trailing blanks removed from TLE, then
let R be false.

iv) If TL contains at least one element TLE, with leading and trailing blanks removed, such that

TLE LIKE TT

is true, then let R be true.

v) Otherwise, let R be unknown.

b) Contains(FullText) returns:

Case:

i) unknown, if SELF.NOT_tag is the null value.

ii) R, if SELF.NOT_tag is true.

iii) Otherwise, NOT R.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 73

6.4.3 StrctPattern_to_FT_Pattern Method

Purpose

Convert an FT_TextLiteral value to an FT_Pattern value.

Definition

CREATE METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern
FOR FT_TextLiteral
BEGIN

DECLARE result CHARACTER VARYING(FT_MaxPatternLength);

SET result = SELF.Language || ’ "’
|| TRIM(BOTH ’ ’ FROM InsertDQS(SELF.LitPart))
|| CASE WHEN SELF.EscapeSpec IS NULL THEN

’"’
ELSE

’" ESCAPE "’ || SELF.EscapeSpec || ’"’
END;

IF SELF.NOT_tag IS UNKNOWN THEN
SET result = NULL;

ELSEIF NOT SELF.NOT_tag THEN
SET result = ’NOT ’ || result;

END IF;
RETURN CAST(result AS FT_Pattern);

END

Definitional Rules

1) FT_MaxPatternLength is the implementation-dependent maximum length for the character
representation of an FT_Pattern value.

Description

1) The method StrctPattern_to_FT_Pattern() has no input parameters.

2) StrctPattern_to_FT_Pattern() converts an FT_TextLiteral value into an FT_Pattern of the form
<word> or of the form NOT <word>.

3) In the course of initializing an FT_Pattern value, <double quote>s appearing in SELF.LitPart are taken
care of by the function InsertDQS(FullText_Token). InsertDQS(FullText_Token) replaces each <double
quote> in a token by a <doublequote symbol>.

4) If SELF is the null value or SELF.NOT_tag is unknown, then the result is the null value.

ISO/IEC FDIS 13249-2:2000 (E)

74 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.4.4 matches Method

Purpose

Compare a FullText_Token value with an FT_TextLiteral value.

Definition

CREATE METHOD matches
(tok FullText_Token)
RETURNS BOOLEAN
FOR FT_TextLiteral
RETURN (

CASE WHEN SELF.EscapeSpec IS NULL THEN
TRIM(BOTH ’ ’ FROM tok) LIKE

TRIM(BOTH ’ ’ FROM SELF.LitPart)
ELSE

TRIM(BOTH ’ ’ FROM tok) LIKE
TRIM(BOTH ’ ’ FROM SELF.LitPart) ESCAPE SELF.EscapeSpec

END
)

Description

1) The method matches(FullText_Token) takes the following input parameters:

a) a FullText_Token item tok.

2) matches(FullText_Token) compares tok and SELF using the LIKE operator to return a BOOLEAN
value.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 75

6.4.5 Tokenize Method

Purpose

Normalize the LitPart attribute of an FT_TextLiteral value.

Definition

CREATE METHOD Tokenize()
RETURNS FT_TextLiteral
FOR FT_TextLiteral
BEGIN

--
-- !! See Description
--

END

Description

1) The method Tokenize() has no input parameters.

2) Tokenize() normalizes SELF.LitPart in an implementation-defined way.

ISO/IEC FDIS 13249-2:2000 (E)

76 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.4.6 getWordArray Method

Purpose

Return a one element FullText_Token array from an FT_TextLiteral value representing a single word.

Definition

CREATE METHOD getWordArray()
RETURNS FullText_Token ARRAY[FT_MaxArrayLength]
FOR FT_TextLiteral
RETURN ARRAY[TRIM(BOTH ’ ’ FROM SELF.LitPart)]

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The method getWordArray() has no input parameters.

2) The method getWordArray() returns SELF.LitPart as a one element FullText_Token array.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 77

6.4.7 FT_TextLiteral Methods

Purpose

Return a specified FT_TextLiteral value.

Definition

CREATE METHOD FT_TextLiteral
(w FullText_Token,
 Language CHARACTER VARYING(FT_MaxLanguageLength))
RETURNS FT_TextLiteral
FOR FT_TextLiteral
RETURN SELF.LitPart(EliminateDQS(w)).

Language(Language).NOT_tag(TRUE)

CREATE METHOD FT_TextLiteral
(w FullText_Token,
Language CHARACTER VARYING(FT_MaxLanguageLength),
 EscapeChar CHARACTER(1))
RETURNS FT_TextLiteral
FOR FT_TextLiteral
RETURN NEW FT_TextLiteral(w, Language).EscapeSpec(EscapeChar)

Description

1) The method FT_TextLiteral(FullText_Token, CHARACTER VARYING) takes the following input
parameters:

a) a FullText_Token value w,
b) a CHARACTER VARYING value Language.

2) The method FT_TextLiteral(FullText_Token, CHARACTER VARYING, CHARACTER) takes the
following input parameters:

a) a FullText_Token value w,
b) a CHARACTER VARYING value Language,
c) a CHARACTER value EscapeChar.

3) In the process of initializing an FT_TextLiteral value, the appearance of <doublequote symbol>s in the
token w is taken care of by the function EliminateDQS(FullText_Token).
EliminateDQS(FullText_Token) replaces each <doublequote symbol> in a token by a <double quote>.

ISO/IEC FDIS 13249-2:2000 (E)

78 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.4.8 EliminateDQS Function

Purpose

Eliminate a double quote symbol from a FullText_Token value.

Definition

CREATE FUNCTION EliminateDQS
(w FullText_Token)
RETURNS FullText_Token
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT
BEGIN

--
-- !! See Description
--

END

Description

1) The function EliminateDQS(FullText_Token) takes the following input parameters:

a) a FullText_Token value w.

2) EliminateDQS(FullText_Token) replaces each <doublequote symbol> in w by a <double quote>.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 79

6.4.9 InsertDQS Function

Purpose

Insert a double quote symbol in a FullText_Token value.

Definition

CREATE FUNCTION InsertDQS
(w FullText_Token)
RETURNS CHARACTER VARYING(FT_MaxPatternLength)
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT
BEGIN

--
-- !! See Description
--

END

Definitional Rules

1) FT_MaxPatternLength is the implementation-dependent maximum length for the character
representation of an FT_Pattern value.

Description

1) The function InsertDQS(FullText_Token) takes the following input parameters:

a) a FullText_Token value w.

2) InsertDQS(FullText_Token) replaces each <double quote> in a token by a <doublequote symbol>.

ISO/IEC FDIS 13249-2:2000 (E)

80 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.5 FT_StemmedWord Type and Routines

6.5.1 FT_StemmedWord Type

Purpose

The FT_StemmedWord type provides facilities for the construction of stemmed word search patterns and for
searching of occurrences of stemmed words in text.

Definition

CREATE TYPE FT_StemmedWord
UNDER FT_TextLiteral
INSTANTIABLE
NOT FINAL

OVERRIDING METHOD Contains(text FullText)
RETURNS BOOLEAN,

OVERRIDING METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern,

METHOD TokenizeAndStem()
RETURNS FT_TextLiteral
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT,

METHOD FT_StemmedWord
(sw FullText_Token,
 Language CHARACTER VARYING(FT_MaxLanguageLength))
RETURNS FT_StemmedWord
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

METHOD FT_StemmedWord
(sw FullText_Token,
 Language CHARACTER VARYING(FT_MaxLanguageLength),
 EscapeChar CHARACTER(1))
RETURNS FT_StemmedWord
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

Definitional Rules

1) FT_MaxLanguageLength is the implementation-defined maximum length for the character
representation of a language specification.

Description

1) The FT_StemmedWord type provides:

a) a method Contains(FullText),

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 81

b) a method StrctPattern_to_FT_Pattern(),
c) a method TokenizeAndStem(),
d) a method FT_StemmedWord(FullText_Token, CHARACTER VARYING) and a method

FT_StemmedWord(FullText_Token, CHARACTER VARYING, CHARACTER).

ISO/IEC FDIS 13249-2:2000 (E)

82 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.5.2 Contains Method

Purpose

Search a FullText value for an FT_StemmedWord value.

Definition

CREATE METHOD Contains
(text FullText)
RETURNS BOOLEAN
FOR FT_StemmedWord
BEGIN

DECLARE result BOOLEAN;

IF text.TokenizeAndStem() IS NULL THEN
RETURN UNKNOWN;

END IF;
IF CARDINALITY(text.TokenizeAndStem()) = 0 THEN

SET result = FALSE;
ELSE

SET result = (WITH RECURSIVE tempTab(pos, token) AS
(VALUES(1, text.TokenizeAndStem()[1])

UNION
SELECT tt.pos + 1, text.TokenizeAndStem()[tt.pos + 1]
FROM tempTab tt
WHERE tt.pos < CARDINALITY(text.TokenizeAndStem())
),

Temp(BasI) AS
(SELECT MAX(BasI)
 FROM (VALUES(1) UNION
 SELECT CASE SELF.TokenizeAndStem().matches(tt.token)
 WHEN FALSE THEN 1
 WHEN TRUE THEN 3
 ELSE 2
 END
 FROM TempTab tt) AS TT(BasI)
)

SELECT ARRAY[FALSE, UNKNOWN, TRUE][BasI] FROM Temp
);

END IF;
RETURN (SELF.NOT_tag = result);

END

Description

1) The method Contains(FullText) takes the following input parameters:

a) a FullText item text.

2) Let TL be the result of the invocation of text.TokenizeAndStem(). Let TLE be elements of TL,
normalized and reduced to stems in an implementation-defined way, and with leading and trailing
blanks removed. Let T be SELF.LitPart, normalized and reduced to stems in an implementation-
defined way, and with leading and trailing blanks removed. If SELF.EscapeSpec is the null value, let
TT be T; otherwise, let TT be T ESCAPE SELF.EscapeSpec.

a) Case:

i) If TL is empty, then let R be false.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 83

ii) If

TLE NOT LIKE TT

is true for every element TLE of TL, then let R be false.

iii) If TL contains at least one element TLE, such that

TLE LIKE TT

is true, then let R be true.

iv) Otherwise, let R be unknown.

b) Contains(FullText) returns:

Case:

i) unknown, if SELF.NOT_tag is the null value.

ii) R, if SELF.NOT_tag is true.

iii) Otherwise, NOT R.

ISO/IEC FDIS 13249-2:2000 (E)

84 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.5.3 StrctPattern_to_FT_Pattern Method

Purpose

Convert an FT_StemmedWord value to an FT_Pattern value.

Definition

CREATE METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern
FOR FT_StemmedWord
BEGIN

DECLARE result CHARACTER VARYING(FT_MaxPatternLength);

SET result = ’STEMMED FORM OF’ || SELF.Language
||’ "’ || TRIM(BOTH ’ ’ FROM InsertDQS(SELF.LitPart))
|| CASE WHEN SELF.EscapeSpec IS NULL THEN

’"’
ELSE

’" ESCAPE "’ || SELF.EscapeSpec || ’"’
END;

IF SELF.NOT_tag IS UNKNOWN THEN
SET result = NULL;

ELSEIF NOT SELF.NOT_tag THEN
SET result = ’NOT ’ || result;

END IF;
RETURN CAST(result AS FT_Pattern);

END

Definitional Rules

1) FT_MaxPatternLength is the implementation-dependent maximum length for the character
representation of an FT_Pattern value.

Description

1) The method StrctPattern_to_FT_Pattern(FT_StemmedWord) has no input parameters.

2) StrctPattern_to_FT_Pattern() converts an FT_StemmedWord value into an FT_Pattern value of the
form <stemmed word> or of the form NOT <stemmed word>.

3) In the course of initializing an FT_Pattern value, <double quote>s appearing in SELF.LitPart are taken
care of by the function InsertDQS(FullText_Token). InsertDQS(FullText_Token) replaces each
<double quote> in a token by a <doublequote symbol>.

4) If SELF is the null value or SELF.NOT_tag is unknown, then the result is the null value.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 85

6.5.4 TokenizeAndStem Method

Purpose

Normalize and stem-reduce the LitPart attribute of an FT_StemmedWord value.

Definition

CREATE METHOD TokenizeAndStem()
RETURNS FT_TextLiteral
FOR FT_StemmedWord
BEGIN

--
-- !! See Description
--

END

Description

1) The method TokenizeAndStem() has no input parameters.

2) TokenizeAndStem() normalizes and stem-reduces SELF.LitPart in an implementation-defined way.

ISO/IEC FDIS 13249-2:2000 (E)

86 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.5.5 FT_StemmedWord Methods

Purpose

Return a specified FT_StemmedWord value.

Definition

CREATE METHOD FT_StemmedWord
(sw FullText_Token,
 Language CHARACTER VARYING(FT_MaxLanguageLength))
RETURNS FT_StemmedWord
FOR FT_StemmedWord
RETURN SELF.LitPart(EliminateDQS(sw)).

Language(Language).NOT_Tag(TRUE)

CREATE METHOD FT_StemmedWord
(sw FullText_Token,
 Language CHARACTER VARYING(FT_MaxLanguageLength),
 EscapeChar CHARACTER(1))
RETURNS FT_StemmedWord
FOR FT_StemmedWord
RETURN NEW FT_StemmedWord(sw, Language).EscapeSpec(EscapeChar)

Definitional Rules

1) FT_MaxLanguageLength is the implementation-defined maximum length for the character
representation of a language specification.

Description

1) The method FT_StemmedWord(FullText_Token, CHARACTER VARYING) takes the following input
parameters:

a) a FullText_Token value sw,
b) a CHARACTER VARYING value Language.

2) The method FT_StemmedWord(FullText_Token, CHARACTER VARYING, CHARACTER) takes the
following input parameters:

a) a FullText_Token value sw,
b) a CHARACTER VARYING value Language,
c) a CHARACTER value EscapeChar.

3) In the process of initializing an FT_StemmedWord value, the appearance of <doublequote symbol>s in
the token sw is taken care of by the function EliminateDQS(FullText_Token).
EliminateDQS(FullText_Token) replaces each <doublequote symbol> in a token by a <double quote>.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 87

6.6 FT_Phrase Type and Routines

6.6.1 FT_Phrase Type

Purpose

The FT_Phrase type provides for the construction of phrase search patterns, and for searching of
occurrences of the phrases in text.

Definition

CREATE TYPE FT_Phrase
UNDER FT_WordOrPhrase
AS (

PhrasePart FullText_Token ARRAY[FT_MaxArrayLength],
Language CHARACTER VARYING(FT_MaxLanguageLength),
EscapeSpec CHARACTER(1)

)
INSTANTIABLE
NOT FINAL

OVERRIDING METHOD Contains(text FullText)
RETURNS BOOLEAN,

OVERRIDING METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern,

OVERRIDING METHOD getWordArray()
RETURNS FullText_Token ARRAY[FT_MaxArrayLength],

METHOD TokenizePosition()
RETURNS FT_TokenPosition ARRAY[FT_MaxArrayLength]
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT,

METHOD FT_Phrase
(wl FullText_Token ARRAY[FT_MaxArrayLength],
 Language CHARACTER VARYING(FT_MaxLanguageLength))
RETURNS FT_Phrase
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT,

METHOD FT_Phrase
(wl FullText_Token ARRAY[FT_MaxArrayLength],
 Language CHARACTER VARYING(FT_MaxLanguageLength),
 EscapeChar CHARACTER(1))
RETURNS FT_Phrase
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

ISO/IEC FDIS 13249-2:2000 (E)

88 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

2) FT_MaxLanguageLength is the implementation-defined maximum length for the character
representation of a language specification.

Description

1) The FT_Phrase type provides:

a) an attribute PhrasePart,
b) an attribute Language,
c) an attribute EscapeSpec,
e) a method Contains(FullText),
f) a method StrctPattern_to_FT_Pattern(),
g) a method getWordArray(),
h) a method TokenizePosition(),
i) a method FT_Phrase(FullText_Token ARRAY, CHARACTER VARYING) and a method

FT_Phrase(FullText_Token ARRAY, CHARACTER VARYING, CHARACTER) ,
j) a function matches(FT_TokenPosition ARRAY, INTEGER, INTEGER, FT_TokenPosition ARRAY,

INTEGER, INTEGER, CHARACTER, CHARACTER VARYING),
k) a function prune(FT_TokenPosition ARRAY, INTEGER, INTEGER).

2) An FT_Phrase value denotes an array of FullText_Token tokens which in turn represents a sequence of
words. The array may be empty or the null value.

Tokens may contain wild card characters ’%’ and ’_’. The ’%’ wild card denotes an arbitrary number
(zero or more) of characters which are admissible within a token. An ’_’ wild card denotes one arbitrary
character out of the set of characters which are admissible within a token.

A token may be the null value.

NOTE 16 - FT_Phrase values are intentionally more general than <phrase>s which contain at least two
<word representation>s, none of which may be a NULL string.

3) If a token exclusively consists of ’%’ wild card characters, then it denotes an optional word.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 89

6.6.2 Contains Method

Purpose

Search a FullText value for an FT_Phrase value.

Definition

CREATE METHOD Contains
(text FullText)
RETURNS BOOLEAN
FOR FT_Phrase
BEGIN

DECLARE tokarray FT_TokenPosition ARRAY[FT_MaxArrayLength];
DECLARE result BOOLEAN;
DECLARE lent INTEGER;
DECLARE tlen INTEGER;
DECLARE lenp INTEGER;
DECLARE plen INTEGER;
DECLARE canonicphr FT_TokenPosition ARRAY[FT_MaxArrayLength];
DECLARE nmsk INTEGER;
DECLARE i INTEGER;

SET tokarray = text.TokenizePosition(’WORDS’);
IF tokarray IS NULL THEN

RETURN UNKNOWN;
END IF;
SET lent = CARDINALITY(tokarray);
SET canonicphr = SELF.TokenizePosition();
IF (SELF IS NULL OR canonicphr IS NULL) AND

lent <> 0 THEN
RETURN UNKNOWN;

END IF;
SET lenp = CARDINALITY(canonicphr);
SET nmsk = 0;
SET i = 1;
--
-- find tokens representing an optional word
--
L1: WHILE (i <= lenp) DO

IF canonicphr[i].token SIMILAR ’$%+’ ESCAPE ’$’ THEN
SET nmsk = nmsk + 1;

END IF;
SET i = i + 1;

END WHILE L1;
IF lent = 0 THEN

RETURN (FALSE = SELF.NOT_tag);
END IF;
IF lenp = 0 THEN

RETURN (TRUE = SELF.NOT_tag);
END IF;

SET tlen = tokarray[lent].position;
SET plen = canonicphr[lenp].position;

IF tlen < plen - nmsk THEN
RETURN (FALSE = SELF.NOT_tag);

END IF;
IF plen - nmsk = 0 THEN

RETURN (TRUE = SELF.NOT_tag);
END IF;

SET result = (WITH RECURSIVE textrange(i) AS

ISO/IEC FDIS 13249-2:2000 (E)

90 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

(VALUES (1)
UNION

 SELECT i + 1
 FROM textrange
 WHERE i < lent
),
Temp(BasI) AS

(SELECT MAX(BasI)
 FROM (VALUES(1) UNION
 SELECT
 CASE tokarray[i].position <=
 tlen + 1 - (plen - nmsk)
 AND
 matches(tokarray, i, lent, canonicphr, 1, lenp,
 SELF.EscapeSpec, SELF.Language)
 WHEN FALSE THEN 1
 WHEN TRUE THEN 3
 ELSE 2
 END
 FROM textrange AS tr(i)) AS TT(BasI)
)

SELECT ARRAY[FALSE, UNKNOWN, TRUE][BasI] FROM Temp
);

RETURN (SELF.NOT_tag = result);
END

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The method Contains(FullText) takes the following input parameters:

a) a FullText argument text.

2) If the first element of SELF.PhrasePart or the last element of SELF.PhrasePart is a stop word, or all
elements of SELF.PhrasePart are stop words, then it is implementation-defined whether an exception
condition is raised: SQL/MM Full-Text - invalid search expression.

3) Let TL be the result of the invocation of text.TokenizePosition(’WORDS’) and TLE be elements of TL.
Every TLE represents some word of text in an implementation-defined normalized way, with leading
and trailing blanks removed. It is implementation-defined whether no stop word of text, all stop words
of text, or all stop words of text except for leading and trailing stop words are represented by some
TLE. If stop words are included, then it is implementation-defined how they are effectively
represented, provided their representation is such that the result of comparing any two stop words is
true.

4) If no stop words are included in TL or no leading and trailing stop words are included in TL, then let TL
be the result of text.TokenizePosition(’WORDS’), with all leading stop words removed from text (i.e. the
TLE.Position numbers start with 1 (one)).

5) Let TPL be the result of SELF.TokenizePosition () and let TPLE be the elements of TPL. Every TPLE
represents some word of SELF.PhrasePart in an implementation-defined normalized way with leading
and trailing blanks removed. It is implementation-defined whether no stop word of SELF.PhrasePart,
all stop words of SELF.PhrasePart, or all stop words of SELF.PhrasePart except for leading and
trailing stop words are represented by some TPLE in an implementation-defined way, provided stop
word are dealt with in the same fashion by the TokenizePosition methods of the FullText and
FT_Phrase types.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 91

6) Case:

a) If TL is empty or if TLE.position of the last TLE is less than TPLE.position of the last TPLE, not
counting the TPLEs representing optional words, then let R be false.

b) If either SELF, SELF.PhrasePart or text is the null value, then let R be unknown.

c) If the cardinality of TPL is zero or TPL represents optional words only, then let R be true.

d) Otherwise:

i) Let n be the number of elements of TPL. Let now be the number of optional words. Let STS
be a set of m arrays of FT_TokenPosition values where m is 2 to the power of n such that:

A) TPL is an element of STS.

B) Every other element of STS (if m > 1 (one)) is obtained from TPL as follows:

1) Remove one of the possible combinations of TPLEs representing optional words.

2) For each removed TPLE, for each subsequent TPLE, say t, reduce the value t.position
by 1 (one).

C) No two elements of STS are equal.

ii) Let S1 be a sequence of L TLEs of TL and S2 an element of STS of the same length L. For j
ranging from 1 to L, let S1j and S2j be elements of S1 and S2, respectively. If
SELF.EscapeSpec is the null value, then let TT be S2j .token. Otherwise, let TT be S2j.token
ESCAPE SELF.EscapeSpec.

iii) Case:

A) If there exists some S1 and some S2 such that

S1j LIKE TT

is true for every j, then let R be true.

B) If for every possible pair (S1, S2)

S1j LIKE TT

is false for at least one j, then let R be false.

C) Otherwise, let R be unknown.

7) Contains(FullText) returns:

Case:

a) unknown, if NOT_tag is the null value.

b) NOT R, if NOT_tag is false.

ISO/IEC FDIS 13249-2:2000 (E)

92 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

c) Otherwise, R.

8) It is implementation-defined whether the distance separating two words W1 and W2 in a pattern of the
form <phase> or <stemmed phrase> is exactly or at most one more than the number of consecutive stop
words between W1 and W2. In the latter case, the stop words effectively behave like optional words.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 93

6.6.3 StrctPattern_to_FT_Pattern Method

Purpose

Convert an FT_Phrase value to an FT_Pattern value.

Definition

CREATE METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern
FOR FT_Phrase
BEGIN

DECLARE result CHARACTER VARYING(FT_MaxPatternLength);
DECLARE len INTEGER;
DECLARE i INTEGER;

IF SELF.PhrasePart IS NULL THEN
RETURN CAST(NULL AS FT_Pattern);

END IF;
SET i = 1;
SET len = CARDINALITY(SELF.PhrasePart);
SET result = SELF.Language || ’"’;
WHILE (i <= len) DO

SET result = result
|| InsertDQS(SELF.PhrasePart[i])
|| ’ ’;

SET i = i + 1;
END WHILE;

SET result = TRIM(TRAILING ’ ’ FROM result)
|| CASE WHEN SELF.EscapeSpec IS NULL THEN

’"’
ELSE

’" ESCAPE "’ || SELF.EscapeSpec || ’"’;
END

IF SELF.NOT_tag IS UNKNOWN THEN
SET result = NULL;

ELSEIF NOT SELF.NOT_tag THEN
SET result = ’NOT ’ || result;

END IF;
RETURN CAST(result AS FT_Pattern);

END

Definitional Rules

1) FT_MaxPatternLength is the implementation-dependent maximum length for the character
representation of an FT_Pattern value.

Description

1) The method StrctPattern_to_FT_Pattern() has no input parameters.

2) StrctPattern_to_FT_Pattern() returns an FT_Pattern value of the form <phrase> or the form NOT
<phrase>.

3) If SELF or SELF.PhrasePart is the null value or SELF.NOT_tag is unknown, then the result is the null
value.

ISO/IEC FDIS 13249-2:2000 (E)

94 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.6.4 getWordArray Method

Purpose

Return a FullText_Token array from an FT_Phrase value representing a term consisting of a sequence of
words (phrases).

Definition

CREATE METHOD getWordArray()
RETURNS FullText_Token ARRAY[FT_MaxArrayLength]
FOR FT_Phrase
BEGIN

DECLARE ret FullText_Token ARRAY[FT_MaxArrayLength];
DECLARE len INTEGER;
DECLARE i INTEGER;

SET len = CARDINALITY(SELF.PhrasePart);
SET i = 1;
SET ret = CAST(ARRAY[] AS

FullText_Token ARRAY[FT_MaxArrayLength];
L1: WHILE (i <= len) DO

SET ret = ret ||
ARRAY[TRIM(BOTH ’ ’ FROM SELF.PhrasePart[i])];

SET i = i + 1;
END WHILE L1;
RETURN ret;

END

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The method getWordArray() has no input parameters.

2) The method getWordArray() returns SELF.PhrasePart as a FullText_Token array such that the i-th
array element corresponds to the i-th element of SELF.PhrasePart. Leading and trailing blanks are
removed from the array elements.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 95

6.6.5 TokenizePosition Method

Purpose

Normalize the PhrasePart attribute of an FT_Phrase value.

Definition

CREATE METHOD TokenizePosition()
RETURNS FT_TokenPosition ARRAY[FT_MaxArrayLength]
FOR FT_Phrase
BEGIN

--
-- !! See Description
--

END

Description

1) The method TokenizePosition() has no input parameters.

2) TokenizePosition() normalizes SELF.PhrasePart in an implementation-defined way. In addition, it is
implementation-dependent whether stop words are effectively included in the result, and if so, how they
are represented. However, a conforming implementation must treat stop words in this method and in
the FullText method TokenizePosition(FullText_Token) in the same way.

ISO/IEC FDIS 13249-2:2000 (E)

96 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.6.6 FT_Phrase Methods

Purpose

Return a specified FT_Phrase value.

Definition

CREATE METHOD FT_Phrase
(wl FullText_Token ARRAY[FT_MaxArrayLength],
 Language CHARACTER VARYING(FT_MaxLanguageLength))
RETURNS FT_Phrase
FOR FT_Phrase
BEGIN

DECLARE i INTEGER;

IF wl IS NULL THEN
RETURN SELF;

END IF;
SET SELF.Language = Language;
SET SELF.NOT_tag = TRUE;
SET SELF.PhrasePart =

CAST(ARRAY[] AS FullText_Token ARRAY[FT_MaxArrayLength]);
-- This method expects a list of FullText tokens
-- where <doublequote symbol>s have not been
-- eliminated yet. Therefore, tokens in wl may contain
-- <doublequote symbol>s that have to be turned into
-- <double quote>s
SET i = 0;
L1: WHILE (i < CARDINALITY(wl)) DO

SET SELF.PhrasePart = SELF.PhrasePart
|| ARRAY[EliminateDQS(wl[i + 1])];

SET i = i + 1;
END WHILE L1;
RETURN SELF;

END

CREATE METHOD FT_Phrase
(wl FullText_Token ARRAY[FT_MaxArrayLength],
 Language CHARACTER VARYING(FT_MaxLanguageLength),
 EscapeChar CHARACTER(1))
RETURNS FT_Phrase
FOR FT_Phrase
RETURN NEW FT_Phrase(w1, Language).EscapeSpec(EscapeChar)

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 97

Description

1) The method FT_Phrase(FullText_Token ARRAY, CHARACTER VARYING) takes the following input
parameters:

a) an array wl of FullText_Tokens, representing a sequence of words,
b) a CHARACTER VARYING value Language.

2) The method FT_Phrase(FullText_Token ARRAY, CHARACTER VARYING, CHARACTER) takes the
following input parameters:

a) an array wl of FullText_Tokens, representing a sequence of words,
b) a CHARACTER VARYING value Language,
c) a CHARACTER(1) value EscapeChar.

ISO/IEC FDIS 13249-2:2000 (E)

98 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.6.7 matches Function

Purpose

Compare two FT_TokenPosition array values.

Definition

CREATE FUNCTION matches
(canonictext FT_TokenPosition ARRAY[FT_MaxArrayLength],
 post INTEGER,
 lent INTEGER,
 canonicphr FT_TokenPosition ARRAY[FT_MaxArrayLength],
 posp INTEGER,
 lenp INTEGER
 EscapeChar CHARACTER(1),
 Language CHARACTER VARYING(FT_MaxLanguageLength))
RETURNS BOOLEAN
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT
STATIC DISPATCH
BEGIN

RETURN
CASE

-- pattern exhausted, match found
WHEN (posp > lenp) THEN

TRUE
-- text to be tested exhausted, no match found
WHEN (post + posp - 1 > lent) THEN

FALSE
ELSE -- test successful so far; continue

CASE
WHEN canonicphr[posp].token NOT SIMILAR ’$%+’

ESCAPE ’$’ THEN
canonictext[post+posp-1].position -

 canonictext[post].position =
 canonicphr[posp].position -

 canonicphr[1].position
AND

NEW FT_TextLiteral(canonicphr[posp].token,
 Language,EscapeChar).
 matches(canonictext[post+posp-1].token)

AND
matches(canonictext, post, lent, canonicphr,
 posp+1, lenp, EscapeChar, Language)

ELSE matches(canonictext, post, lent,
 prune(canonicphr, posp, lenp),
 posp, lenp-1, EscapeChar, Language)

OR
matches(canonictext, post, lent, canonicphr,
 posp+1, lenp, EscapeChar, Language)

END
END

END

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 99

Definitional Rules
1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

2) FT_MaxLanguageLength is the implementation-defined maximum length for the character
representation of a language specification.

Description

1) The function matches(FT_TokenPosition ARRAY, INTEGER, INTEGER, FT_TokenPosition ARRAY,
INTEGER, INTEGER, CHARACTER, CHARACTER VARYING) takes the following input parameters:

a) an array canonictext of FT_TokenPosition items, representing a sequence of words.
b) an INTEGER value post,
c) an INTEGER value lent,
d) an array canonicphr of FT_TokenPosition items, representing a sequence of words,
e) an INTEGER value posp,
f) an INTEGER value lenp,
g) a CHARACTER value EscapeChar,
h) a CHARACTER VARYING value Language.

ISO/IEC FDIS 13249-2:2000 (E)

100 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.6.8 prune Function

Purpose

Return an FT_TokenPosition array from an FT_TokenPosition array by removing an indicated element and
adjusting the position value of subsequent elements.

Definition

CREATE FUNCTION prune
(canonicphr FT_TokenPosition ARRAY[FT_MaxArrayLength],
 posp INTEGER, lenp INTEGER)
RETURNS FT_TokenPosition ARRAY[FT_MaxArrayLength]
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT
STATIC DISPATCH
BEGIN

DECLARE result FT_TokenPosition ARRAY[FT_MaxArrayLength];
DECLARE i INTEGER;

SET i = 1;

L1: WHILE (i < posp) DO
SET result[i] = canonicphr[i];
SET i = i + 1;

END WHILE L1;

L2: WHILE (i < lenp) DO
SET result[i] = canonicphr[i+1];
SET result[i] = result[i].position(result[i].position - 1);
SET i = i + 1;

END WHILE L2;

RETURN result;
END

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The function prune(FT_TokenPosition ARRAY, INTEGER, INTEGER) takes the following input
parameters:

a) an array canonicphr of FT_TokenPosition values representing a sequence of words,

b) an INTEGER value posp which points to the element to be removed,

c) an INTEGER value lenp which is the cardinality of canonicphr.

2) From canonicphr, the function prune(FT_TokenPosition ARRAY, INTEGER, INTEGER) removes the
element at position posp. In the elements following posp the value of the attribute position is reduced
by 1 (one).

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 101

6.7 FT_StemmedPhrase Type and Routines

6.7.1 FT_StemmedPhrase Type

Purpose

The FT_StemmedPhrase type provides facilities for the construction of stemmed phrase search patterns and
for searching of occurrences of stemmed phrases in text.

Definition

CREATE TYPE FT_StemmedPhrase
UNDER FT_Phrase
INSTANTIABLE
NOT FINAL

OVERRIDING METHOD Contains(text FullText)
RETURNS BOOLEAN,

OVERRIDING METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern,

METHOD TokenizePositionAndStem()
RETURNS FT_TokenPosition ARRAY[FT_MaxArrayLength]
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT,

METHOD FT_StemmedPhrase
(wl FullText_Token ARRAY[FT_MaxArrayLength],
 Language CHARACTER VARYING(FT_MaxLanguageLength))
RETURNS FT_StemmedPhrase
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT,

METHOD FT_StemmedPhrase
(wl FullText_Token ARRAY[FT_MaxArrayLength],
 Language CHARACTER VARYING(FT_MaxLanguageLength),
 EscapeChar CHARACTER(1))
RETURNS FT_StemmedPhrase
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

2) FT_MaxLanguageLength is the implementation-defined maximum length for the character
representation of a language specification.

Description

1) The FT_StemmedPhrase type provides:

ISO/IEC FDIS 13249-2:2000 (E)

102 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

a) an attribute PhrasePart,
b) an attribute Language,
c) an attribute EscapeSpec,
d) a method Contains(FullText),
e) a method StrctPattern_to_FT_Pattern(),
f) a method TokenizePositionAndStem(),
g) a method FT_StemmedPhrase(FullText_Token ARRAY, CHARACTER VARYING) and a method

FT_StemmedPhrase(FullText_Token ARRAY, CHARACTER VARYING , CHARACTER).

2) An FT_StemmedPhrase value denotes an array of FullText_Token tokens which in turn represents a
sequence of words. When used for searching, each such word is to be replaced by its stemmed form.
The array may be empty or the null value.

A token may be the null value.

NOTE 17 - FT_StemmedPhrase values are intentionally more general than <phrase>s, the latter
containing at least two <word representation>s, none of which may be a NULL string.

3) If a token exclusively consists of ’%’ wild card characters, then it denotes an optional word.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 103

6.7.2 Contains Method

Purpose

Search a FullText value for an FT_StemmedPhrase value.

Definition

CREATE METHOD Contains
(text FullText)
RETURNS BOOLEAN
FOR FT_StemmedPhrase
BEGIN

DECLARE tokarray FT_TokenPosition ARRAY[FT_MaxArrayLength];
DECLARE result BOOLEAN;
DECLARE lent INTEGER;
DECLARE tlen INTEGER;
DECLARE lenp INTEGER;
DECLARE plen INTEGER;
DECLARE nmsk INTEGER;
DECLARE canonicphr FT_TokenPosition ARRAY[FT_MaxArrayLength];
DECLARE i INTEGER;

SET tokarray = text.TokenizePositionAndStem();
IF tokarray IS NULL THEN

RETURN UNKNOWN;
END IF;

SET lent = CARDINALITY(tokarray);
SET canonicphr = SELF.TokenizePositionAndStem();
IF (SELF IS NULL OR canonicphr IS NULL) AND lent <> 0 THEN

RETURN UNKNOWN;
END IF;

SET lenp = CARDINALITY(canonicphr);
SET nmsk = 0;
SET i = 1;
--
-- find tokens representing an optional word
--

L1: WHILE (i <= lenp) DO
IF canonicphr[i].token SIMILAR ’$%+’ ESCAPE ’$’ THEN

SET nmsk = nmsk + 1;
END IF;
SET i = i + 1;

END WHILE L1;
IF lent = 0 THEN

RETURN (FALSE = SELF.NOT_tag);
END IF;
IF lenp = 0 THEN

RETURN (TRUE = SELF.NOT_tag);
END IF;

SET tlen = tokarray[lent].position;
SET plen = canonicphr[lenp].position;
IF tlen < plen - nmsk THEN

RETURN (FALSE = SELF.NOT_tag);
END IF;
IF plen - nmsk = 0 THEN

RETURN (TRUE = SELF.NOT_tag);
END IF;

SET result = (WITH RECURSIVE textrange (i) AS

ISO/IEC FDIS 13249-2:2000 (E)

104 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

(VALUES (1)
UNION

 SELECT i + 1
 FROM textrange
 WHERE i < lent
),
Temp(BasI) AS

(SELECT MAX(BasI)
 FROM (VALUES(1) UNION
 SELECT
 CASE tokarray[i].position <=
 tlen + 1 - (plen - nmsk)
 AND
 matches(tokarray, i, lent, canonicphr, 1, lenp,
 SELF.EscapeSpec, SELF.Language)
 WHEN FALSE THEN 1
 WHEN TRUE THEN 3
 ELSE 2
 END
 FROM textrange AS tr(i)) AS TT(BasI)
)
SELECT ARRAY[FALSE, UNKNOWNN, NULL][BaseI]
FROM Temp

);
RETURN (SELF.NOT_tag = result);

END

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The method Contains(FullText) takes the following input parameters:

a) a FullText argument text.

2) If the first element of SELF.PhrasePart or the last element of SELF.PhrasePart is a stop word, or all
elements of SELF.PhrasePart are stop words, then it is implementation-defined whether an exception
condition is raised: SQL/MM Full-Text - invalid search expression.

3) Let TL be the result of the invocation of text.TokenizePositionAndStem() and TLE be elements of TL.
Every TLE represents some word of text reduced to its base reduced form and in an implementation-
defined normalized way, with leading and trailing blanks removed. It is implementation-defined
whether no stop word of text, all stop words of text, or all stop words of text except for leading and
trailing stop words are represented by some TLE. If stop words are included, then it is implementation-
defined how they are effectively represented, provided their representation is such that the result of
comparing any two stop words is true.

4) If no stop words are included in TL or no leading and trailing stop words are included in TL, then let TL
be the result of text.TokenizePositionAndStem() with all leading stop words removed from text (i.e. the
TLE.Position numbers start with 1 (one)).

5) Let TPL be the result of SELF.TokenizePositionAndStem(). Every element TPLE of TPL represents
some word of SELF.PhrasePart reduced to its base reduced form and represented in an
implementation-defined normalized way, with leading and trailing blanks removed. It is
implementation-defined whether no stop word of SELF.PhrasePart, all stop words of
SELF.PhrasePart, or all stop words of SELF.PhrasePart except for leading and trailing stop words are

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 105

represented by some TPLE in an implementation-defined way, provided stop word are dealt with in the
same fashion by the TokenizePositionAndStem methods of the FullText and FT_StemmedPhrase types.

6) Case:

a) If TL is empty or TLE.position of the last TLE is less than TPLE.position of the last TPLE, not
counting the TPLEs representing optional words, then let R be false.

b) If either SELF, SELF.PhrasePart or text is the null value, then let R be unknown.

c) If the cardinality of TPL is zero or TPL represents optional words only, then let R be true.

d) Otherwise:

i) Let n be the number of elements of TPL. Let now be the number of optional words. Let STS
be a set of m arrays of FT_TokenPosition values, where m is 2 to the power of n, such that:

A) TPL is an element of STS.

B) Every other element of STS (if m > 1 (one)) is obtained from TPL as follows:

1) Remove one of the possible combinations of TPLEs representing optional words.

2) For each removed TPLE, for each subsequent TPLE, say t, reduce the value t.position
by 1 (one).

C) No two elements of STS are equal.

ii) Let S1 be a sequence of L TLEs of TL and let S2 be an element of STS of the same length L.
For j ranging from 1 to L, let S1j and S2j be elements of S1 and S2, respectively. Let TT be
S2j.token.

iii) Case:

A) If there exists some S1 and some S2 such that

S1j LIKE TT

is true for every j, then let R be true.

B) If for every possible pair (S1, S2)

S1j LIKE TT

is false for at least one j, then let R be false.

C) Otherwise, let R be unknown.

7) Contains(FullText) returns:

Case:

a) unknown, if NOT_tag is the null value.

b) NOT R, if NOT_tag is false.

ISO/IEC FDIS 13249-2:2000 (E)

106 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

c) Otherwise, R.

8) It is implementation-defined whether the distance between two words W1 and W2 in a pattern of the
form <phase> or <stemmed phrase> is exactly or at most one more than the number of consecutive stop
words between W1 and W2. In the latter case, the stop words effectively behave like optional words.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 107

6.7.3 StrctPattern_to_FT_Pattern Method

Purpose

Convert an FT_StemmedPhrase value to an FT_Pattern value.

Definition

CREATE METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern
FOR FT_StemmedPhrase
BEGIN

DECLARE result CHARACTER VARYING(FT_MaxPatternLength);
DECLARE len INTEGER;
DECLARE i INTEGER;

IF SELF.PhrasePart IS NULL THEN
RETURN CAST(NULL AS FT_Pattern);

END IF;

SET i = 1;
SET len = CARDINALITY(SELF.PhrasePart);
SET result = ’STEMMED FORM OF ’ || SELF.Language ||’"’;
WHILE (i <= len) DO

SET result = result
|| InsertDQS(SELF.PhrasePart[i])
|| ’ ’;

SET i = i + 1;
END WHILE;

SET RESULT = TRIM(TRAILING ’ ’ FROM result)
|| CASE WHEN SELF.EscapeSpec IS NULL THEN

’"’
ELSE

’" ESCAPE "’ || SELF.EscapeSpec || ’"’;
END

IF SELF.NOT_tag IS UNKNOWN THEN
SET result = NULL;

ELSEIF NOT SELF.NOT_tag THEN
SET result = ’NOT ’ || result;

END IF;
RETURN CAST(result AS FT_Pattern);

END

Definitional Rules

1) FT_MaxPatternLength is the implementation-dependent maximum length for the character
representation of an instance of FT_Pattern.

ISO/IEC FDIS 13249-2:2000 (E)

108 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

Description

1) The method StrctPattern_to_FT_Pattern() has no input parameters.

2) StrctPattern_to_FT_Pattern() returns an FT_Pattern value of the form <stemmed phrase> or the form
NOT <stemmed phrase>.

3) If SELF or SELF.PhrasePart is the null value or SELF.NOT_tag is unknown, then the result is the null
value.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 109

6.7.4 TokenizePositionAndStem Method

Purpose

Normalize and stem-reduce the PhrasePart attribute of an FT_StemmedPhrase value.

Definition

CREATE METHOD TokenizePositionAndStem()
RETURNS FT_TokenPosition ARRAY[FT_MaxArrayLength]
FOR FT_StemmedPhrase
BEGIN

--
-- !! See Description
--

END

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The method TokenizePositionAndStem() has no input parameters.

2) TokenizePositionAndStem() normalizes and stem-reduces the sequence of words represented by
SELF.PhrasePart in an implementation-dependent way. In addition, it is implementation-dependent
whether stop words are effectively included in the result, and if so, how they are represented. However,
a conforming implementation must treat stop words in this method and in the FullText method
TokenizePositionAndStem() in the same way.

ISO/IEC FDIS 13249-2:2000 (E)

110 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.7.5 FT_StemmedPhrase Methods

Purpose

Return a specified FT_StemmedPhrase value.

Definition

CREATE METHOD FT_StemmedPhrase
(wl FullText_Token ARRAY[FT_MaxArrayLength],
 Language CHARACTER VARYING(FT_MaxLanguageLength))
RETURNS FT_StemmedPhrase
FOR FT_StemmedPhrase
BEGIN

DECLARE i INTEGER;

IF wl IS NULL THEN
RETURN SELF;

END IF;
SET SELF.NOT_tag = TRUE;
SET SELF.Language = Language;
SET SELF.PhrasePart =

CAST(ARRAY[] AS FullText_Token ARRAY[FT_MaxArrayLength]);
-- This method expects a list of FullText tokens
-- where <doublequote symbol>s have not been
-- eliminated yet. Therefore, tokens in wl may contain
-- <doublequote symbol>s that have to be turned into
-- <double quote>s

SET i = 0;
L1: WHILE (i < CARDINALITY(wl)) DO

SET SELF.PhrasePart = SELF.PhrasePart
|| ARRAY[EliminateDQS(wl[i + 1])];

SET i = i + 1;
END WHILE L1;
RETURN SELF;

END

CREATE METHOD FT_StemmedPhrase
(wl FullText_Token ARRAY[FT_MaxArrayLength],
 Language CHARACTER VARYING(FT_MaxLanguageLength),
 EscapeChar CHARACTER(1))
RETURNS FT_StemmedPhrase
FOR FT_StemmedPhrase
RETURN NEW FT_StemmedPhrase(wl, Language).EscapeSpec(EscapeChar)

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

2) FT_MaxLanguageLength is the implementation-defined maximum length for the character
representation of a language specification.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 111

Description

1) The method FT_StemmedPhrase(FullText_Token ARRAY, CHARACTER VARYING) takes the
following input parameters:

a) an array wl of FullText_Tokens, representing a sequence of words,
b) a CHARACTER VARYING value Language.

2) The method FT_StemmedPhrase(FullText_Token ARRAY, CHARACTER VARYING, CHARACTER)
takes the following input parameters:

a) an array wl of FullText_Tokens, representing a sequence of words,
b) a CHARACTER VARYING value Language,
c) a CHARACTER value EscapeChar.

3) In the process of initializing an FT_StemmedPhrase value, the appearance of <doublequote symbol>s
in the token wl is taken care of by the function EliminateDQS(FullText_Token).
EliminateDQS(FullText_Token) replaces each <doublequote symbol> in a token by a <double quote>.

ISO/IEC FDIS 13249-2:2000 (E)

112 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.8 FT_Proxi Type and Routines

6.8.1 FT_Proxi Type

Purpose

FT_Proxi values represent proximity search patterns.

Definition

CREATE TYPE FT_Proxi
UNDER FT_Primary
AS (

TL1 FT_TextLiteral ARRAY[FT_MaxArrayLength],
TL2 FT_TextLiteral ARRAY[FT_MaxArrayLength],
dv INTEGER, -- distance value
du FullText_Token, -- distance unit
oi FullText_Token -- order indicator

)
INSTANTIABLE
NOT FINAL

OVERRIDING METHOD Contains(text FullText)
RETURNS BOOLEAN,

OVERRIDING METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern,

METHOD FT_Proxi
(TokList1 FT_TextLiteral ARRAY[FT_MaxArrayLength],
 TokList2 FT_TextLiteral ARRAY[FT_MaxArrayLength],
 DistanceValue INTEGER,
 DistanceUnit FullText_Token,
 OrderIndicator FullText_Token)
RETURNS FT_Proxi
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The FT_Proxi type provides:

a) an attribute TL1,
b) an attribute TL2,
c) an attribute dv,
d) an attribute du,
e) an attribute oi,
f) a method Contains(FullText),
g) a method StrctPattern_to_FT_Pattern(),
h) a method FT_Proxi(FT_TextLiteral ARRAY, FT_TextLiteral ARRAY, INTEGER, FullText_Token,

FullText_Token).

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 113

6.8.2 Contains Method

Purpose

Search a FullText value for an FT_Proxi value.

Definition

CREATE METHOD Contains
(text FullText)
RETURNS BOOLEAN
FOR FT_Proxi
BEGIN

DECLARE result BOOLEAN;
DECLARE TokText FT_TokenPosition ARRAY[FT_MaxArrayLength];
DECLARE lent INTEGER;
DECLARE lentl1 INTEGER;
DECLARE lentl2 INTEGER;

IF SELF.du <> ’CHARACTERS’ AND
SELF.du <> ’WORDS’ AND
SELF.du <> ’SENTENCES’ AND
SELF.du <> ’PARAGRAPHS’ THEN
RETURN -- !! See Description ;

END IF;

SET TokText = text.TokenizePosition(SELF.du);
IF TokText IS NULL THEN

SET lent = CAST(NULL AS INTEGER)
ELSE

SET lent = CARDINALITY(TokText);
END IF;

IF SELF IS NULL OR SELF.TL1 IS NULL THEN
SET lentl1 = CAST(NULL AS INTEGER)

ELSE
SET lentl1 = CARDINALITY(SELF.TL1);

END IF;

IF SELF IS NULL OR SELF.TL2 IS NULL THEN
SET lentl2 = CAST(NULL AS INTEGER)

ELSE
SET lentl2 = CARDINALITY(SELF.TL2);

END IF;

IF lent = 0 OR lentl1 = 0 OR lentl2 = 0 THEN
SET result = FALSE;

ELSEIF lent IS NULL OR lentl1 IS NULL OR lentl2 IS NULL THEN
RETURN UNKNOWN;

ELSE
SET result =

(WITH RECURSIVE
ttTab(ind, tp) AS

(VALUES(1, TokText[1])
UNION

 SELECT ind + 1, TokText[ind + 1]
 FROM ttTab
 WHERE ind < lent
),

tl1Tab(ind, tok) AS
(VALUES(1, SELF.TL1[1])

UNION
 SELECT ind + 1, SELF.TL1[ind + 1]

ISO/IEC FDIS 13249-2:2000 (E)

114 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

 FROM tl1Tab
 WHERE ind < lentl1
),

tl2Tab(ind, tok) AS
(VALUES(1, SELF.TL2[1])

UNION
 SELECT ind + 1, SELF.TL2[ind + 1]
 FROM tl2Tab
 WHERE ind < lentl2
),

 Temp[BasI] AS
(SELECT MAX(BasI)
 FROM (VALUES(1) UNION
 SELECT
 CASE l1.tok.Contains(
 NEW FullText(tt1.tp.token, text.Language))
 AND l2.tok.Contains(
 NEW FullText(tt2.tp.token, text.Language))
 AND tt2.tp.position
 BETWEEN tt1.tp.position
 - (SELF.dv + tt2.tp.corrVal) *
 (CASE SELF.oi
 WHEN ’IN ORDER’ THEN 0
 ELSE 1
 END)
 AND tt1.tp.position
 + SELF.dv + tt1.tp.corrVal
 WHEN FALSE THEN 1
 WHEN TRUE THEN 3
 ELSE 2
 END
 FROM ttTab tt1, tl1Tab l1, ttTab tt2, tl2Tab l2)
 AS TT(BasI)
)
SELECT ARRAY[FALSE, UNKNOWN, TRUE][BasI] FROM Temp

);
END IF;

RETURN (SELF.NOT_tag = result);
END

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The method Contains(FullText) takes the following input parameters:

a) a FullText value text.

2) Case:

i) If SELF.TL1, SELF.TL2 or the result of text.TokenizePosition(SELF.du) is empty, then let R be
false.

ii) If SELF, SELF.TL1, SELF.TL2 or the result of text.TokenizePosition(prox.du) is the null value,
then let R be unknown.

iii) Otherwise, let TPS1 be the result of text.TokenizePosition(SELF.du); let TPS2 be the set of all
pairs (tp1, tp2) such that tp1 and tp2 are elements of TPS1, and

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 115

Case:

A) The order indication SELF.oi has the value ’IN ORDER’ and the difference

tp2.pos - tp1.pos

is not negative and not greater than the distance value SELF.dv.

B) The order indication SELF.oi has the value 'ANY ORDER’ and the absolute value of the
difference

tp2.pos - tp1.pos

is not greater than the distance value SELF.dv.

Let WPS be the set of all pairs (w1, w2) such that every w1 and every w2 is an element of
SELF.TL1 and SELF.TL2, respectively.

Case:

A) If there is at least one pair (tp1, tp2) and one pair (w1, w2) such that both

w1.Contains(NEW FullText(tp1.token), text.Language))

and

w2.Contains(NEW FullText(tp2.token), text.Language))

are true then let R be true.

B) If for all pairs (tp1, tp2) and (w1, w2) both

w1.Contains(NEW FullText(tp1.token), text.Language))

and

w2.Contains(NEW FullText(tp2.token), text.Language))

are false then let R be false.

C) Otherwise, let R be unknown.

NOTE 18 - The method Contains is described in Subclause 6.4.2, “Contains Method” and
Subclause 6.4.4, “Contains Method”.

3) Contains(FullText) returns:

Case:

a) unknown, if SELF.NOT_tag is the null value.

b) NOT R, if SELF.NOT_tag is false.

c) Otherwise, R.

ISO/IEC FDIS 13249-2:2000 (E)

116 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.8.3 StrctPattern_to_FT_Pattern Method

Purpose

Convert an FT_Proxi value to an FT_Pattern value.

Definition

CREATE METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern
FOR FT_Proxi
BEGIN

DECLARE result CHARACTER VARYING(FT_MaxPatternLength);

SET result = CAST(StrctPattern_to_FT_Pattern(SELF.TL1)
 AS CHARACTER VARYING(FT_MaxPatternLength))
|| ’ NEAR ’
|| CAST(StrctPattern_to_FT_Pattern(SELF.TL2)
 AS CHARACTER VARYING(FT_MaxPatternLength))
|| ’ WITHIN ’
|| CAST(SELF.dv AS CHARACTER VARYING(FT_MaxPatternLength))
|| ’ ’ || TRIM(BOTH ’ ’ FROM SELF.du)
|| ’ ’ || TRIM(BOTH ’ ’ FROM SELF.oi);

IF SELF.NOT_tag IS UNKNOWN THEN
SET result = NULL;

ELSEIF NOT SELF.NOT_tag THEN
result = ’NOT ’ || result;

END IF;
RETURN CAST(result AS FT_Pattern);

END

Definitional Rules

1) FT_MaxPatternLength is the implementation-dependent maximum length for the character
representation of an FT_Pattern value.

Description

1) The method StrctPattern_to_FT_Pattern() has no input parameters.

2) StrctPattern_to_FT_Pattern() returns an FT_Pattern value of the form <Proximity expansion> or the
form NOT <Proximity expansion>.

3) If SELF or any of the attributes SELF.TL1, SELF.du, SELF.dv, SELF.oi are the null value or
SELF.NOT_tag is unknown, then the result is the null value.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 117

6.8.4 FT_Proxi Method

Purpose

Return a specified FT_Proxi value.

Definition

CREATE METHOD FT_Proxi
(TokList1 FT_TextLiteral ARRAY[FT_MaxArrayLength],
 TokList2 FT_TextLiteral ARRAY[FT_MaxArrayLength],
 DistanceValue INTEGER,
 DistanceUnit FullText_Token,
 OrderIndicator FullText_Token)
RETURNS FT_Proxi
FOR FT_Proxi
RETURN SELF.TLI(TokList1).TL2(Toklist2).

dv(DistanceValue).du(DistanceUnit).
oi(OrderIndicator).NOT_tag(TRUE)

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The method FT_Proxi(FT_TextLiteral ARRAY, FT_TextLiteral ARRAY, INTEGER, FullText_Token,
FullText_Token) takes the following input parameters:

a) an array TokList1 of FT_TextLiteral elements, which represents a set of words,
b) an array TokList2 of FT_TextLiteral elements, which represents a set of words,
c) an INTEGER value DistanceValue,
d) a FullText_Token value DistanceUnit,
e) a FullText_Token value OrderIndicator.

2) All arguments may be the null value. TokList1 and TokList2 may be empty.

ISO/IEC FDIS 13249-2:2000 (E)

118 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.9 FT_Soundex Type and Routines

6.9.1 FT_Soundex Type

Purpose

FT_Soundex values represent a search token to be matched in text due to phonetic criteria.

Definition

CREATE TYPE FT_Soundex
UNDER FT_Primary
AS (

spoken FT_TextLiteral
)
INSTANTIABLE
NOT FINAL

OVERRIDING METHOD Contains(text FullText)
RETURNS BOOLEAN,

OVERRIDING METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern,

METHOD FT_Soundex(snd FT_TextLiteral)
RETURNS FT_Soundex
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

Description

1) The FT_Soundex type provides:

a) an attribute spoken,
b) a method Contains(FullText),
c) a method StrctPattern_to_FT_Pattern(),
d) a method FT_Soundex(FT_TextLiteral),
e) a function GetSoundsSimilar(FT_TextLiteral).

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 119

6.9.2 Contains Method

Purpose

Search a FullText value for an FT_Soundex value.

Definition

CREATE METHOD Contains
(text FullText)
RETURNS BOOLEAN
FOR FT_Soundex
RETURN (SELF.NOT_tag =

NEW FT_Any(GetSoundsSimilar(SELF.spoken)).Contains(text))

Description

1) The method Contains(FullText) takes the following input parameters:

a) a FullText value text.

2) Let R be the result of

NEW FT_Any(GetSoundsSimilar(SELF.spoken)).Contains(text)

Case:

a) If SELF.NOT_tag is unknown, then Contains(FullText) returns unknown.

b) If SELF.NOT_tag is false, then Contains(FullText) returns NOT R.

c) Otherwise, Contains(FullText) returns R.

ISO/IEC FDIS 13249-2:2000 (E)

120 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.9.3 StrctPattern_to_FT_Pattern Method

Purpose

Convert an FT_Soundex value to an FT_Pattern value.

Definition

CREATE METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern
FOR FT_Soundex
BEGIN

DECLARE result CHARACTER VARYING(FT_MaxPatternLength);

IF SELF.NOT_tag IS UNKNOWN THEN
RETURN CAST(NULL AS FT_Pattern);

END IF;

SET result = ’SOUNDS LIKE ’
|| CAST(SELF.spoken.StrctPattern_to_FT_Pattern()

AS CHARACTER VARYING(FT_MaxPatternLength));

IF NOT SELF.NOT_tag THEN
SET result = ’NOT ’ || result;

END IF;
RETURN CAST(result AS FT_Pattern);

END

Definitional Rules

1) FT_MaxPatternLength is the implementation-dependent maximum length for the character
representation of an FT_Pattern value.

Description

1) The method StrctPattern_to_FT_Pattern() has no input parameters.

2) StrctPattern_to_FT_Pattern() returns an FT_Pattern value of the form <Soundex expansion> or the
form NOT <Soundex expansion>.

3) If SELF, SELF.spoken or SELF.spoken.LitPart is the null value or SELF.NOT_tag is unknown, then
the result is the null value.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 121

6.9.4 FT_Soundex Method

Purpose

Return a specified FT_Soundex value.

Definition

CREATE METHOD FT_Soundex
(snd FT_TextLiteral)
RETURNS FT_Soundex
FOR FT_Soundex
RETURN SELF.spoken(snd).NOT_tag(TRUE)

Description

1) The method FT_Soundex(FT_TextLiteral) takes the following input parameters:

a) an FT_TextLiteral value snd.

2) Though not enforced by this standard, snd is intended to represent a sound pattern which is potentially
equivalent to a number of tokens. The equivalence is language dependent and implementation-defined.

ISO/IEC FDIS 13249-2:2000 (E)

122 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.9.5 GetSoundsSimilar Function

Purpose

Return an array of words that sound like a given word.

Definition

CREATE FUNCTION GetSoundsSimilar
(spoken FT_TextLiteral)
RETURNS FT_TextLiteral ARRAY[FT_MaxArrayLength]
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT
STATIC DISPATCH
BEGIN

--
-- !! See Description
--

END

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The function GetSoundsSimilar(FT_TextLiteral) takes the following input parameters:

a) an FT_TextLiteral value spoken.

2) GetSoundsSimilar(FT_TextLiteral) permits the generation of an array of FT_TextLiteral items
(representing a set of words) each of which has a different form though it has similar pronunciation as
the input word. The input argument spoken is included in the generated array of tokens. The
mechanism for generating this array, taking into account the language as specified in spoken.Language,
is implementation-dependent.

3) If the input parameter spoken or spoken.LitPart is the null value, then the result of
GetSoundsSimilar(FT_TextLiteral) is the null value. Further details of
GetSoundsSimilar(FT_TextLiteral) are implementation-defined.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 123

6.10 FT_BroaderTerm Type and Routines

6.10.1 FT_BroaderTerm Type

Purpose

FT_BroaderTerm values represent one or more thesaurus hierarchies and a search token; the latter is to be
matched in text with corresponding broader terms as indicated by the named thesaurus hierarchies.

Definition

CREATE TYPE FT_BroaderTerm
UNDER FT_Primary
AS (

thesaurus CHARACTER VARYING(FT_ThesNameLength),
startingTerm FT_WordOrPhrase,
expansionCnt INTEGER

)
INSTANTIABLE
NOT FINAL

OVERRIDING METHOD Contains(text FullText)
RETURNS BOOLEAN,

OVERRIDING METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern,

METHOD FT_BroaderTerm
(thes_name CHARACTER VARYING(FT_ThesNameLength),
 strt FT_WordOrPhrase,
 thes_exp_count INTEGER)
RETURNS FT_BroaderTerm
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

Definitional Rules

1) FT_ThesNameLength is the implementation-defined maximum length for the character representation
of a thesaurus name.

ISO/IEC FDIS 13249-2:2000 (E)

124 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

Description

1) The FT_BroaderTerm type provides:

a) an attribute thesaurus,
b) an attribute startingTerm,
c) an attribute expansionCnt,
d) a method Contains(FullText),
e) a method StrctPattern_to_FT_Pattern(),
f) a method FT_BroaderTerm(CHARACTER VARYING, FT_WordOrPhrase, INTEGER),
g) a function GetBroaderTerms(CHARACTER VARYING, FT_WordOrPhrase, INTEGER).

2) For the purpose of this type, a thesaurus is effectively a table with two columns, NarrowerTerm and
BroaderTerm, respectively. For a given row, the values contained in the two columns represent terms,
the second one being a broader term of the first one.

3) The number of available thesauri and their names are implementation-defined.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 125

6.10.2 Contains Method

Purpose

Search a FullText value for an FT_BroaderTerm value.

Definition

CREATE METHOD Contains
(text FullText)
RETURNS BOOLEAN
FOR FT_BroaderTerm
BEGIN

DECLARE BrdArray FT_WordOrPhrase ARRAY[FT_MaxArrayLength];
DECLARE result BOOLEAN;

SET BrdArray = GetBroaderTerms(SELF.thesaurus ,
SELF.startingTerm,
SELF.expansionCnt);

SET result = NEW FT_Any(BrdArray).Contains(text);

RETURN (SELF.NOT_tag = result);
END

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The method Contains(FullText) takes the following input parameters:

a) a FullText value text.

2) Let R be the result of

NEW FT_Any(GetBroaderTerms(SELF.thesaurus, SELF.startingTerm,
SELF.expansionCnt)).Contains(text)

Case:

a) If SELF.NOT_tag is unknown, then Contains(FullText) returns unknown.

b) If SELF.NOT_tag is false, then Contains(FullText) returns NOT R.

c) Otherwise, Contains(FullText) returns R.

ISO/IEC FDIS 13249-2:2000 (E)

126 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.10.3 StrctPattern_to_FT_Pattern Method

Purpose

Convert an FT_BroaderTerm value to an FT_Pattern value.

Definition

CREATE METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern
FOR FT_BroaderTerm
BEGIN

DECLARE result CHARACTER VARYING(FT_MaxPatternLength);

IF SELF.NOT_tag IS UNKNOWN THEN
RETURN CAST(NULL AS FT_Pattern);

END IF;

SET result = ’THESAURUS "’
|| SELF.thesaurus
|| ’" EXPAND BROADER TERM OF ’
|| CAST(SELF.startingTerm.StrctPattern_to_FT_Pattern()

AS CHARACTER VARYING(FT_MaxPatternLength))
|| CASE WHEN SELF.expansionCnt IS NULL THEN

’’
 ELSE

’FOR ’
|| TRIM(BOTH ’ ’ FROM CAST(SELF.expansionCnt

AS CHARACTER VARYING(FT_MaxPatternLength))
|| ’ LEVELS’

END
;

IF NOT SELF.NOT_tag THEN
SET result = ’NOT ’ || result;

END IF;
RETURN CAST(result AS FT_Pattern);

END

Definitional Rules

1) FT_MaxPatternLength is the implementation-dependent maximum length for the character
representation of an FT_Pattern value.

Description

1) The method StrctPattern_to_FT_Pattern() has no input parameters.

2) StrctPattern_to_FT_Pattern() returns an FT_Pattern value of the form <Broader_Term expansion> or
NOT <Broader_Term expansion>.

3) If SELF, SELF.thesaurus,or SELF.startingTerm is the null value or SELF.NOT_tag is unknown, then
the result is the null value.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 127

6.10.4 FT_BroaderTerm Method

Purpose

Return a specified FT_BroaderTerm value.

Definition

CREATE METHOD FT_BroaderTerm
 (thes_name CHARACTER VARYING(FT_ThesNameLength),

 strt FT_WordOrPhrase,
 thes_exp_count INTEGER)
RETURNS FT_BroaderTerm
FOR FT_BroaderTerm
RETURN SELF.thesaurus(thes_name).startingTerm(strt).

expansionCnt(thes_exp_count).NOT_tag(TRUE)

Definitional Rules

1) FT_ThesNameLength is the implementation-defined maximum length for the character representation
of a thesaurus name.

Description

1) The method FT_BroaderTerm(CHARACTER VARYING, FT_WordOrPhrase, INTEGER) takes the
following input parameters:

a) a CHARACTER VARYING value thes_name,
b) an FT_WordOrPhrase value strt,
c) an INTEGER value thes_exp_count.

ISO/IEC FDIS 13249-2:2000 (E)

128 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.10.5 GetBroaderTerms Function

Purpose

Get broader terms from a thesaurus.

Definition

CREATE FUNCTION GetBroaderTerms
(thes_name CHARACTER VARYING(FT_ThesNameLength),
 startingTerm FT_WordOrPhrase,
 thes_exp_count INTEGER)
RETURNS FT_WordOrPhrase ARRAY[FT_MaxArrayLength]
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT
STATIC DISPATCH
BEGIN

DECLARE ret FT_WordOrPhrase ARRAY[FT_MaxArrayLength];
DECLARE strt FullText_Token ARRAY[FT_MaxArrayLength];
DECLARE strt_termid INTEGER;
DECLARE local_exp_count INTEGER;

SET thes_name = TRIM(BOTH ’ ’ FROM thes_name);
SET strt = startingTerm.getWordArray();

SET local_exp_count =
CASE

WHEN thes_exp_count IS NOT NULL THEN
thes_exp_count

ELSE
1

END;

SET strt_termid =
(SELECT TERMID
 FROM TERM_DICTIONARY
 WHERE EXPR.getWordArray() = strt

 AND TRIM(BOTH ’ ’ FROM THNAME_DIC) = thes_name
);

SET ret=CAST(ARRAY[] AS FT_WordOrPhrase
ARRAY[FT_MaxArrayLength]);

L1: FOR elem AS
WITH RECURSIVE done_so_far (TERMID,NARROWER_TERMID,LEVEL) AS

(SELECT TERMID, NARROWER_TERMID, 0
 FROM TERM_HIERARCHY
 WHERE NARROWER_TERMID = strt_termid

AND TRIM(BOTH ’ ’ FROM THNAME_HRR) = thes_name
AND local_exp_count >= 0
 UNION

 SELECT more.TERMID, more.NARROWER_TERMID,
 CASE
 WHEN thes_exp_count IS NOT NULL THEN
 B.LEVEL + 1
 ELSE
 0
 END AS LEVEL

 FROM done_so_far B, TERM_HIERARCHY more
 WHERE B.TERMID = more.NARROWER_TERMID

 AND TRIM(BOTH ’ ’ FROM more.THNAME_HRR) = thes_name

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 129

 AND B.LEVEL < local_exp_count
)

SELECT ARRAY[TD.EXPR] AS EXPRarr1
FROM TERM_DICTIONARY TD, done_so_far f
WHERE TD.TERMID = f.TERMID

AND TRIM(BOTH ’ ’ FROM TD.THNAME_DIC) = thes_name

DO -- for every row of the above query result,
 -- append the value of column EXPRarr1 to the array

SET ret = ret || EXPRarr1;
END FOR L1;
RETURN ret;

END

Definitional Rules

1) FT_ThesNameLength is the implementation-defined maximum length for the character representation
of a thesaurus name.

2) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The function GetBroaderTerms(CHARACTER VARYING, FT_WordOrPhrase, INTEGER) takes the
following input parameters:

a) a CHARACTER VARYING value thes_name, denoting a thesaurus TH,
b) an FT_WordOrPhrase value startingTerm,
c) an INTEGER value thes_exp_count.

2) GetBroaderTerms(CHARACTER VARYING, FT_WordOrPhrase, INTEGER) returns an array of
FT_WordOrPhrase elements which each represent a broader term.

3) GetBroaderTerms(CHARACTER VARYING, FT_WordOrPhrase, INTEGER) returns an empty array if
one of the following is true:

a) The term startingTerm is not contained in column NarrowerTerm of TH.
b) Either startingTerm or thes_name is the null value.

4) If the expansion count thes_exp_count is zero, GetBroaderTerms(CHARACTER VARYING,
FT_WordOrPhrase, INTEGER) returns all terms in column BroaderTerm of those rows of TH the
values of which in column NarrowerTerm are equivalent to startingTermt. If the expansion count
thes_exp_count is n > 0, the resulting array represents the set:

MS1 UNION MS2

where MS1 is the multiset represented by the result of

GetBroaderTerms(thes_name, startingTerm, thes_exp_count - 1)

and MS2 is given by

MS2,1 UNION ... MS2,i ... UNION MS2,m,

ISO/IEC FDIS 13249-2:2000 (E)

130 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

where m is the number of elements in MS1, i ranges from 1 to m, Ei is some element of MS1, and MS2,i

is represented by

GetBroaderTerms(thes_name, Ei, 0)

5) If the expansion count thes_exp_count is NULL, expansion is carried on until no new broader terms
can be found.

6) The term startingTerm is not included in the result.

7) It is implementation-defined, whether a check is made to ensure that the language specified in
startingTerm.Language is compatible with the thesaurus as specified by thes_name, and if so, what
kind of condition is raised in case of a language incompatibility.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 131

6.11 FT_NarrowerTerm Type and Routines

6.11.1 FT_NarrowerTerm Type

Purpose

FT_NarrowerTerm values represent one or more thesaurus hierarchies and a search token; the latter is to be
matched in text with corresponding narrower terms as indicated by the named thesaurus hierarchies.

Definition

CREATE TYPE FT_NarrowerTerm
UNDER FT_Primary
AS (

thesaurus CHARACTER VARYING(FT_ThesNameLength),
startingTerm FT_WordOrPhrase,
expansionCnt INTEGER

)
INSTANTIABLE
NOT FINAL

OVERRIDING METHOD Contains(text FullText)
RETURNS BOOLEAN,

OVERRIDING METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern,

METHOD FT_NarrowerTerm
(thes_name CHARACTER VARYING(FT_ThesNameLength),
 strt FT_WordOrPhrase,
 thes_exp_count INTEGER)
RETURNS FT_NarrowerTerm
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

Definitional Rules

1) FT_ThesNameLength is the implementation-defined maximum length for the character representation
of a thesaurus name.

ISO/IEC FDIS 13249-2:2000 (E)

132 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

Description

1) The FT_NarrowerTerm type provides:

a) an attribute thesaurus,
b) an attribute startingTerm,
c) an attribute expansionCnt,
d) a method Contains(FullText),
e) a method StrctPattern_to_FT_Pattern(),
f) a method FT_NarrowerTerm(CHARACTER VARYING, FT_WordOrPhrase, INTEGER),
g) a function GetNarrowerTerms(CHARACTER VARYING, FT_WordOrPhrase, INTEGER).

2) For the purpose of this type, a thesaurus is effectively a table with two columns, NarrowerTerm and
BroaderTerm. For a given row, the values contained in the two columns represent terms, the first being
a narrower term of the second one.

3) The number of available thesauri and their names are implementation-defined.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 133

6.11.2 Contains Method

Purpose

Search a FullText value for an FT_NarrowerTerm value.

Definition

CREATE METHOD Contains
(text FullText)
RETURNS BOOLEAN
FOR FT_NarrowerTerm
BEGIN

DECLARE NrwArray FT_WordOrPhrase ARRAY[FT_MaxArrayLength];
DECLARE result BOOLEAN;

SET NrwArray = GetNarrowerTerms(SELF.thesaurus ,
SELF.startingTerm, SELF.expansionCnt);

SET result = NEW FT_Any(NrwArray).Contains(text);

RETURN (SELF.NOT_tag = result);
END

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The method Contains(FullText) takes the following input parameters:

a) a FullText value text.

2) Let R be the result of

NEW FT_Any(GetNarrowerTerms(SELF.thesaurus, SELF.startingTerm,
SELF.expansionCnt)).Contains(text)

Case:

a) If SELF.NOT_tag is unknown, then Contains(FullText) returns unknown.

b) If SELF.NOT_tag is false, then Contains(FullText) returns NOT R.

c) Otherwise, Contains(FullText) returns R.

ISO/IEC FDIS 13249-2:2000 (E)

134 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.11.3 StrctPattern_to_FT_Pattern Method

Purpose

Convert an FT_NarrowerTerm value to an FT_Pattern value.

Definition

CREATE METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern
FOR FT_NarrowerTerm
BEGIN

DECLARE result CHARACTER VARYING(FT_MaxPatternLength);

IF SELF.NOT_tag IS UNKNOWN THEN
RETURN CAST(NULL AS FT_Pattern)

END IF;

SET result = ’THESAURUS "’
|| SELF.thesaurus
|| ’" EXPAND NARROWER TERM OF ’
|| CAST(SELF.startingTerm.StrctPattern_to_FT_Pattern()

AS CHARACTER VARYING(FT_MaxPatternLength))
|| CASE WHEN SELF.expansionCnt IS NULL THEN

’’
 ELSE

’FOR ’
|| TRIM(BOTH ’ ’ FROM CAST(SELF.expansionCnt

AS CHARACTER VARYING(FT_MaxPatternLength))
|| ’ LEVELS’

END
;

IF NOT SELF.NOT_tag THEN
SET result = ’NOT ’ || result;

END IF;
RETURN CAST(result AS FT_Pattern);

END

Definitional Rules

1) FT_MaxPatternLength is the implementation-dependent maximum length for the character
representation of an FT_Pattern value.

Description

1) The method StrctPattern_to_FT_Pattern(FT_NarrowerTerm) has no input parameters:

2) StrctPattern_to_FT_Pattern() returns an FT_Pattern value of the form <Narrower_Term expansion>
or NOT <Narrower_Term expansion>.

3) If SELF, SELF.thesaurus, or SELF.startingTerm is the null value or SELF.NOT_tag is unknown, then
the result is the null value.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 135

6.11.4 FT_NarrowerTerm Method

Purpose

Return a specified FT_NarrowerTerm value.

Definition

CREATE METHOD FT_NarrowerTerm
(thes_name CHARACTER VARYING(FT_ThesNameLength),
 strt FT_WordOrPhrase,
 thes_exp_count INTEGER)
RETURNS FT_NarrowerTerm
FOR FT_NarrowerTerm
RETURN SELF.thesaurus(thes_name).

startingTerm(strt).expansionCnt(thes_exp_count).
NOT_tag(TRUE)

Definitional Rules

1) FT_ThesNameLength is the implementation-defined maximum length for the character representation
of a thesaurus name.

Description

1) The method FT_NarrowerTerm(CHARACTER VARYING, FT_WordOrPhrase, INTEGER)) takes the
following input parameters:

a) a CHARACTER VARYING value thes_name,
b) an FT_WordOrPhrase value strt,
c) an INTEGER value thes_exp_count.

ISO/IEC FDIS 13249-2:2000 (E)

136 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.11.5 GetNarrowerTerms Function

Purpose

Get narrower terms from a thesaurus.

Definition

CREATE FUNCTION GetNarrowerTerms
(thes_name CHARACTER VARYING(FT_ThesNameLength),
 startingTerm FT_WordOrPhrase,
 thes_exp_count INTEGER)
RETURNS FT_WordOrPhrase ARRAY[FT_MaxArrayLength]
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT
STATIC DISPATCH
BEGIN

DECLARE ret FT_WordOrPhrase ARRAY[FT_MaxArrayLength];
DECLARE strt FullText_Token ARRAY[FT_MaxArrayLength];
DECLARE strt_termid INTEGER;
DECLARE local_exp_count INTEGER;

SET thes_name = TRIM(BOTH ’ ’ FROM thes_name);
SET strt = startingTerm.getWordArray();

SET local_exp_count =
CASE

WHEN thes_exp_count IS NOT NULL THEN
thes_exp_count

ELSE
1

END;

SET strt_termid =
(SELECT TERMID
 FROM TERM_DICTIONARY
 WHERE EXPR.getWordArray() = strt

 AND TRIM(BOTH ’ ’ FROM THNAME_DIC) = thes_name
);

SET ret = CAST(ARRAY[] AS FT_WordOrPhrase
ARRAY[FT_MaxArrayLength]);

L1: FOR elem AS
WITH RECURSIVE done_so_far (TERMID,NARROWER_TERMID,LEVEL) AS

(SELECT TERMID, NARROWER_TERMID, 0
 FROM TERM_HIERARCHY
 WHERE TERMID = strt_termid

AND TRIM(BOTH ’ ’ FROM THNAME_HRR) = thes_name
AND local_exp_count >= 0
 UNION

 SELECT more.TERMID, more.NARROWER_TERMID,
 CASE
 WHEN thes_exp_count IS NOT NULL THEN
 B.LEVEL + 1
 ELSE
 0
 END AS LEVEL

 FROM done_so_far N, TERM_HIERARCHY more
 WHERE more.TERMID = N.NARROWER_TERMID

 AND TRIM(BOTH ’ ’ FROM more.THNAME_HRR) = thes_name

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 137

 AND N.LEVEL < local_exp_count
)

SELECT ARRAY[TD.EXPR] AS EXPRarr1
FROM TERM_DICTIONARY TD, done_so_far f
WHERE TD.TERMID = f.NARROWER_TERMID

AND TRIM(BOTH ’ ’ FROM TD.THNAME_DIC) = thes_name

DO -- for every row of the above query result,
 -- append the value of column EXPRarr1 to the array

SET ret = ret || EXPRarr1;
END FOR L1;
RETURN ret;

END

Definitional Rules

1) FT_ThesNameLength is the implementation-defined maximum length for the character representation
of a thesaurus name.

2) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The function GetNarrowerTerms(CHARACTER VARYING, FT_WordOrPhrase, INTEGER) takes the
following input parameters:

a) a CHARACTER VARYING value thes_name, denoting a thesaurus TH,
b) an FT_WordOrPhrase value startingTerm,
c) an INTEGER value thes_exp_count.

2) GetNarrowerTerms(CHARACTER VARYING, FT_WordOrPhrase, INTEGER) returns an array of
FT_WordOrPhrase elements which each represent a narrower term.

3) GetNarrowerTerms(CHARACTER VARYING, FT_WordOrPhrase, INTEGER) returns an empty array
if one of the following is true:

a) The term startingTerm is not contained in column BroaderTerm of TH.
b) Either startingTermt or thes_name is the null value.
c) The expansion count thes_exp_count is smaller than zero.

4) If the expansion count thes_exp_count is zero, GetNarrowerTerms(CHARACTER VARYING,
FT_WordOrPhrase, INTEGER) returns all terms in column NarrowerTerm of those rows of TH the
values of which in column BroaderTerm are equivalent to startingTerm. If the expansion count
thes_exp_count is n > 0, the resulting array represents the set:

MS1 UNION MS2

where MS1 is the multiset represented by the result of

GetNarrowerTerms(thes_name, startingTerm, thes_exp_count - 1)

and MS2 is given by

MS2,1 UNION ... MS2,i ... UNION MS2,m

ISO/IEC FDIS 13249-2:2000 (E)

138 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

where m is the number of elements in MS1, i ranges from 1 to m, Ei is some element of MS1, and MS2,i

is represented by

GetNarrowerTerms(thes_name, Ei, 0)

5) If the expansion count thes_exp_count is the null value, expansion is carried on until no new narrower
terms can be found.

6) The term startingTerm is not included in the result.

7) It is implementation-defined, whether a check is made to ensure that the language specified in
startingTerm.Language is compatible with the thesaurus as specified by thes_name, and if so, what
kind of condition is raised in case of a language incompatibility.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 139

6.12 FT_Synonym Type and Routines

6.12.1 FT_Synonym Type

Purpose

FT_Synonym values provide for the construction of synonym search patterns, and for searching of
occurrences of synonyms in text.

Definition

CREATE TYPE FT_Synonym
UNDER FT_Primary
AS (

thesaurus CHARACTER VARYING(FT_ThesNameLength),
startingTerm FT_WordOrPhrase

)
INSTANTIABLE
NOT FINAL

OVERRIDING METHOD Contains(text FullText)
RETURNS BOOLEAN,

OVERRIDING METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern,

METHOD FT_Synonym
(thes_name CHARACTER VARYING(FT_ThesNameLength),
 strt FT_WordOrPhrase)
RETURNS FT_Synonym
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

Definitional Rules

1) FT_ThesNameLength is the implementation-defined maximum length for the character representation
of a thesaurus name.

ISO/IEC FDIS 13249-2:2000 (E)

140 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

Description

1) The FT_Synonym type provides:

a) an attribute thesaurus,
b) an attribute startingTerm,
c) a method Contains(FullText),
d) a method StrctPattern_to_FT_Pattern(),
e) a method FT_Synonym(CHARACTER VARYING, FT_WordOrPhrase),
f) a function GetSynonymTerms(CHARACTER VARYING, FT_WordOrPhrase).

2) For the purpose of this type, a thesaurus is effectively a table with one column, say Ring, the values of
which represent sets of terms. In the context of such a thesaurus, two terms T1 and T2 are considered
to be synonyms of each other, if the thesaurus contains at least one Ring value which contains both T1
and T2.

3) The number of available thesauri and their names are implementation-defined.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 141

6.12.2 Contains Method

Purpose

Search a FullText value for an FT_Synonym value.

Definition

CREATE METHOD Contains
(text FullText)
RETURNS BOOLEAN
FOR FT_Synonym
BEGIN

DECLARE SynArray FT_WordOrPhrase ARRAY[FT_MaxArrayLength];
DECLARE result BOOLEAN;

SET SynArray = GetSynonymTerms(SELF.thesaurus,
SELF.startingTerm);

SET result = NEW FT_Any(SynArray).Contains(text);

RETURN (SELF.NOT_tag = result);
END

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The method Contains(FullText) takes the following input parameters:

a) a FullText value text.

2) Let R be the result of

NEW FT_Any(GetSynonymTerms(SELF.thesaurus, SELF.startingTerm)).
Contains(text)

3) Case:

a) If SELF.NOT_tag is unknown, then Contains(FullText) returns unknown.

b) If SELF.NOT_tag is false, then Contains(FullText) returns NOT R.

c) Otherwise, Contains(FullText) returns R.

ISO/IEC FDIS 13249-2:2000 (E)

142 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.12.3 StrctPattern_to_FT_Pattern Method

Purpose

Convert an FT_Synonym value to an FT_Pattern value.

Definition

CREATE METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern
FOR FT_Synonym
BEGIN

DECLARE result CHARACTER VARYING(FT_MaxPatternLength);

IF SELF.NOT_tag IS UNKNOWN THEN
RETURN CAST(NULL AS FT_Pattern)

END IF;

SET result = ’THESAURUS "’
|| SELF.thesaurus
|| ’" EXPAND SYNONYM TERM OF ’
|| CAST(SELF.startingTerm.StrctPattern_to_FT_Pattern()

AS CHARACTER VARYING(FT_MaxPatternLength));

IF NOT SELF.NOT_tag THEN
SET result = ’NOT ’ || result;

END IF;
RETURN CAST(result AS FT_Pattern);

END

Definitional Rules

1) FT_MaxPatternLength is the implementation-dependent maximum length for the character
representation of an FT_Pattern value.

Description

1) The method StrctPattern_to_FT_Pattern() has no input parameters.

2) StrctPattern_to_FT_Pattern() returns an FT_Pattern value of the form <Synonym_Term expansion> or
NOT <Synonym_Term expansion>.

3) If SELF, SELF.thesaurus, or SELF.startingTerm is the null value or SELF.NOT_tag is unknown, then
the result is the null value.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 143

6.12.4 FT_Synonym Method

Purpose

Return a specified FT_Synonym value.

Definition

CREATE METHOD FT_Synonym
(thes_name CHARACTER VARYING(FT_ThesNameLength),
 strt FT_WordOrPhrase)
RETURNS FT_Synonym
FOR FT_Synonym
RETURN SELF.thesaurus(thes_name).startingTerm(strt).

NOT_tag(TRUE)

Definitional Rules

1) FT_ThesNameLength is the implementation-defined maximum length for the character representation
of a thesaurus name.

Description

1) The method FT_Synonym(CHARACTER VARYING, FT_WordOrPhrase) takes the following input
parameters:

a) a CHARACTER VARYING value thes_name,
b) an FT_WordOrPhrase value strt.

ISO/IEC FDIS 13249-2:2000 (E)

144 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.12.5 GetSynonymTerms Function

Purpose

Get synonym terms from a thesaurus.

Definition

CREATE FUNCTION GetSynonymTerms
(thes_name CHARACTER VARYING(FT_ThesNameLength),
 startingTerm FT_WordOrPhrase)
RETURNS FT_WordOrPhrase ARRAY[FT_MaxArrayLength]
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT
STATIC DISPATCH
BEGIN

DECLARE ret FT_WordOrPhrase ARRAY[FT_MaxArrayLength];
DECLARE strt FullText_Token ARRAY[FT_MaxArrayLength];
DECLARE strt_termid INTEGER;

SET thes_name = TRIM(BOTH ’ ’ FROM thes_name);
SET strt = startingTerm.getWordArray();
SET strt_termid =

(SELECT TERMID
 FROM TERM_DICTIONARY
 WHERE EXPR.getWordArray() = strt

 AND TRIM(BOTH ’ ’ FROM THNAME_DIC) = thes_name
);

SET ret = CAST(ARRAY[] AS FT_WordOrPhrase
ARRAY[FT_MaxArrayLength]);

L1: FOR elem AS
WITH RECURSIVE done_so_far (TERMID,SYNONYM_TERMID) AS

(SELECT TERMID, SYNONYM_TERMID
 FROM TERM_SYNONYM
 WHERE TERMID = strt_termid

AND TRIM(BOTH ’ ’ FROM THNAME_SYN) = thes_name
UNION

 SELECT more.TERMID, more.SYNONYM_TERMID
 FROM done_so_far S, TERM_SYNONYM more
 WHERE more.TERMID = S.SYNONYM_TERMID

 AND TRIM(BOTH ’ ’ FROM more.THNAME_SYN) = thes_name
)

SELECT ARRAY[TD.EXPR] AS EXPRarr1
FROM TERM_DICTIONARY TD, done_so_far f
WHERE TD.TERMID = f.SYNONYM_TERMID

AND TRIM(BOTH ’ ’ FROM TD.THNAME_DIC) = thes_name

DO -- for every row of the above query result,
 -- append the value of column EXPRarr1 to the array

SET ret = ret || EXPRarr1;
END FOR L1;
RETURN ret ||

CASE
WHEN startingTerm IS NULL OR thes_name IS NULL THEN

CAST(ARRAY[] AS FT_WordOrPhrase
 ARRAY[FT_MaxArrayLength])

ELSE
ARRAY[startingTerm]

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 145

END;
END

Definitional Rules

1) FT_ThesNameLength is the implementation-defined maximum length for the character representation
of a thesaurus name.

2) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The function GetSynonymTerms(CHARACTER VARYING, FT_WordOrPhrase) takes the following
input parameters:

a) a CHARACTER VARYING value thes_name, denoting a thesaurus TH,
b) an FT_WordOrPhrase value startingTerm.

2) GetSynonymTerms(CHARACTER VARYING, FT_WordOrPhrase) returns an array of
FT_WordOrPhrase elements, which stands for a set of synonym terms.

3) GetSynonymTerms(CHARACTER VARYING, FT_WordOrPhrase) returns an empty array if either
startingTerm or thes_name is the null value.

4) Let R0 be a set containing startingTerm as its only element, let n be the number of Ring values
containing startingTerm, and let Ri denote a single element set containing such a value (if any). The
result of invoking GetSynonymTerms(CHARACTER VARYING, FT_WordOrPhrase) represents the
following set:

R0 UNION R1 UNION ... Ri ... UNION Rn

5) The term startingTerm is included in the result.

6) It is implementation-defined, whether a check is made to ensure that the language specified in
startingTerm.Language is compatible with the thesaurus as specified by thes_name, and if so, what
kind of condition is raised in case of a language incompatibility.

ISO/IEC FDIS 13249-2:2000 (E)

146 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.13 FT_PreferredTerm Type and Routines

6.13.1 FT_PreferredTerm Type

Purpose

FT_Preferred Term values provide for the construction of preferred term search patterns, and for searching
of occurrences of the associated preferred terms in text.

Definition

CREATE TYPE FT_PreferredTerm
UNDER FT_Primary
AS (

thesaurus CHARACTER VARYING(FT_ThesNameLength),
startingTerm FT_WordOrPhrase

)
INSTANTIABLE
NOT FINAL

OVERRIDING METHOD Contains(text FullText)
RETURNS BOOLEAN,

OVERRIDING METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern,

METHOD FT_PreferredTerm
(thes_name CHARACTER VARYING(FT_ThesNameLength),
 strt FT_WordOrPhrase)
RETURNS FT_PreferredTerm
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

Definitional Rules

1) FT_ThesNameLength is the implementation-defined maximum length for the character representation
of a thesaurus name.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 147

Description

1) The FT_PreferredTerm type provides:

a) an attribute thesaurus,
b) an attribute startingTerm,
c) a method Contains(FullText),
d) a method StrctPattern_to_FT_Pattern(),
e) a method FT_PreferredTerm(CHARACTER VARYING, FT_WordOrPhrase),
f) a function GetPreferredTerms(CHARACTER VARYING, FT_WordOrPhrase).

2) For the purpose of this type, a thesaurus is effectively a table with three columns, say PreferredTerm,
TermId, and SynonymTerm, the values of which represent terms. For a given row, two values TermId
and SynonymTerm represent terms which are synonyms of each other, and PreferredTerm represents a
preferred term associated with either of the former terms.

3) The number of available thesauri and their names are implementation-defined.

ISO/IEC FDIS 13249-2:2000 (E)

148 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.13.2 Contains Method

Purpose

Search a FullText value for an FT_PreferredTerm value.

Definition

CREATE METHOD Contains
(text FullText)
RETURNS BOOLEAN
FOR FT_PreferredTerm
BEGIN

DECLARE PfdArray FT_WordOrPhrase ARRAY[FT_MaxArrayLength];
DECLARE result BOOLEAN;

SET PfdArray = GetPreferredTerms(SELF.thesaurus,
SELF.startingTerm);

SET result = NEW FT_Any(PrdArray).Contains(text);

RETURN (SELF.NOT_tag = result);
END

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The method Contains(FullText) takes the following input parameters:

a) a FullText value text.

2) Let R be the result of

NEW FT_Any(GetPreferredTerms(SELF.thesaurus,
SELF.startingTerm)).Contains(text)

3) Case:

a) If SELF.NOT_tag is unknown, then Contains(FullText) returns unknown.

b) If SELF.NOT_tag is false, then Contains(FullText) returns NOT R.

c) Otherwise, Contains(FullText) returns R.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 149

6.13.3 StrctPattern_to_FT_Pattern Method

Purpose

Convert an FT_PreferredTerm value to an FT_Pattern value.

Definition

CREATE METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern
FOR FT_PreferredTerm
BEGIN

DECLARE result CHARACTER VARYING(FT_MaxPatternLength);

IF SELF.NOT_tag IS UNKNOWN THEN
RETURN CAST(NULL AS FT_Pattern)

END IF;

SET result = ’THESAURUS "’
|| SELF.thesaurus
|| ’" EXPAND PREFERRED TERM OF ’
|| CAST(SELF.startingTerm.StrctPattern_to_FT_Pattern()

AS CHARACTER VARYING(FT_MaxPatternLength));

IF NOT SELF.NOT_tag THEN
SET result = ’NOT ’ || result;

END IF;
RETURN CAST(result AS FT_Pattern);

END

Definitional Rules

1) FT_MaxPatternLength is the implementation-dependent maximum length for the character
representation of an FT_Pattern value.

Description

1) The method StrctPattern_to_FT_Pattern() has no input parameters.

2) StrctPattern_to_FT_Pattern() returns an FT_Pattern value of the form <Preferred_Term expansion> or
NOT <Preferred_Term expansion>.

3) If SELF, SELF.thesaurus, or SELF.startingTerm is the null value or SELF.NOT_tag is unknown, then
the result is the null value.

ISO/IEC FDIS 13249-2:2000 (E)

150 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.13.4 FT_PreferredTerm Method

Purpose

Return a specified FT_PreferredTerm value.

Definition

CREATE METHOD FT_PreferredTerm
(thes_name CHARACTER VARYING(FT_ThesNameLength),
 strt FT_WordOrPhrase)
RETURNS FT_PreferredTerm
FOR FT_PreferredTerm
RETURN SELF.thesaurus(thes_name).startingTerm(strt).

NOT_tag(TRUE)

Definitional Rules

1) FT_ThesNameLength is the implementation-defined maximum length for the character representation
of a thesaurus name.

Description

1) The method FT_PreferredTerm(CHARACTER VARYING, FT_WordOrPhrase) takes the following
input parameters:

a) an CHARACTER VARYING value thes_name,
b) an FT_WordOrPhrase value strt.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 151

6.13.5 GetPreferredTerms Function

Purpose

Get preferred terms from a thesaurus.

Definition

CREATE FUNCTION GetPreferredTerms
(thes_name CHARACTER VARYING(FT_ThesNameLength),
 startingTerm FT_WordOrPhrase)
RETURNS FT_WordOrPhrase ARRAY[FT_MaxArrayLength]
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT
STATIC DISPATCH
BEGIN

DECLARE ret FT_WordOrPhrase ARRAY[FT_MaxArrayLength];
DECLARE strt FullText_Token ARRAY[FT_MaxArrayLength];
DECLARE strt_termid INTEGER;

SET thes_name = TRIM(BOTH ’ ’ FROM thes_name);
SET strt = startingTerm.getWordArray();
SET strt_termid =

(SELECT TERMID
 FROM TERM_DICTIONARY
 WHERE EXPR.getWordArray() = strt

 AND TRIM(BOTH ’ ’ FROM THNAME_DIC) = thes_name
);

SET ret = CAST(ARRAY[] AS FT_WordOrPhrase
ARRAY[FT_MaxArrayLength]);

L1: FOR elem AS
WITH temp_preferred (TERMID) AS

(SELECT PREFERRED_TERMID
 FROM TERM_SYNONYM
 WHERE TERMID = strt_termid

AND TRIM(BOTH ’ ’ FROM THNAME_SYN) = thes_name
)

SELECT ARRAY[TD.EXPR] AS EXPRarr1
FROM TERM_DICTIONARY TD, temp_preferred
WHERE TD.TERMID = temp_preferred.TERMID

AND TRIM(BOTH ’ ’ FROM TD.THNAME_DIC) = thes_name

DO -- for every row of the above query result,
 -- append the value of column EXPRarr1 to the array

SET ret = ret || EXPRarr1;
END FOR L1;
RETURN ret ||

CASE
WHEN startingTerm IS NULL OR thes_name IS NULL THEN

CAST(ARRAY[] AS FT_WordOrPhrase
 ARRAY[FT_MaxArrayLength])

ELSE
ARRAY[startingTerm]

END;
END

ISO/IEC FDIS 13249-2:2000 (E)

152 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

Definitional Rules

1) FT_ThesNameLength is the implementation-defined maximum length for the character representation
of a thesaurus name.

2) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The function GetPreferredTerms(CHARACTER VARYING, FT_WordOrPhrase) takes the following
input parameters:

a) a CHARACTER VARYING value thes_name, denoting a thesaurus TH,
b) an FT_WordOrPhrase value startingTerm.

2) GetPreferredTerms(CHARACTER VARYING, FT_WordOrPhrase) returns an array of
FT_WordOrPhrase elements which stands for a set of preferred terms.

3) GetPreferredTerms(CHARACTER VARYING, FT_WordOrPhrase) returns an empty array if either
startingTerm or thes_name is the null value.

4) Otherwise, for every row of TERM_SYNONYM with a pair (TERMID, THNAME_SYN)) such that
the TERMID value represents startingTerm and the THNAME_SYN value is equivalent to thes_name,
the term represented by the PREFERRED_TERMID value is included in the result.

5) The term startingTerm is included in the result.

6) It is implementation-defined, whether a check is made to ensure that the language specified in
startingTerm.Language is compatible with the thesaurus as specified by thes_name, and if so, what
kind of condition is raised in case of a language incompatibility.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 153

6.14 FT_RelatedTerm Type and Routines

6.14.1 FT_RelatedTerm Type

Purpose

FT_RelatedTerm values provide for the construction of related term search patterns, and for searching of
occurrences of the associated related terms in text.

Definition

CREATE TYPE FT_RelatedTerm
UNDER FT_Primary
AS (

thesaurus CHARACTER VARYING(FT_ThesNameLength),
startingTerm FT_WordOrPhrase

)
INSTANTIABLE
NOT FINAL

OVERRIDING METHOD Contains(text FullText)
RETURNS BOOLEAN,

OVERRIDING METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern,

METHOD FT_RelatedTerm
(thes_name CHARACTER VARYING(FT_ThesNameLength),
 strt FT_WordOrPhrase)
RETURNS FT_RelatedTerm
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

Definitional Rules

1) FT_ThesNameLength is the implementation-defined maximum length for the character representation
of a thesaurus name.

Description

1) The FT_RelatedTerm type provides:

a) an attribute thesaurus,
b) an attribute startingTerm,
c) a method Contains(FullText),
d) a method StrctPattern_to_FT_Pattern(),
e) a method FT_RelatedTerm(CHARACTER VARYING, FT_WordOrPhrase),
f) a function GetRelatedTerms(CHARACTER VARYING, FT_WordOrPhrase).

2) For the purpose of this type, a thesaurus is effectively a table, say TH, with two columns Term and
Related_Term. For a given row, the two values Term and Related_Term represent terms such that the
second is related to the first one.

3) The number of available thesauri and their names are implementation-defined.

ISO/IEC FDIS 13249-2:2000 (E)

154 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.14.2 Contains Method

Purpose

Search a FullText value for an FT_RelatedTerm value.

Definition

CREATE METHOD Contains
(text FullText)
RETURNS BOOLEAN
FOR FT_RelatedTerm
BEGIN

DECLARE RltdArray FT_WordOrPhrase ARRAY[FT_MaxArrayLength];
DECLARE result BOOLEAN;

SET RltdArray = GetRelatedTerms(SELF.thesaurus,
SELF.startingTerm);

SET result = NEW FT_Any(RltdArray).Contains(text);

RETURN (SELF.NOT_tag = result);
END

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The method Contains(FullText) takes the following input parameters:

a) a FullText value text.

2) Let R be the result of

NEW FT_Any(GetRelatedTerms(SELF.thesaurus, SELF.startingTerm)).
Contains(text)

3) Case:

a) If SELF.NOT_tag is unknown, then Contains(FullText) returns unknown.

b) If SELF.NOT_tag is false, then Contains(FullText) returns NOT R.

c) Otherwise, Contains(FullText) returns R.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 155

6.14.3 StrctPattern_to_FT_Pattern Method

Purpose

Convert an FT_RelatedTerm value to an FT_Pattern value.

Definition

CREATE METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern
FOR FT_RelatedTerm
BEGIN

DECLARE result CHARACTER VARYING(FT_MaxPatternLength);

IF SELF.NOT_tag IS UNKNOWN THEN
RETURN CAST(NULL AS FT_Pattern)

END IF;

SET result = ’THESAURUS "’
|| SELF.thesaurus
|| ’" EXPAND RELATED TERM OF ’
|| CAST(SELF.startingTerm.StrctPattern_to_FT_Pattern()

AS CHARACTER VARYING(FT_MaxPatternLength));

IF NOT SELF.NOT_tag THEN
SET result = ’NOT ’ || result;

END IF;
RETURN CAST(result AS FT_Pattern);

END

Definitional Rules

1) FT_MaxPatternLength is the implementation-dependent maximum length for the character
representation of an FT_Pattern value.

Description

1) The method StrctPattern_to_FT_Pattern() has no input parameters.

2) StrctPattern_to_FT_Pattern() returns an FT_Pattern value of the form <Related_Term expansion> or
NOT <Related_Term expansion>.

3) If SELF, SELF.thesaurus, or SELF.startingTerm is the null value or SELF.NOT_tag is unknown, then
the result is the null value.

ISO/IEC FDIS 13249-2:2000 (E)

156 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.14.4 FT_RelatedTerm Method

Purpose

Return a specified FT_RelatedTerm value.

Definition

CREATE METHOD FT_RelatedTerm
(thes_name CHARACTER VARYING(FT_ThesNameLength),
 strt FT_WordOrPhrase)
RETURNS FT_RelatedTerm
FOR FT_RelatedTerm
RETURN SELF.thesaurus(thes_name).startingTerm(strt).

NOT_tag(TRUE)

Definitional Rules

1) FT_ThesNameLength is the implementation-defined maximum length for the character representation
of a thesaurus name.

Description

1) The method FT_RelatedTerm(CHARACTER VARYING, FT_WordOrPhrase) takes the following input
parameters:

a) a CHARACTER VARYING value thes_name,
b) an FT_WordOrPhrase value strt.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 157

6.14.5 GetRelatedTerms Function

Purpose

Get related terms from a thesaurus.

Definition

CREATE FUNCTION GetRelatedTerms
(thes_name CHARACTER VARYING(FT_ThesNameLength),
 startingTerm FT_WordOrPhrase)
RETURNS FT_WordOrPhrase ARRAY[FT_MaxArrayLength]
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT
STATIC DISPATCH
BEGIN

DECLARE ret FT_WordOrPhrase ARRAY[FT_MaxArrayLength];
DECLARE strt FullText_Token ARRAY[FT_MaxArrayLength];
DECLARE strt_termid INTEGER;

SET thes_name = TRIM(BOTH ’ ’ FROM thes_name);
SET strt = startingTerm.getWordArray();
SET strt_termid =

(SELECT TERMID
 FROM TERM_DICTIONARY
 WHERE EXPR.getWordArray() = strt

 AND TRIM(BOTH ’ ’ FROM THNAME_DIC) = thes_name
);

SET ret = CAST(ARRAY[] AS FT_WordOrPhrase
ARRAY[FT_MaxArrayLength]);

L1: FOR elem AS
WITH temp_related (TERMID) AS

(SELECT RELATED_TERMID
 FROM TERM_RELATED
 WHERE TERMID = strt_termid

AND TRIM(BOTH ’ ’ FROM THNAME_REL) = thes_name
)

SELECT ARRAY[TD.EXPR] AS EXPRarr1
FROM TERM_DICTIONARY TD, temp_related
WHERE TD.TERMID = temp_related.TERMID

AND TRIM(BOTH ’ ’ FROM TD.THNAME_DIC) = thes_name

DO -- for every row of the above query result,
 -- append the value of column EXPRarr1 to the array

SET ret = ret || EXPRarr1;
END FOR L1;
RETURN ret ||

CASE
WHEN startingTerm IS NULL OR thes_name IS NULL THEN

CAST(ARRAY[] AS FT_WordOrPhrase
 ARRAY[FT_MaxArrayLength])

ELSE
ARRAY[startingTerm]

END;
END

ISO/IEC FDIS 13249-2:2000 (E)

158 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

Definitional Rules

1) FT_ThesNameLength is the implementation-defined maximum length for the character representation
of a thesaurus name.

2) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The function GetRelatedTerms(CHARACTER VARYING, FT_WordOrPhrase) takes the following
input parameters:

a) a CHARACTER VARYING value thes_name, denoting a thesaurus TH,
b) an FT_WordOrPhrase value startingTerm.

2) GetRelatedTerms(CHARACTER VARYING, FT_WordOrPhrase) returns an array of
FT_WordOrPhrase elements which stands for a set of related terms.

3) GetRelatedTerms(CHARACTER VARYING, FT_WordOrPhrase) returns an empty array either
startingTerm or thes_name is the null value.

4) Otherwise, for every row of TH with a pair (Term, Related_Term) such that the Term value represents
startingTerm, the term represented by the Related_Term value is included in the result.

5) The term startingTerm is included in the result.

6) It is implementation-defined, whether a check is made to ensure that the language specified in
startingTerm.Language is compatible with the thesaurus as specified by thes_name, and if so, what
kind of condition is raised in case of a language incompatibility.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 159

6.15 FT_TopTerm Type and Routines

6.15.1 FT_TopTerm Type

Purpose

FT_TopTerm values provide for the construction of top term search patterns, and for searching of
occurrences of the associated top terms in text.

Definition

CREATE TYPE FT_TopTerm
UNDER FT_Primary
AS (

thesaurus CHARACTER VARYING(FT_ThesNameLength),
startingTerm FT_WordOrPhrase

)
INSTANTIABLE
NOT FINAL

OVERRIDING METHOD Contains(text FullText)
RETURNS BOOLEAN,

OVERRIDING METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern,

METHOD FT_TopTerm
(thes_name CHARACTER VARYING(FT_ThesNameLength),
 strt FT_WordOrPhrase)
RETURNS FT_TopTerm
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

Definitional Rules

1) FT_ThesNameLength is the implementation-defined maximum length for the character representation
of a thesaurus name.

Description

1) The FT_TopTerm type provides:

a) an attribute thesaurus,
b) an attribute startingTerm,
c) a method Contains(FullText),
d) a method StrctPattern_to_FT_Pattern(),
e) a method FT_TopTerm(CHARACTER VARYING, FT_WordOrPhrase),
f) a function GetTopTerms(CHARACTER VARYING, FT_WordOrPhrase).

2) For the purpose of this type, a thesaurus is effectively a table with two columns, NarrowerTerm and
BroaderTerm. For a given row, the values contained in the two columns represent terms, the first being
a narrower term of the second one.

3) The number of available thesauri and their names are implementation-defined.

ISO/IEC FDIS 13249-2:2000 (E)

160 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.15.2 Contains Method

Purpose

Search a FullText value for an FT_TopTerm value.

Definition

CREATE METHOD Contains
(text FullText)
RETURNS BOOLEAN
FOR FT_TopTerm
BEGIN

DECLARE TopArray FT_WordOrPhrase ARRAY[FT_MaxArrayLength];
DECLARE result BOOLEAN;

SET TopArray = GetTopTerms(SELF.thesaurus,
SELF.startingTerm);

SET result = NEW FT_Any(TopArray).Contains(text);

RETURN (SELF.NOT_tag = result);
END

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The method Contains(FullText) takes the following input parameters:

a) a FullText value text.

2) Let R be the result of

NEW FT_Any(GetTopTerms(SELF.thesaurus,
SELF.startingTerm)).Contains(text)

3) Case:

a) If SELF.NOT_tag is unknown, then Contains(FullText) returns unknown.

b) If SELF.NOT_tag is false, then Contains(FullText) returns NOT R.

c) Otherwise, Contains(FullText) returns R.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 161

6.15.3 StrctPattern_to_FT_Pattern Method

Purpose

Convert an FT_TopTerm value to an FT_Pattern value.

Definition

CREATE METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern
FOR FT_TopTerm
BEGIN

DECLARE result CHARACTER VARYING(FT_MaxPatternLength);

IF SELF.NOT_tag IS UNKNOWN THEN
RETURN CAST(NULL AS FT_Pattern)

END IF;

SET result = ’THESAURUS "’
|| SELF.thesaurus
|| ’" EXPAND TOP TERM OF ’
|| CAST(SELF.startingTerm.StrctPattern_to_FT_Pattern()

AS CHARACTER VARYING(FT_MaxPatternLength));

IF NOT SELF.NOT_tag THEN
SET result = ’NOT ’ || result;

END IF;
RETURN CAST(result AS FT_Pattern);

END

Definitional Rules

1) FT_MaxPatternLength is the implementation-dependent maximum length for the character
representation of an FT_Pattern value.

Description

1) The method StrctPattern_to_FT_Pattern() has no input parameters.

2) StrctPattern_to_FT_Pattern() returns an FT_Pattern value of the form <Top_Term expansion> or
NOT <Top_Term expansion>.

3) If SELF, SELF.thesaurus, or SELF.startingTerm is the null value or SELF.NOT_tag is unknown, then
the result is the null value.

ISO/IEC FDIS 13249-2:2000 (E)

162 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.15.4 FT_TopTerm Method

Purpose

Return a specified FT_TopTerm value.

Definition

CREATE METHOD FT_TopTerm
(thes_name CHARACTER VARYING(FT_ThesNameLength),
 strt FT_WordOrPhrase)
RETURNS FT_TopTerm
FOR FT_TopTerm
RETURN SELF.thesaurus(thes_name).startingTerm(strt).

NOT_tag(TRUE)

Definitional Rules

1) FT_ThesNameLength is the implementation-defined maximum length for the character representation
of a thesaurus name.

Description

1) The method FT_TopTerm(CHARACTER VARYING, FT_WordOrPhrase) takes the following input
parameters:

a) a CHARACTER VARYING value thes_name,
b) an FT_WordOrPhrase value strt.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 163

6.15.5 GetTopTerms Function

Purpose

Get top terms from a thesaurus.

Definition

CREATE FUNCTION GetTopTerms
(thes_name CHARACTER VARYING(FT_ThesNameLength),
 startingTerm FT_WordOrPhrase)
RETURNS FT_WordOrPhrase ARRAY[FT_MaxArrayLength]
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT
STATIC DISPATCH
BEGIN

DECLARE ret FT_WordOrPhrase ARRAY[FT_MaxArrayLength];
DECLARE strt FullText_Token ARRAY[FT_MaxArrayLength];
DECLARE strt_termid INTEGER;

SET thes_name = TRIM(BOTH ’ ’ FROM thes_name);
SET strt = startingTerm.getWordArray();
SET strt_termid =

(SELECT TERMID
 FROM TERM_DICTIONARY
 WHERE EXPR.getWordArray() = strt

 AND TRIM(BOTH ’ ’ FROM THNAME_DIC) = thes_name
);

SET ret = CAST(ARRAY[] AS FT_WordOrPhrase
ARRAY[FT_MaxArrayLength]);

L1: FOR elem AS
WITH RECURSIVE done_so_far (TERMID, NARROWER_TERMID) AS

(SELECT TERMID, NARROWER_TERMID
 FROM TERM_HIERARCHY
 WHERE NARROWER_TERMID = strt_termid

AND TRIM(BOTH ’ ’ FROM THNAME_HRR) = thes_name
UNION

 SELECT more.TERMID, more.NARROWER_TERMID
 FROM done_so_far B, TERM_HIERARCHY more
 WHERE more.NARROWER_TERMID = B.TERMID

 AND TRIM(BOTH ’ ’ FROM more.THNAME_HRR) = thes_name
)

SELECT ARRAY[TD.EXPR] AS EXPRarr1
FROM TERM_DICTIONARY TD, done_so_far f
WHERE TD.TERMID = f.TERMID

AND TRIM(BOTH ’ ’ FROM TD.THNAME_DIC) = thes_name
AND NOT EXISTS
(SELECT *
 FROM done_so_far d
 WHERE d.NARROWER_TERMID = f.TERMID
)

DO -- for every row of the above query result,
 -- append the value of column EXPRarr1 to the array

SET ret = ret || EXPRarr1;
END FOR L1;
RETURN ret;

END

Definitional Rules

ISO/IEC FDIS 13249-2:2000 (E)

164 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

1) FT_ThesNameLength is the implementation-defined maximum length for the character representation
of a thesaurus name.

2) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The function GetTopTerms(CHARACTER VARYING, FT_WordOrPhrase) takes the following input
parameters:

a) a CHARACTER VARYING value thes_name,
b) an FT_WordOrPhrase value startingTerm.

2) GetTopTerms(CHARACTER VARYING, FT_WordOrPhrase) returns an array of FT_WordOrPhrase
elements, which stands for a set of top terms.

3) GetTopTerms(CHARACTER VARYING, FT_WordOrPhrase, INTEGER) is equivalent to
GetBroaderTerms(CHARACTER VARYING, FT_WordOrPhrase), using thes_name, startingTerm, and
NULL as input arguments, and subsequently removing all terms for which there exists a broader term
according to the thesaurus denoted by thes_name.

4) The term startingTerm is not included in the result.

5) It is implementation-defined, whether a check is made to ensure that the language specified in
startingTerm.Language is compatible with the thesaurus as specified by thes_name, and if so, what
kind of condition is raised in case of a language incompatibility.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 165

6.16 FT_IsAbout Type and Routines

6.16.1 FT_IsAbout Type

Purpose

FT_IsAbout values provide for the construction of search patterns stating a topic in form of a FullText
value, and for testing whether a text is pertinent to this value.

Definition

CREATE TYPE FT_IsAbout
UNDER FT_Primary
AS (

wrdorphr FT_WordOrPhrase
)
INSTANTIABLE
NOT FINAL

OVERRIDING METHOD Contains(text FullText)
RETURNS BOOLEAN,

OVERRIDING METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern,

METHOD FT_IsAbout(wrdorphr FT_WordOrPhrase)
RETURNS FT_IsAbout
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

Description

1) The FT_IsAbout type provides:

a) an attribute wrdorphr,
b) a method Contains(FullText),
c) a method StrctPattern_to_FT_Pattern(),
d) a method FT_IsAbout(FullText).

ISO/IEC FDIS 13249-2:2000 (E)

166 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.16.2 Contains Method

Purpose

Search a FullText value for an FT_IsAbout value.

Definition

CREATE METHOD Contains
(text FullText)
RETURNS BOOLEAN
FOR FT_IsAbout
BEGIN

DECLARE result BOOLEAN;
--
-- !! See description
--
RETURN result;

END

Description

1) The method Contains(FullText) takes the following input parameters:

a) a FullText value text.

2) Contains(FullText) tests whether a given FullText item is pertinent to the FT_WordOrPhrase item of a
given FT_IsAbout value. The result is subject to implementation-defined criteria of pertinence.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 167

6.16.3 StrctPattern_to_FT_Pattern Method

Purpose

Convert an FT_IsAbout value to an FT_Pattern value.

Definition

CREATE METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern
FOR FT_IsAbout
BEGIN

DECLARE result CHARACTER VARYING(FT_MaxPatternLength);

IF SELF.NOT_tag IS UNKNOWN THEN
RETURN CAST(NULL AS FT_Pattern)

END IF;

SET result = ’IS ABOUT ’
|| CAST(SELF.wrdorphr.StrctPattern_to_FT_Pattern()

AS CHARACTER VARYING(FT_MaxPatternLength));

IF NOT SELF.NOT_tag THEN
SET result = ’NOT ’ || result;

END IF;
RETURN CAST(result AS FT_Pattern);

END

Definitional Rules

1) FT_MaxPatternLength is the implementation-dependent maximum length for the character
representation of an FT_Pattern value.

Description

1) The method StrctPattern_to_FT_Pattern() has no input parameters.

2) StrctPattern_to_FT_Pattern() returns an FT_Pattern value of the form <about expansion> or NOT
<about expansion>.

3) If SELF or SELF.wrdorphr is the null value or SELF.NOT_tag is unknown, then the result is the null
value.

ISO/IEC FDIS 13249-2:2000 (E)

168 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.16.4 FT_IsAbout Method

Purpose

Return a specified FT_IsAbout value.

Definition

CREATE METHOD FT_IsAbout
(wrdorphr FT_WordOrPhrase)
RETURNS FT_IsAbout
FOR FT_IsAbout
RETURN SELF.wrdorphr(wrdorphr).NOT_tag(TRUE)

Description

1) The method FT_IsAbout(FT_WordOrPhrase) takes the following input parameters:

a) a FT_WordOrPhrase value wrdorphr.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 169

6.17 FT_Context Type and Routines

6.17.1 FT_Context Type

Purpose

FT_Context values represent context search patterns.

Definition

CREATE TYPE FT_Context
UNDER FT_Primary
AS (

ArgArray FT_PhraseList ARRAY[FT_MaxArrayLength],
du FullText_Token

)
INSTANTIABLE
NOT FINAL

OVERRIDING METHOD Contains(text FullText)
RETURNS BOOLEAN,

OVERRIDING METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern,

METHOD FT_Context
(Arg1 FT_PhraseList,
 Arg2 FT_PhraseList,
 Arg3 FT_PhraseList ARRAY[FT_MaxArrayLength],
 DistanceUnit FullText_Token)
RETURNS FT_Context
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The FT_Context type provides:

a) an attribute ArgArray,
b) an attribute du,
c) a method Contains(FullText),
d) a method StrctPattern_to_FT_Pattern(),
e) a method FT_Context(FT_PhraseList, FT_PhraseList, FT_PhraseList ARRAY, FullText_Token) .

ISO/IEC FDIS 13249-2:2000 (E)

170 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.17.2 Contains Method

Purpose

Search a FullText value for an FT_Context value.

Definition

CREATE METHOD Contains
(text FullText)
RETURNS BOOLEAN
FOR FT_Context
BEGIN

DECLARE result BOOLEAN;
DECLARE ftl FullText ARRAY[FT_MaxArrayLength];
DECLARE segno INTEGER;
DECLARE argno INTEGER;

IF SELF IS NULL THEN
SET argno = CAST(NULL AS INTEGER);

ELSEIF SELF.ArgArray IS NULL THEN
SET argno = CAST(NULL AS INTEGER)

ELSE
SET argno = CARDINALITY(SELF.ArgArray);

END IF;

SET ftl = text.Segmentize(SELF.du);

IF ftl IS NULL THEN
SET segno = CAST(NULL AS INTEGER);

ELSE
SET segno = CARDINALITY(ftl);

END IF;

IF segno IS NULL THEN
RETURN UNKNOWN;

ELSEIF segno = 0 THEN
SET RESULT = FALSE;

ELSEIF (segno <> 0 AND argno = 0) THEN
SET RESULT = TRUE;

ELSEIF (segno <>0 AND argno IS NULL) THEN
SET RESULT = UNKNOWN;

ELSE
SET RESULT =

(WITH RECURSIVE SegTab(ind, seg) AS
(VALUES(1, ftl[1])

UNION
 SELECT ind + 1, ftl[ind + 1]
 FROM SegTab
 WHERE ind < segno
),
ContextTab(ind, ca) AS
(VALUES(1, SELF.ArgArray[1])

UNION
 SELECT ind + 1, SELF.ArgArray[ind + 1]
 FROM ContextTab
 WHERE ind < argno
),

Temp(BasI) AS
(SELECT MAX(TTE.BasI)
 FROM (VALUES(1) UNION
 SELECT

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 171

 (SELECT MIN(TTU.BasI)
 FROM (VALUES(3) UNION
 SELECT CASE ca.Contains(seg)
 WHEN FALSE THEN 1
 WHEN TRUE THEN 3
 ELSE 2
 END
 FROM ContextTab ct(ind, ca)) AS TTU(BasI))
 FROM SegTab st(ind, seg)) AS TTE(BasI)
)
SELECT ARRAY[FALSE, TRUE, UNKNOWN][BasI]
FROM Temp

);
END IF;
RETURN (SELF.NOT_tag = result);

END

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The method Contains(FullText) takes the following input parameters:

a) a FullText value text.

2) Case:

a) If either text.Segmentize(SELF.du) or SELF or SELF.ArgArray is the null value, then the result of
Contains(FullText) is unknown.

b) Otherwise, let n be the number of elements of SELF.ArgArray, and for i ranging from 1 to n, let
CAi be the elements of SELF.ArgArray. Depending on the distance unit SELF.du specified, let m
be the number of sentences (paragraphs) of text, and for j ranging from 1 to m, let SEGj be the
FullText values representing these sentences (paragraphs).

Case:

i) If there exists some SEGj, such that the result of

 CAi.Contains(SEGj)

 is true, for every Cai , then let R be true.

i) If for every SEGj, such that the result of

 CAi.Contains(SEGj)

 is false, for at least one Cai , then let R be false.

iii) Otherwise, let R be unknown.

3) Contains(FullText) returns:

Case:

a) unknown, if SELF.NOT_tag is unknown.

ISO/IEC FDIS 13249-2:2000 (E)

172 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

b) NOT R, if SELF.NOT_tag is false.

c) Otherwise, R.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 173

6.17.3 StrctPattern_to_FT_Pattern Method

Purpose

Convert an FT_Context value to an FT_Pattern value.

Definition

CREATE METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern
FOR FT_Context
BEGIN

DECLARE result CHARACTER VARYING(FT_MaxPatternLength);
DECLARE i INTEGER;
DECLARE n INTEGER;

IF SELF.ArgArray IS NULL THEN
RETURN NULL;

ELSEIF SELF.NOT_tag IS UNKNOWN THEN
RETURN NULL;

END IF;

SET n = CARDINALITY(SELF.ArgArray);
SET result =

CAST(SELF.ArgArray[1].StrctPattern_to_FT_Pattern()
 AS CHARACTER VARYING(FT_MaxPatternLength)
|| ’IN SAME ’
|| TRIM(BOTH ’ ’ FROM SELF.du)
||’ AS ’ ||
CAST(SELF.ArgArray[2].StrctPattern_to_FT_Pattern()
 AS CHARACTER VARYING(FT_MaxPatternLength));

SET i = 3;

L1: WHILE (n >= i) DO
SET result = result || ’ AND ’||
 CAST(SELF.ArgArray[i].StrctPattern_to_FT_Pattern()

AS CHARACTER VARYING(FT_MaxPatternLength));
SET i = i + 1;

END WHILE L1;

IF NOT SELF.NOT_tag THEN
SET result = ’NOT ’ || result;

END IF;
RETURN CAST(result AS FT_Pattern);

END

Definitional Rules

1) FT_MaxPatternLength is the implementation-dependent maximum length for the character
representation of an FT_Pattern value.

ISO/IEC FDIS 13249-2:2000 (E)

174 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

Description

1) The method StrctPattern_to_FT_Pattern() has no input parameters.

2) StrctPattern_to_FT_Pattern() returns an FT_Pattern value of the form <context condition> or NOT
<context condition>.

3) The result is the null value in the following cases:

a) SELF or SELF.ArgArray is the null value or SELF.NOT_tag is unknown.

b) For some element E of SELF.ArgArray, E.StrctPattern_to_FT_Pattern() is the null value.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 175

6.17.4 FT_Context Method

Purpose

Return a specified FT_Context value.

Definition

CREATE METHOD FT_Context
(Arg1 FT_PhraseList,
 Arg2 FT_PhraseList,
 Arg3 FT_PhraseList ARRAY[FT_MaxArrayLength],
 DistanceUnit FullText_Token)
RETURNS FT_Context
FOR FT_Context
RETURN SELF.

ArgArray(ARRAY[Arg1, Arg2] || Arg3).du(DistanceUnit).
NOT_tag(TRUE)

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The method FT_Context(FT_PhraseList, FT_PhraseList, FT_PhraseList ARRAY, FullText_Token)
takes the following input parameters:

a) an FT_PhraseList value Arg1,
b) an FT_PhraseList value Arg2,
c) a (possibly empty) array Arg3 the elements of which are FT_PhraseList values,
d) a FullText_Token value DistanceUnit.

2) All arguments may be the null value.

ISO/IEC FDIS 13249-2:2000 (E)

176 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.18 FT_ParExpr Type and Routines

6.18.1 FT_ParExpr Type

Purpose

FT_ParExpr provides for the construction of FT_Term patterns as FT_Primary values of the type
FT_ParExpr, for searching occurrences of FT_ParExpr patterns in FullText items, and for turning
FT_ParExpr values into equivalent FT_Pattern values.

Definition

CREATE TYPE FT_ParExpr
UNDER FT_Primary
AS (

Body FT_Expr
)
INSTANTIABLE
NOT FINAL

OVERRIDING METHOD Contains(text FullText)
RETURNS BOOLEAN,

OVERRIDING METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern,

METHOD FT_ParExpr(expr FT_Expr)
RETURNS FT_ParExpr
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

Description

1) The FT_ParExpr type provides:

a) an attribute Body,
b) a method Contains(FullText),
c) a method StrctPattern_to_FT_Pattern(),
d) a method FT_ParExpr(FT_Expr).

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 177

6.18.2 Contains Method

Purpose

Search a FullText value for an FT_ParExpr value.

Definition

CREATE METHOD Contains
(text FullText)
RETURNS BOOLEAN
FOR FT_ParExpr
RETURN SELF.Body.Contains(text)

Description

1) The method Contains(FullText) takes the following input parameters:

a) a FullText value text.

2) The result of SELF.Contains(text) is the result of SELF.Body.Contains(text).

ISO/IEC FDIS 13249-2:2000 (E)

178 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.18.3 StrctPattern_to_FT_Pattern Method

Purpose

Convert an FT_ParExpr value to an FT_Pattern value.

Definition

CREATE METHOD StrctPattern_to_FT_Pattern()
RETURNS(FT_Pattern)
FOR FT_ParExpr
BEGIN

DECLARE result CHARACTER VARYING(FT_MaxPatternLength);

IF SELF.NOT_tag IS UNKNOWN THEN
RETURN CAST(NULL AS FT_Pattern);

END IF;

SET result = ’(’|| CAST(SELF.Body.StrctPattern_to_FT_Pattern()
AS CHARACTER VARYING(FT_MaxPatternLength)) || ’)’;

IF NOT SELF.NOT_tag THEN
SET result = ’NOT ’ || result;

END IF;
RETURN CAST(result AS FT_Pattern);

END

Definitional Rules

1) FT_MaxPatternLength is the implementation-dependent maximum length for the character
representation of an FT_Pattern value.

Description

1) The method StrctPattern_to_FT_Pattern() has no input parameters.

2) StrctPattern_to_FT_Pattern() returns an FT_Pattern value of the form <left paren> <search
expression> <right paren> except for the following cases:

a) If SELF is the null value or SELF.NOT_tag is the null value, then the result is the null value.

b) If SELF.Body.StrctPattern_to_FT_Pattern() is the null value, then the result is the null value.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 179

6.18.4 FT_ParExpr Method

Purpose

Return a specified FT_ParExpr value.

Definition

CREATE METHOD FT_ParExpr
(expr FT_Expr)
RETURNS FT_ParExpr
FOR FT_ParExpr
RETURN SELF.Body(expr).NOT_tag(TRUE)

Description

1) The method FT_ParExpr(FT_Expr) takes the following input parameters:

a) an FT_Expr value expr.

ISO/IEC FDIS 13249-2:2000 (E)

180 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.19 FT_Term Type and Routines

6.19.1 FT_Term Type

Purpose

FT_Term values represent search patterns consisting of a sequence of FT_Primary search patterns; all items
in the list are intended to be matched.

Definition

CREATE TYPE FT_Term
AS (

ConjunctsArray FT_Primary ARRAY[FT_MaxArrayLength]
)
INSTANTIABLE
NOT FINAL

METHOD Contains(text FullText)
RETURNS BOOLEAN
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT,

METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT,

METHOD FT_Term
(pArray FT_Primary ARRAY[FT_MaxArrayLength])
RETURNS FT_Term
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The FT_Term type provides:

a) an attribute ConjunctsArray,
b) a method Contains(FullText),
c) a method StrctPattern_to_FT_Pattern(),
d) a method FT_Term(FT_Primary ARRAY).

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 181

6.19.2 Contains Method

Purpose

Search a FullText value for an FT_Term value.

Definition

CREATE METHOD Contains
(text FullText)
RETURNS BOOLEAN
FOR FT_Term
BEGIN

DECLARE i INTEGER ;
DECLARE result BOOLEAN;

IF SELF IS NULL THEN
RETURN UNKNOWN;

ELSEIF SELF.ConjunctsArray IS NULL THEN
RETURN UNKNOWN;

END IF;
SET i = 1 ;
SET result = TRUE;

L1: WHILE (i <= CARDINALITY(SELF.ConjunctsArray))
AND (result IS TRUE OR result IS UNKNOWN) DO

SET result = result
AND SELF.ConjunctsArray[i].Contains(text);

SET i = i + 1;
END WHILE L1;
RETURN result;

END

Description

1) The method Contains(FullText) takes the following input parameters:

a) a FullText value text.

2) The result of Contains(FullText) is:

Case:

a) unknown, if SELF or SELF.ConjunctsArray is the null value.

b) true, if for all FT_Primary elements P of SELF.ConjunctsArray

 P.Contains(text)

returns true.

c) false, if at least one FT_Primary element P of SELF.ConjunctsArray is such that

 P.Contains(text)

returns false.

d) Otherwise, unknown.

ISO/IEC FDIS 13249-2:2000 (E)

182 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.19.3 StrctPattern_to_FT_Pattern Method

Purpose

Convert an FT_Term value to an FT_Pattern value.

Definition

CREATE METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern
FOR FT_Term
BEGIN

DECLARE i INTEGER;
DECLARE result CHARACTER VARYING(FT_MaxPatternLength);

SET i = 1;
SET result = ’’;

L1: WHILE(i <= CARDINALITY(SELF.ConjunctsArray)) DO
SET result = result

|| CAST(
SELF.ConjunctsArray[i].StrctPattern_to_FT_Pattern()

 AS CHARACTER VARYING(FT_MaxPatternLength))
|| ’&’;

SET i = i + 1;
END WHILE L1;

SET result = TRIM(TRAILING ’&’ FROM result);
RETURN CAST(result AS FT_Pattern);

END

Definitional Rules

1) FT_MaxPatternLength is the implementation-dependent maximum length for the character
representation of an FT_Pattern value.

Description

1) The method StrctPattern_to_FT_Pattern() has no input parameters.

2) StrctPattern_to_FT_Pattern() returns an FT_Pattern value of the form <search term> except for the
following cases:

a) If SELF.ConjunctsArray is empty, the result is represented by an empty string.

b) If SELF or SELF.ConjunctsArray is the null value, then the result is the null value.

c) If for any element E of SELF.ConjunctsArray, E.StrctPattern_to_FT_Pattern() is the null value,
then the result is the null value.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 183

6.19.4 FT_Term Method

Purpose

Return a specified FT_Term value.

Definition

CREATE METHOD FT_Term
(pArray FT_Primary ARRAY[FT_MaxArrayLength])
RETURNS FT_Term
FOR FT_Term
RETURN SELF.ConjunctsArray(pArray)

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The method FT_Term(FT_Primary ARRAY) takes the following input parameters:

a) an array pArray with elements of type FT_Primary.

2) pArray may be empty or the null value.

NOTE 19 - The definition of FT_Term values is intentionally more general than the definition of the
corresponding <search term>s.

ISO/IEC FDIS 13249-2:2000 (E)

184 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.20 FT_Expr Type and Routines

6.20.1 FT_Expr Type

Purpose

FT_Expr values represent search patterns consisting of a sequence of FT_Term search patterns; at least one
item in such a list is intended to be matched.

Definition

CREATE TYPE FT_Expr
AS (

DisjunctsArray FT_Term ARRAY[FT_MaxArrayLength]
)
INSTANTIABLE
NOT FINAL

METHOD Contains(text FullText)
RETURNS BOOLEAN
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT,

METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT,

METHOD FT_Expr
(tArray FT_Term ARRAY[FT_MaxArrayLength])
RETURNS FT_Expr
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The FT_Expr type provides:

a) an attribute DisjunctsArray,
b) a method Contains(FullText),
c) a method StrctPattern_to_FT_Pattern(),
d) a method FT_Expr(FT_Term ARRAY),

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 185

6.20.2 Contains Method

Purpose

Search a FullText value for an FT_Expr value.

Definition

CREATE METHOD Contains
(text FullText)
RETURNS BOOLEAN
FOR FT_Expr
BEGIN

DECLARE i INTEGER ;
DECLARE result BOOLEAN;

IF SELF IS NULL THEN
RETURN UNKNOWN;

ELSEIF SELF.DisjunctsArray IS NULL THEN
RETURN UNKNOWN;

END IF;

SET i = 1 ;
SET result = FALSE;

L1: WHILE (i <= CARDINALITY(SELF.DisjunctsArray))
AND (result IS FALSE OR result IS UNKNOWN) DO

SET result = result
OR SELF.DisjunctsArray[i].Contains(text);

SET i = i + 1;
END WHILE L1;
RETURN result;

END

Description

1) The method Contains(FullText) takes the following input parameters:

a) a FullText value text.

2) The result of Contains(FullText) is:

Case:

a) unknown, if SELF or SELF.DisjunctsArray is the null value.

b) true, if for at least one FT_Term element T of SELF.DisjunctsArray

 T.Contains(text)

returns true.

c) false, if for all FT_Term elements T of SELF.DisjunctsArray

 T.Contains(text)

returns false.

d) Otherwise, unknown.

ISO/IEC FDIS 13249-2:2000 (E)

186 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.20.3 StrctPattern_to_FT_Pattern Method

Purpose

Convert an FT_Expr value to an FT_Pattern value.

Definition

CREATE METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern
FOR FT_Expr
BEGIN

DECLARE i INTEGER;
DECLARE result CHARACTER VARYING(FT_MaxPatternLength);

IF SELF IS NULL OR SELF.DisjunctsArray IS NULL THEN
RETURN CAST(NULL AS FT_Pattern);

END IF;

SET i = 1;
SET result = ’’;

L1: WHILE(i <= CARDINALITY(SELF.DisjunctsArray)) DO
SET result = result

|| CAST(
SELF.DisjunctsArray[i].StrctPattern_to_FT_Pattern()

 AS CHARACTER VARYING(FT_MaxPatternLength))
|| ’|’;

SET i = i + 1;
END WHILE L1;

SET result = TRIM(TRAILING ’|’ FROM result);
RETURN CAST(result AS FT_Pattern);

END

Definitional Rules

1) FT_MaxPatternLength is the implementation-dependent maximum length for the character
representation of an FT_Pattern value.

Description

1) The method StrctPattern_to_FT_Pattern() has no input parameters.

2) StrctPattern_to_FT_Pattern() returns an FT_Pattern value of the form <search expression> except for
the following cases:

a) If SELF.DisjunctsArray is empty, the result is represented by an empty string.
b) If SELF or SELF.DisjunctsArray is the null value, then the result is the null value.
c) If for any element E of SELF.DisjunctsArray, E.StrctPattern_to_FT_Pattern() is the null value,

then the result is the null value.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 187

6.20.4 FT_Expr Method

Purpose

Return a specified FT_Expr value.

Definition

CREATE METHOD FT_Expr
(tArray FT_Term ARRAY[FT_MaxArrayLength])
RETURNS FT_Expr
FOR FT_Expr
RETURN SELF.DisjunctsArray(tArray)
END

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The method FT_Expr(FT_Term ARRAY) takes the following input parameters:

a) an array tArray with elements of type FT_Term.

2) tArray may be empty or the null value.

NOTE 20 - The definition of FT_Expr values is intentionally more general than the definition of the
corresponding <search expression>s.

ISO/IEC FDIS 13249-2:2000 (E)

188 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.21 FT_PhraseList Type and Routines

6.21.1 FT_PhraseList Type

Purpose

FT_PhraseList type provides facilities for the construction of a structured search pattern that represents a
multiset element type of which is FT_Phrase, and for testing whether at least one of the members of such a
multiset occurs in a given FullText value.

Definition

CREATE TYPE FT_PhraseList
AS (

Phrases FT_Phrase ARRAY[FT_MaxArrayLength]
)
INSTANTIABLE
NOT FINAL

METHOD Contains(text FullText)
RETURNS BOOLEAN
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT,

METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT,

METHOD FT_PhraseList
(phrases FT_Phrase ARRAY[FT_MaxArrayLength])
RETURNS FT_PhraseList
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The FT_PhraseList type provides:

a) an attribute Phrases,
b) a method Contains(FullText),
c) a method StrctPattern_to_FT_Pattern(),
d) a method FT_PhraseList(FT_Phrase ARRAY).

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 189

6.21.2 Contains Method

Purpose

Search a FullText value for an FT_PhraseList value.

Definition

CREATE METHOD Contains
(text FullText)
RETURNS BOOLEAN
FOR FT_PhraseList
BEGIN

DECLARE i INTEGER ;
DECLARE result BOOLEAN;
DECLARE TokArray FullText_Token ARRAY[FT_MaxArrayLength];
DECLARE lenp INTEGER;
DECLARE lent INTEGER;

IF SELF IS NULL THEN
SET lenp = CAST(NULL AS INTEGER);

ELSE
SET lenp = CARDINALITY(SELF.Phrases);

END IF;

SET TokArray = text.Tokenize();
IF TokArray IS NULL THEN

SET lent = CAST(NULL AS INTEGER);
ELSE

SET lenp = CARDINALITY(TokArray);
END IF;
IF lent IS NULL AND lenp IS NULL THEN

RETURN UNKNOWN;
ELSEIF lent = 0 OR lenp = 0 THEN

SET result = FALSE;
ELSEIF lent <> 0 AND lenp IS NULL

OR lent IS NULL AND lenp <> 0 THEN
RETURN UNKNOWN;

ELSE SET result =

(WITH RECURSIVE phrlTab(ind, phr) AS
(VALUES(1, SELF.Phrases[1])

UNION
 SELECT ind + 1, SELF.Phrases[ind + 1]
 FROM phrlTab
 WHERE ind < lenp
),
Temp(BasI) AS

(SELECT MAX(BasI)
 FROM (VALUES(1) UNION
 SELECT CASE phr.Contains(text)
 WHEN FALSE THEN 1
 WHEN TRUE THEN 3
 ELSE 2
 END
 FROM phrlTab pt(ind, phr)) AS TT(BasI)
)

SELECT ARRAY[FALSE, UNKNOWN, TRUE][BasI] FROM Temp
);
END IF;
RETURN result;

END

ISO/IEC FDIS 13249-2:2000 (E)

190 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The method Contains (FullText) takes the following input parameters:

a) a FullText value text.

2) The result of Contains (FullText) is:

Case:

a) false, if SELF.Phrases is empty or if for every element P of SELF.Phrases the result of

 P.Contains(text)

is false.

b) true, if there exists at least one element P of SELF.Phrases such that the result of

 P.Contains(text)

is true.

c) Otherwise, unknown,.

In particular, this result is obtained if:

i) Any of text or text.Tokenize() is the null value, and SELF or SELF.Phrases is the null value.

ii) text or text.Tokenize() is the null value, but SELF.Phrases is an non-empty array.

iii) SELF or SELF.Phrases is the null value, but text.Tokenize() is an non-empty array.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Structured Search Pattern Types 191

6.21.3 StrctPattern_to_FT_Pattern Method

Purpose

Convert an FT_PhraseList value to an FT_Pattern value.

Definition

CREATE METHOD StrctPattern_to_FT_Pattern()
RETURNS FT_Pattern
FOR FT_PhraseList
BEGIN

DECLARE i INTEGER;
DECLARE result CHARACTER VARYING(FT_MaxPatternLength);
DECLARE len INTEGER;

IF SELF.Phrases IS NULL THEN
RETURN CAST(NULL AS FT_Pattern);

ELSE
SET len = CARDINALITY(SELF.Phrases);

END IF;

SET i = 1;
SET result = ’(’;

L1: WHILE(i <= len) DO
SET result = result

|| CAST(
SELF.Phrases[i].StrctPattern_to_FT_Pattern()

 AS CHARACTER VARYING(FT_MaxPatternLength))
|| ’,’;

SET i = i + 1;
END WHILE L1;

SET result = TRIM(TRAILING ’,’ FROM result) || ’)’;
RETURN CAST(result AS FT_Pattern);

END

Definitional Rules

1) FT_MaxPatternLength is the implementation-dependent maximum length for the character
representation of an FT_Pattern value.

Description

1) The method StrctPattern_to_FT_Pattern() has no input parameters.

2) StrctPattern_to_FT_Pattern() returns an FT_Pattern value of the form <text literal list> except for the
following cases:

a) If SELF or SELF.Phrases is the null value, then the result is the null value.

b) If for any element E of SELF.Phrases, E.StrctPattern_to_FT_Pattern() is the null value, then the
result is the null value.

ISO/IEC FDIS 13249-2:2000 (E)

192 Structured Search Pattern Types © ISO/IEC 2000 - All rights reserved

6.21.4 FT_PhraseList Method

Purpose

Return a specified FT_PhraseList value.

Definition

CREATE METHOD FT_PhraseList
(phrases FT_Phrase ARRAY[FT_MaxArrayLength])
RETURNS FT_PhraseList
FOR FT_PhraseList
RETURN SELF.Phrases(phrases)

Definitional Rules

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

Description

1) The method FT_PhraseList(FT_Phrase ARRAY) takes the following input parameters:

a) an array phrases with elements of type FT_Phrase.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved FullText_Token Type 193

7 FullText_Token Type

7.1 FullText_Token Type

Purpose

The FullText_Token domain is used to define valid tokens.

Definition

CREATE DOMAIN FullText_Token
AS CHARACTER VARYING(FT_MaxTokenLength)
CHECK(p(VALUE))

Definitional Rules

1) FT_MaxTokenLength is the implementation-dependent maximum length for the character
representation of a FullText_Token value.

Description

1) The function p returns true if and only if the character string VALUE is a valid token. It is
implementation-defined whether a character string is a valid token.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Thesaurus Schema 195

8 SQL/MM Full-Text Thesaurus Schema

8.1 Introduction

The only purpose of the SQL/MM Full-Text thesaurus schema is to provide a data model to support
understanding of the thesaurus related functions.

The base tables are all defined in a <schema definition> for the schema named FT_THESAURUS. The
table definitions are as complete as the definitional power of ISO/IEC 9075 allows. The table definitions
are supplemented with assertions where appropriate. Each description comprises three parts:

1. The function of the definition is stated.

2. The SQL definition of the object is presented as a <table definition>.

3. An explanation of the object.

The specification provides only a model of the base tables that are required, and does not imply that an
implementation shall provide the functionality in the manner described in this clause.

ISO/IEC FDIS 13249-2:2000 (E)

196 Thesaurus Schema © ISO/IEC 2000 - All rights reserved

8.2 FT_THESAURUS Schema

Purpose

Create the schema that is to contain the base tables that underlie the SQL/MM Full-Text Thesaurus Schema.

Definition

CREATE SCHEMA FT_THESAURUS
AUTHORIZATION FT_THESAURUS

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Thesaurus Schema 197

8.3 TERM_DICTIONARY base table

Purpose

The TERM_DICTIONARY base table has one row for each term referenced in the SQL/MM Full-Text
Thesaurus Schema of the catalog. These are all those terms that can be found in the TERM_HIERARCHY,
TERM_SYNONYM and TERM_RELATE tables.

Definition

CREATE TABLE TERM_DICTIONARY
(
TERMID INTEGER NOT NULL DEFAULT 0,
EXPR FT_WordOrPhrase,
THNAME_DIC CHARACTER VARYING(FT_ThesNameLength) NOT NULL,

PRIMARY KEY (TERMID, THNAME_DIC)
)

Definitional Rules

1) FT_ThesNameLength is the implementation-defined maximum length for the character representation
of a thesaurus name.

Description

1) The number of available thesauri and their names are implementation-defined.

ISO/IEC FDIS 13249-2:2000 (E)

198 Thesaurus Schema © ISO/IEC 2000 - All rights reserved

8.4 TERM_HIERARCHY base table

Purpose

The TERM_HIERARCHY base table has one row for each pair of terms that form a broader-narrower term
pair in a given thesaurus.

Definition

CREATE TABLE TERM_HIERARCHY
(
TERMID INTEGER NOT NULL,
NARROWER_TERMID INTEGER NOT NULL,
THNAME_HRR CHARACTER VARYING(FT_ThesNameLength) NOT NULL,

PRIMARY KEY(TERMID, NARROWER_TERMID, THNAME_HRR),

FOREIGN KEY(NARROWER_TERMID, THNAME_HRR) REFERENCES TERM_DICTIONARY,
FOREIGN KEY(TERMID, THNAME_HRR) REFERENCES TERM_DICTIONARY

Definitional Rules

1) FT_ThesNameLength is the implementation-defined maximum length for the character representation
of a thesaurus name.

Description

1) The number of available thesauri and their names are implementation-defined.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Thesaurus Schema 199

8.5 TERM_SYNONYM base table

Purpose

The TERM_SYNONYM base table has one row for each pair of terms that form a synonym term pair.
Each row also indicates the preferred term for the synonym term pair in a given thesaurus.

Definition

CREATE TABLE TERM_SYNONYM
(
TERMID INTEGER NOT NULL,
SYNONYM_TERMID INTEGER NOT NULL,
PREFERRED_TERMID INTEGER,
THNAME_SYN CHARACTER VARYING(FT_ThesNameLength) NOT NULL,

PRIMARY KEY(TERMID, SYNONYM_TERMID, THNAME_SYN),

FOREIGN KEY(SYNONYM_TERMID, THNAME_SYN) REFERENCES TERM_DICTIONARY,
FOREIGN KEY(PREFERRED_TERMID, THNAME_SYN) REFERENCES TERM_DICTIONARY,
FOREIGN KEY(TERMID, THNAME_SYN) REFERENCES TERM_DICTIONARY
)

Definitional Rules

1) FT_ThesNameLength is the implementation-defined maximum length for the character representation
of a thesaurus name.

Description

1) The number of available thesauri and their names are implementation-defined.

ISO/IEC FDIS 13249-2:2000 (E)

200 Thesaurus Schema © ISO/IEC 2000 - All rights reserved

8.6 TERM_RELATED base table

Purpose

The TERM_RELATED base table has one row for each pair of terms that form a related term pair in a
given thesaurus.

Definition

CREATE TABLE TERM_RELATED
(
TERMID INTEGER NOT NULL,
RELATED_TERMID INTEGER NOT NULL,
THNAME_REL CHARACTER VARYING(FT_ThesNameLength) NOT NULL,

PRIMARY KEY(TERMID, RELATED_TERMID, THNAME_REL),

FOREIGN KEY(RELATED_TERMID, THNAME_REL) REFERENCES TERM_DICTIONARY,
FOREIGN KEY(TERMID, THNAME_REL) REFERENCES TERM_DICTIONARY
)

Definitional Rules

1) FT_ThesNameLength is the implementation-defined maximum length for the character representation
of a thesaurus name.

Description

1) The number of available thesauri and their names are implementation-defined.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Information Schema 201

9 SQL/MM Full-Text Information Schema

9.1 Introduction

The SQL/MM Full-Text Information Schema views are defined as being in a schema named
FT_INFORMATION_SCHEMA enabling these views to be accessed in the same way as any other tables in
any other schema. SELECT privilege on all of these views is granted to PUBLIC WITH GRANT OPTION
so that they can be queried by any user and so that SELECT privilege can be further granted on views that
reference these Information Schema views. No other privilege is granted on them so they cannot be
updated.

An implementation may define objects that are associated with FT_INFORMATION_SCHEMA that are not
defined in this Clause. An implementation may also add columns to tables that are defined in this Clause.

ISO/IEC FDIS 13249-2:2000 (E)

202 Information Schema © ISO/IEC 2000 - All rights reserved

9.2 FT_FEATURES view

Function

Identify the optional features and the implementation-defined user-visible constants.

Definition

CREATE VIEW FT_FEATURES
AS SELECT * FROM FT_DEFINITION_SCHEMA.FT_FEATURES

9.3 FT_Schemata view

Identify the schemata which include the descriptors of a complete set of types, methods, and functions that
are necessary to support the functionality of this part of ISO/IEC 13249.

Definition

CREATE VIEW FT_SCHEMATA
AS SELECT

F.CATALOG_NAME,
F.SCHEMA_NAME,
S.SCHEMA_OWNER,
S.DEFAULT_CHARACTER_SET_CATALOG,
S.DEFAULT_CHARACTER_SET_SCHEMA,
S.DEFAULT_CHARACTER_SET_NAME

FROM FT_DEFINITION_SCHEMA.FT_SCHEMATA F,
INFORMATION_SCHEMA.SCHEMATA S

WHERE F.CATALOG_NAME = S.CATALOG_NAME AND
F.SCHEMA_NAME = S.SCHEMA_NAME

Description

1) A value of SCHEMA_OWNER identifies the owner of schema identified by the CATALOG_NAME
and SCHEMA_NAME values.

2) The character set identified by the DEFAULT_CHARACTER_SET_CATALOG,
DEFAULT_CHARACTER_SET_SCHEMA, and DEFAULT_CHARACTER_SET_NAME values is
the character set under which the types, methods, and functions of this part of ISO/IEC 13249 have
been created that are included in the schema identified by the CATALOG_NAME and
SCHEMA_NAME values.

3) The values of SCHEMA_NAME are the unqualified schema names of the schemata in the catalog
which include the descriptors of a complete set of types, methods, and functions that are necessary to
support the functionality of this part of ISO/IEC 13249.

4) INFORMATION_SCHEMA.SCHEMATA is defined in part 2 of ISO/IEC 9075.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Definition Schema 203

10 SQL/MM Full-Text Definition Schema

10.1 Introduction

The only purpose of the SQL/MM Full-Text Definition Schema is to provide a data model to support the
FT_INFORMATION_SCHEMA and to assist understanding.

The base tables of the SQL/MM Full-Text Definition Schema are defined as being in a schema named
FT_DEFINITION_SCHEMA. The table definitions are as complete as the definitional power of ISO/IEC
9075 allows. The table definitions are supplemented with assertions where appropriate. Each description
comprises three parts:

1. The function of the definition is stated.

2. The SQL definition of the object is presented as a <table definition>.

3. An explanation of the object.

The specification provides only a model of the base tables that are required, and does not imply that an
implementation shall provide the functionality in the manner described in this clause.

ISO/IEC FDIS 13249-2:2000 (E)

204 Definition Schema © ISO/IEC 2000 - All rights reserved

10.2 FT_FEATURES base table

Function

Identify the supported features and the implementation-defined user-visible constants.

Definition

CREATE TABLE FT_FEATURES
 (
FT_FEATURENAME CHARACTER VARYING(256),
FT_FEATUREVALUE CHARACTER VARYING(256),

CONSTRAINT FT_FEATURES_PRIMARY_KEY PRIMARY KEY(FT_FEATURENAME),
CONSTRAINT FT_FEATURES_CHECK CHECK

(CASE FT_FEATURENAME
WHEN ’FT_MaxTextLength’

THEN (0 < CAST(FT_FEATUREVALUE AS INTEGER))
WHEN ’FT_MaxLanguageLength’

THEN (0 < CAST(FT_FEATUREVALUE AS INTEGER))
WHEN ’FT_DefaultLanguage’

THEN (CHARACTER_LENGTH(FT_FEATUREVALUE) <=
CAST ((SELECT FT_FEATUREVALUE FROM FT_Features

WHERE FT_FEATURENAME = ’FT_MaxLanguageLength’)
AS INTEGER))

WHEN ’FT_ThesNameLength’
THEN (0 < CAST(FT_FEATUREVALUE AS INTEGER))

WHEN ’FT_ThesTermLength’
THEN (0 < CAST(FT_FEATUREVALUE AS INTEGER))

WHEN ’FT_MinRankValue’
THEN (0.0 <= CAST(FT_FEATUREVALUE AS DOUBLE PRECISION))

WHEN ’FT_MaxRankValue’
THEN (0.0 <= CAST(FT_FEATUREVALUE AS DOUBLE PRECISION)) AND

CAST ((SELECT FT_FEATUREVALUE FROM FT_Features
WHERE FT_FEATURENAME = ’FT_MinRankValue’)

AS DOUBLE PRECISION) <=
CAST ((SELECT FT_FEATUREVALUE FROM FT_Features

WHERE FT_FEATURENAME = ’FT_MaxRankValue’)
AS DOUBLE PRECISION)

WHEN ’FT_ProximityCharacters’
THEN (FT_FEATUREVALUE IN (’YES’, ’NO’))

WHEN ’FT_ProximityWords’
THEN (FT_FEATUREVALUE IN (’YES’, ’NO’))

WHEN ’FT_ProximitySentences’
THEN (FT_FEATUREVALUE IN (’YES’, ’NO’))

WHEN ’FT_ProximityParagraphs’
THEN (FT_FEATUREVALUE IN (’YES’, ’NO’))

WHEN ’FT_ContextSentence’
THEN (FT_FEATUREVALUE IN (’YES’, ’NO’))

WHEN ’FT_ContextParagraph’
THEN (FT_FEATUREVALUE IN (’YES’, ’NO’))

ELSE FALSE
END
)

)

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Definition Schema 205

Description

1) If the value of FT_FEATURENAME is ’FT_MaxTextLength’, then the value of

CAST(FT_FEATUREVALUE AS INTEGER)

is the supported maximum length (in characters) of the Contents attribute of a FullText value.

2) If the value of FT_FEATURENAME is ’FT_MaxLanguageLength’ , then the value of

CAST(FT_FEATUREVALUE AS INTEGER)

is the supported maximum length (in characters) of a language value.

3) If the value of FT_FEATURENAME is ’FT_DefaultLanguage’ , then the value of
FT_FEATUREVALUE is the default langauge and the the value of

CHARACTER_LENGTH(FT_FEATUREVALUE)

is less than or equal to FT_MaxLanguageLength.

4) If the value of FT_FEATURENAME is ’FT_ThesNameLength’, then the value of

CAST(FT_FEATUREVALUE AS INTEGER)

is the maximum supported length (in characters) of a thesaurus name.

5) If the value of FT_FEATURENAME is ’FT_ThesTermLength’, then the value of

CAST(FT_FEATUREVALUE AS INTEGER)

is the maximum supported length (in characters) of a thesaurus term.

6) If the value of FT_FEATURENAME is ’FT_MinRankValue’, then the value of

CAST(FT_FEATUREVALUE AS DOUBLE PRECISION)

is the minimum value that can be returned by the rank method.

7) If the value of FT_FEATURENAME is ’FT_MaxRankValue’, then the value of

CAST(FT_FEATUREVALUE AS DOUBLE PRECISION)

is the maximum value that can be returned by the rank method.

8) If the value of FT_FEATURENAME is ’FT_ProximityCharacters’, then the values of
FT_FEATUREVALUE have the following meanings:

’YES’ Distances in terms of the document unit CHARACTERS supported in
<Proximity expansion>.

’NO’Distances in terms of the document unit CHARACTERS not supported in <Proximity
expansion>.

ISO/IEC FDIS 13249-2:2000 (E)

206 Definition Schema © ISO/IEC 2000 - All rights reserved

9) If the value of FT_FEATURENAME is ’FT_ProximityWords’, then the values of FT_FEATUREVALUE
have the following meanings:

’YES’ Distances in terms of the document unit WORDS supported in
<Proximity expansion>.

’NO’ Distances in terms of the document unit WORDS not supported in <Proximity
expansion>.

10) If the value of FT_FEATURENAME is ’FT_ContextSentence’, then the values of FT_FEATUREVALUE
have the following meanings:

’YES’ Distances in terms of the document unit SENTENCE supported in <context condition>.

’NO’ Distances in terms of the document unit SENTENCE not supported in
<context condition>.

11) If the value of FT_FEATURENAME is ’FT_ProximitySentences’, then the values of
FT_FEATUREVALUE have the following meanings:

’YES’ Distances in terms of the document unit SENTENCES supported in
<Proximity expansion>.

’NO’ Distances in terms of the document unit SENTENCES not supported in
<Proximity expansion>.

12) If the value of FT_FEATURENAME is ’FT_ContextParagraph’, then the values of
FT_FEATUREVALUE have the following meanings:

’YES’ Distances in terms of the document unit PARAGRAPH supported in
<context condition>.

’NO’ Distances in terms of the document unit PARAGRAPH not supported in
<context condition>.

13) If the value of FT_FEATURENAME is ’FT_ProximityParagraphs’, then the values of
FT_FEATUREVALUE have the following meanings:

’YES’ Distances in terms of the document unit PARAGRAPHS supported in
<Proximity expansion>.

’NO’ Distances in terms of the document unit PARAGRAPHS not supported in <Proximity
expansion>.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Definition Schema 207

10.3 FT_SCHEMATA base table

Function

Identify the schemata which include the descriptors of a complete set of types, methods, and functions that
are necessary to support the functionality of this part of ISO/IEC 13249.

Definition

CREATE TABLE FT_SCHEMATA
(
CATALOG_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
SCHEMA_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT FT_SCHEMATA_PRIMARY_KEY
PRIMARY KEY (CATALOG_NAME, SCHEMA_NAME)

)

Description

1) All the values of CATALOG_NAME are the name of the catalog in which the schemata identified by
SCHEMA_NAME are included.

2) The values of SCHEMA_NAME are the unqualified schema names of the schemata in the catalog
which include the descriptors of a complete set of types, methods, and functions that are necessary to
support the functionality of this part of ISO/IEC 13249.

3) INFORMATION_SCHEMA.SQL_IDENTIFIER is defined in part 2 of ISO/IEC 9075.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Status Codes 209

11 Status Codes

The character string value returned in an SQLSTATE parameter comprises a 2-character class value
followed by a 3-character subclass value. The class value for each condition and the subclass value or
values for each class value are specified in Table 1 - SQLSTATE class and subclass values.

The "Category" column has the following meanings: "S" means that the class value given corresponds to
successful completion and is a completion condition; "W" means that the class value given corresponds to a
successful completion but with a warning and is a completion condition; "N" means that the class value
corresponds to a no-data situation and is a completion condition; "X" means that the class value given
corresponds to an exception condition.

For a successful completion code but with a warning, the first two characters of the SQLSTATE are equal
to the SQLSTATE condition code class value for warning (defined in Subclause 22.1, "SQLSTATE" in
Part 2 of ISO/IEC 9075) and third character of the SQLSTATE is ’H’.

Table 1 – SQLSTATE class and subclass values
Category Condition Class Subcondition Subclass
X SQL/MM Full-Text XX invalid search expression F01
X SQL/MM Full-Text XX invalid language specification F02

XX If the routine is implemented as an SQL-invoked routine, then the first two characters of the
SQLSTATE are equal to the SQLSTATE condition code class for SQL routine exception (defined
in Subclause 22.1, "SQLSTATE" in Part 2 of ISO/IEC 9075.

If the routine is implemented as an external routine, then the first two characters of the SQLSTATE are
equal to the SQLSTATE condition code class for external routine exception (defined in Subclause
22.1, "SQLSTATE" in Part 2 of ISO/IEC 9075.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Conformance 211

12 Conformance

12.1 Requirements for conformance

A conforming implementation shall support the following public user-defined types and routines:

1) the FullText user-defined type as defined in Subclause 5.1, "FullText Type and Routines" with the
following:

a) the attribute Language and its associated methods,
b) the method Contains(FT_Pattern),
c) the method Contains(CHARACTER VARYING),
d) the method Rank(FT_Pattern),
e) the method Rank(CHARACTER VARYING),
f) the method FullText(CHARACTER VARYING),
g) the method FullText(CHARACTER VARYING, CHARACTER VARYING),
h) the cast function FullText_to_Character(FullText).

2) the FT_Pattern user-defined type as defined in Subclause 5.3, "FT_Pattern Type and Routines".

A conforming implementation shall also support the views in the FT_INFORMATION_SCHEMA as defined
in Clause 9, "SQL/MM Full-Text Information Schema".

All other user-defined types and routines defined in this part of ISO/IEC 13249 but not listed above are
used only to define the semantics of the public user-defined types and routines. A conforming
implementation need not support these additional user-defined types and routines for public use.

12.2 Claims of conformance

Claims of conformance to this part of ISO/IEC 13249 shall state:

1) The definitions for all elements and actions that this part of ISO/IEC 13049 specifies as
implementation-defined.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Annex A 213

Annex A
(informative)

Implementation-defined elements

This Annex references those features that are identified in the body of this part of ISO/IEC 13249 as
implementation-defined.

The term implementation-defined is used to identify characteristics that may differ between
implementations, but that shall be defined for each particular implementation.

1) Subclause 5.1.2, "Contains Methods":

a) If pattern contains a pattern that meets one of the following conditions, then it is implementation-
defined whether an exception condition is raised: SQL/MM Full-Text - invalid search expression:

i) A pattern of the form <word> or <stemmed word> specifies a stop word.

ii) A pattern of the form <phrase> or <stemmed phrase> contains only stop words, or contains
leading or trailing stop words.

iii) A pattern of the form <text literal list> contains only stop words.

2) Subclause 5.1.3, "Rank Methods":

a) The value returned by the Rank method is an implementation-dependent DOUBLE PRECISION
value constrained by implementation-defined minimum and maximum values.

3) Subclause 5.1.4, "Tokenize Method":

a) Further details of the relationship between the input and output of the Tokenize method are
implementation-defined.

4) Subclause 5.1.5, "TokenizePosition Method":

a) corrVal is zero for the distance units ’WORDS’, ’SENTENCES’ and ’PARAGRAPHS’; its value is
implementation-defined for distance unit ’CHARACTERS’.

b) It is implementation-defined whether no stop words of SELF.Contents, all stop words of
SELF.Contents, or all stop words of SELF.Contents other than leading and trailing stop words are
effectively included in the result of SELF.TokenizePosition(FullText_Token). If stop words are
included, then it is implementation-defined how they are effectively represented, provided their
representation is such that the result of comparing any two stop words is true.

c) Further details of the relationship between the input and output of the TokenizePosition method are
implementation-defined.

ISO/IEC FDIS 13249-2:2000 (E)

214 Annex A © ISO/IEC 2000 - All rights reserved

5) Subclause 5.1.6, "Segmentize Method":

a) Further details of the relationship between the input and output of the Segmentize method are
implementation-defined.

6) Subclause 5.1.7, "TokenizeAndStem Method":

a) Further details of the relationship between the input and output of the TokenizeAndStem method
are implementation-defined.

7) Subclause 5.1.8, "TokenizePositionAndStem Method":

a) It is implementation-defined whether no stop words of SELF.Contents, all stop words of
SELF.Contents, or all stop words of SELF.Contents other than leading and trailing stop words are
effectively included in the result of SELF.TokenizePositionAndStem(). If stop words are included,
then it is implementation-defined how they are effectively represented, provided their
representation is such that the result of comparing any two stop words is true.

b) Further details of the relationship between the input and output of the TokenizePositionAndStem
method are implementation-defined.

8) Subclause 5.3.1, "FT_Pattern Type":

a) The set of <word representation character>s does not contain <double quote>. Other than that, the
set of <word representation character>s is implementation-defined.

b) It is implementation-defined whether a specific <word separator> character is needed between two
consecutive <phrasepart representation>s.

c) The details of the <language specification>, as well as the default language is implementation-
defined.

d) The document units supported are implementation-defined.

e) The characters <thesaurus name character> that can be used to construct thesaurus names are
implementation-defined.

9) Subclause 6.1.2, "Contains Method":

a) It is implementation-defined whether an exception condition is raised: SQL/MM Full-Text - invalid
search expression.

10) Subclause 6.4.2, "Contains Method":

a) Let TL be the result of the invocation of text.Tokenize() and TLE be elements of TL, normalized in
an implementation-defined way, and with leading and trailing blanks removed. Let T be
SELF.LitPart, normalized in an implementation-defined way and with leading and trailing blanks
removed.

11) Subclause 6.4.5, "Tokenize Method":

a) Tokenize() normalizes SELF.LitPart in an implementation-defined way.

12) Subclause 6.5.2, "Contains Method":

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Annex A 215

a) Let TL be the result of the invocation of text.TokenizeAndStem(). Let TLE be elements of TL,
normalized and reduced to stems in an implementation-defined way, and with leading and trailing
blanks removed. Let T be SELF.LitPart, normalized and reduced to stems in an implementation-
defined way, and with leading and trailing blanks removed.

13) Subclause 6.5.4, "TokenizeAndStem Method":

a) TokenizeAndStem() normalizes and stem-reduces SELF.LitPart in an implementation-defined way.

14) Subclause 6.6.2, "Contains Method":

a) If the first element of SELF.PhrasePart or the last element of SELF.PhrasePart is a stop word, or
all elements of SELF.PhrasePart are stop words, then it is implementation-defined whether an
exception condition is raised: SQL/MM Full-Text - invalid search expression.

b) Let TL be the result of the invocation of text.TokenizePosition() and TLE be elements of TL. Every
TLE represents some word of text in an implementation-defined normalized way, with leading and
trailing blanks removed. It is implementation-defined whether no stop word of text, all stop words
of text, or all stop words of text except for leading and trailing stop words are represented by some
TLE. If stop words are included, then it is implementation-defined how they are effectively
represented, provided their representation is such that the result of comparing any two stop words
is true.

c) Let TPL be the result of SELF.TokenizePosition () and let TPLE be the elements of TPL. Every
TPLE represents some word of SELF.PhrasePart in an implementation-defined normalized way
with leading and trailing blanks removed. It is implementation-defined whether no stop word of
SELF.PhrasePart, all stop words of SELF.PhrasePart, or all stop words of SELF.PhrasePart
except for leading and trailing stop words are represented by some TPLE in an implementation-
defined way, provided stop word are dealt with in the same fashion by the TokenizePosition
methods of the FullText and FT_Phrase types.

d) It is implementation-defined whether the distance between two words W1 and W2 in a pattern of
the form <phase> or <stemmed phrase> is exactly or at most one more than the number of
consecutive stop words between W1 and W2. In the latter case, the stop words effectively behave
like optional words.

15) Subclause 6.6.5, "TokenizePosition Method":

a) TokenizePosition() normalizes SELF.PhrasePart in an implementation-defined way.

16) Subclause 6.7.2, "Contains Method":

a) If the first element of SELF.PhrasePart or the last element of SELF.PhrasePart is a stop word, or
all elements of SELF.PhrasePart are stop words, then it is implementation-defined whether an
exception condition is raised: SQL/MM Full-Text - invalid search expression.

b) Let TL be the result of the invocation of text.TokenizePositionAndStem() and TLE be elements of
TL. Every TLE represents some word of text reduced to its base reduced form and in an
implementation-defined normalized way, with leading and trailing blanks removed. It is
implementation-defined whether no stop word of text, all stop words of text, or all stop words of
text except for leading and trailing stop words are represented by some TLE. If stop words are
included, then it is implementation-defined how they are effectively represented, provided their
representation is such that the result of comparing any two stop words is true.

ISO/IEC FDIS 13249-2:2000 (E)

216 Annex A © ISO/IEC 2000 - All rights reserved

c) Let TPL be the result of SELF.TokenizePositionAndStem(). Every element TPLE of TPL
represents some word of SELF.PhrasePart reduced to its base reduced form and represented in an
implementation-defined normalized way, with leading and trailing blanks removed. It is
implementation-defined whether no stop word of SELF.PhrasePart, all stop words of
SELF.PhrasePart, or all stop words of SELF.PhrasePart except for leading and trailing stop
words are represented by some TPLE in an implementation-defined way, provided stop word are
dealt with in the same fashion by the TokenizePositionAndStem methods of the FullText and
FT_StemmedPhrase types.

d) It is implementation-defined whether the distance between two words W1 and W2 in a pattern of
the form <phase> or <stemmed phrase> is exactly or at most one more than the number of
consecutive stop words between W1 and W2. In the latter case, the stop words effectively behave
like optional words.

17) Subclause 6.9.4, "FT_Soundex Method":

a) Though not enforced by this standard, snd is intended to represent a sound pattern which is
potentially equivalent to a number of tokens. The equivalence is language dependent and
implementation-defined.

18) Subclause 6.9.5, "GetSoundsSimilar Function":

a) If the input parameter spoken or spoken.LitPart is the null value, then the result of
GetSoundsSimilar(FT_TextLiteral) is the null value. Further details of
GetSoundsSimilar(FT_TextLiteral) are implementation-defined.

19) Subclause 6.10.1, "FT_BroaderTerm Type"

a) The number of available thesauri and their names are implementation-defined.

20) Subclause 6.10.5, "GetBroaderTerms Function":

a) It is implementation-defined, whether a check is made to ensure that the language specified in
startingTerm.Language is compatible with the thesaurus as specified by thes_name, and if so, what
kind of condition is raised in case of a language incompatibility.

21) Subclause 6.11.1, "FT_NarrowerTerm Type":

a) The number of available thesauri and their names are implementation-defined.

22) Subclause 6.11.5, "GetNarrowerTerms Function":

a) It is implementation-defined, whether a check is made to ensure that the language specified in
startingTerm.Language is compatible with the thesaurus as specified by thes_name, and if so, what
kind of condition is raised in case of a language incompatibility.

23) Subclause 6.12.1, "FT_Synonym Type":

a) The number of available thesauri and their names are implementation-defined.

24) Subclause 6.12.5, "GetSynonymTerms Function":

a) It is implementation-defined, whether a check is made to ensure that the language specified in
startingTerm.Language is compatible with the thesaurus as specified by thes_name, and if so, what
kind of condition is raised in case of a language incompatibility.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Annex A 217

25) Subclause 6.13.1, "FT_PreferredTerm Type":

a) The number of available thesauri and their names are implementation-defined.

26) Subclause 6.13.2, "GetPreferredTerms Function":

a) It is implementation-defined, whether a check is made to ensure that the language specified in
startingTerm.Language is compatible with the thesaurus as specified by thes_name, and if so, what
kind of condition is raised in case of a language incompatibility.

27) Subclause 6.14.1, "FT_RelatedTerm Type":

a) The number of available thesauri and their names are implementation-defined.

28) Subclause 6.14.2, "GetRelatedTerms Function":

a) It is implementation-defined, whether a check is made to ensure that the language specified in
startingTerm.Language is compatible with the thesaurus as specified by thes_name, and if so, what
kind of condition is raised in case of a language incompatibility.

29) Subclause 6.15.1, "FT_TopTerm Type":

a) The number of available thesauri and their names are implementation-defined.

30) Subclause 6.15.2, "GetTopTerms Function":

a) It is implementation-defined, whether a check is made to ensure that the language specified in
startingTerm.Language is compatible with the thesaurus as specified by thes_name, and if so, what
kind of condition is raised in case of a language incompatibility.

31) Subclause 6.16.2, "Contains Method":

a) Contains(FullText) tests whether a given FullText item is pertinent to the FT_WordOrPhrase item
of a given FT_IsAbout value. The result is subject to implementation-defined criteria of
pertinence.

32) Subclause 7.1, "FullText_Token Type":

a) The function p returns true if and only if the character string VALUE is a valid token. It is
implementation-defined whether a character string is a valid token.

33) Subclause 8.3, "TERM_DICTIONARY base table":

a) The number of available thesauri and their names are implementation-defined.

34) Subclause 8.4, "TERM_HIERARCHY base table":

a) The number of available thesauri and their names are implementation-defined.

35) Subclause 8.5, "TERM_SYNONYM base table":

a) The number of available thesauri and their names are implementation-defined.

ISO/IEC FDIS 13249-2:2000 (E)

218 Annex A © ISO/IEC 2000 - All rights reserved

36) Subclause 8.6, "RELATED_TERM base table":

a) The number of available thesauri and their names are implementation-defined.

A.1 Implementation-defined Meta-variables

1) FT_MaxTextLength is the implementation-defined maximum length for the character representation of
a FullText value.

2) FT_MaxLanguageLength is the implementation-defined maximum length for the character
representation of a language specification.

3) FT_DefaultLanguage is an implementation-defined character string literal which denotes the
implementation-defined default language. The length of FT_DefaultLanguage does not exceed
FT_MaxLanguageLength.

4) FT_ThesNameLength is the implementation-defined maximum length for the character representation
of a thesaurus name.

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Annex B 219

Annex B
(informative)

Implementation-dependent elements

This Annex references those places where this part of ISO/IEC 13249 states explicitly that the actions of a
conforming implementation are implementation-dependent.

The term implementation-dependent is used to identify characteristics that may differ between
implementations, but that are not necessarily specified for any particular implementation.

1) Subclause 5.1.3, "Rank Methods":

a) The value returned by the Rank method is an implementation-dependent DOUBLE PRECISION
value constrained by implementation-defined minimum and maximum values.

2) Subclause 6.6.5, "TokenizePosition Method":

a) TokenizePosition() normalizes SELF.PhrasePart in an implementation-defined way. In addition, it
is implementation-dependent whether stop words are effectively included in the result, and if so,
how they are represented. However, a conforming implementation must treat stop words in this
method and in the FullText method TokenizePosition(FullText_Token) in the same way.

3) Subclause 6.7.4, "TokenizePositionAndStem Method":

a) TokenizePositionAndStem() normalizes and stem-reduces the sequence of words represented by
SELF.PhrasePart in an implementation-dependent way. In addition, it is implementation-
dependent whether stop words are effectively included in the result, and if so, how they are
represented.

4) Subclause 6.9.9, "GetSoundsSimilar Function":

a) GetSoundsSimilar(FT_TextLiteral) permits the generation of an array of FT_TextLiteral items
(representing a set of words) each of which has a different form though it has similar pronunciation
as the input word. The input argument spoken is included in the generated array of tokens. The
mechanism for generating this array, taking into account the language as specified in
spoken.Language, is implementation-dependent.

B.1 Implementation-dependent Meta-variables

1) FT_MaxArrayLength is the implementation-dependent maximum length for an array.

2) FT_MaxPatternLength is the implementation-dependent maximum length for the character
representation of an FT_Pattern value.

3) FT_MaxTokenLength is the implementation-dependent maximum length for the character
representation of a FullText_Token value.

ISO/IEC FDIS 13249-2:2000 (E)

220 Index © ISO/IEC 2000 - All rights reserved

Index

—C—
Contains(), 24, 59, 63, 66, 71, 82, 89, 103, 113, 119,

125, 133, 141, 148, 154, 160, 166, 170, 177, 181,
185, 189

—E—
EliminateDQS(), 78

—F—
FT_Any, 58
FT_Any(), 61
FT_BroaderTerm, 123
FT_BroaderTerm(), 127
FT_Context, 169
FT_Context(), 175
FT_Expr, 184
FT_Expr(), 187
FT_FEATURES, 202, 204
FT_IsAbout, 165
FT_IsAbout(), 168
FT_NarrowerTerm, 131
FT_NarrowerTerm(), 135
FT_ParExpr, 176
FT_ParExpr(), 179
FT_Pattern, 39
FT_Phrase, 87
FT_Phrase(), 96
FT_PhraseList, 188
FT_PhraseList(), 192
FT_PreferredTerm, 146
FT_PreferredTerm(), 150
FT_Primary, 62
FT_Proxi, 112
FT_Proxi(), 117
FT_RelatedTerm, 153
FT_RelatedTerm(), 156
FT_SCHEMATA, 202, 207
FT_Soundex, 118
FT_Soundex(), 121
FT_StemmedPhrase, 101
FT_StemmedPhrase(), 110
FT_StemmedWord, 80
FT_StemmedWord(), 86
FT_Synonym, 139
FT_Synonym(), 143
FT_Term, 180
FT_Term(), 183
FT_TextLiteral, 69
FT_TextLiteral(), 77
FT_TokenPosition, 38

FT_TopTerm, 159
FT_TopTerm(), 162
FT_WordOrPhrase, 65
FullText, 21
FullText(), 35
FullText_to_Character(), 36

—G—
GetBroaderTerms(), 128
GetNarrowerTerms(), 136
GetPreferredTerms(), 151
GetRelatedTerms(), 157
GetSoundsSimilar(), 122
GetSynonymTerms(), 144
GetTopTerms(), 163
getWordArray(), 68, 76, 94

—I—
InsertDQS(), 79

—M—
matches(), 74, 98

—P—
prune(), 100

—R—
Rank(), 26

—S—
Segmentize(), 31
StrctPattern_to_FT_Pattern(), 37, 64, 67, 73, 84, 93,

107, 116, 120, 126, 134, 142, 149, 155, 161, 167,
173, 178, 182, 186, 191

—T—
TERM_DICTIONARY, 197
TERM_HIERARCHY, 198
TERM_RELATED, 200
TERM_SYNONYM, 199
Tokenize(), 28, 75
TokenizeAndStem(), 32, 85
TokenizePosition(), 29, 95
TokenizePositionAndStem(), 33, 109

ISO/IEC FDIS 13249-2:2000 (E)

© ISO/IEC 2000 - All rights reserved Index 221

