WG3:SXF-007
DM32.2-2012-00010

ISO/IEC JTC 1/SC 32
Date: 2011-12-21
IWD 9075-10:201?(E)

ISO/IEC JTC 1/SC 32/WG 3

The United States of American (ANSI)

Information technology — Database languages — SQL —
Part 10:
Object Language Bindings (SQL/OLB)

Technologies de l'information — Langages de base de données — SQL —
Partie 10: Liaison de Langage Object (SQL/OLB)

Document type: International Standard

Document subtype: Informal Working Draft (IWD)

Document stage: (2) IWD = unofficial 'informal working drafts'
Document language: English

Edited by: Jim Melton (Ed.) and Chris Farrar (Associate Ed.)

5ende§|
PDF rendering performed by XEP, courtesy of RenderX, Inc._a

http://www.renderx.com

Copyright notice

This ISO document is a working draft or a committee draft and is copyright-protected by ISO. While the reproduction
of working drafts or committee drafts in any form for use by participants in the ISO standards development process
is permitted without prior permission from 1SO, neither this document nor any extract from it may be reproduced,
stored or transmitted in any form for any other purpose without prior written permission from ISO.

Requests for permission to reproduce for the purpose of selling it should be addressed as shown below or to ISO's
member body in the country of the requester.

ANSI Customer Service Department
25 West 43rd Street, 4th Floor

New York, NY 10036

Tele: 1-212-642-4980

Fax: 1-212-302-1286

Email: storemanager@ansi.org
Web: www.ansi.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

IWD 9075-10:201?(E)

Contents Page
BTN, . . o XiX
INEFOTUCTION. . . o et e e e e e e XX
O Y o 0 1 o 1
2 NOrmMaAtiVe FeferENCeS. . ..ttt e 3
2.1 ISO and IEC Standards.ot e 3
2.2 Other international standards. 3
3 Definitions, notations, and CONVENTIONS. ottt e e e e 5
3.1 D NIt ONS. . . o 5
311 Definitions provided in Part 10.ot 5
3.2 CONVBNTIONS. L . ottt e e e e e 7
321 USE OF 1B, . o 7
3211 O e IS, L . o 7
3.2.2 Specification of translator-generated CIasses.t 8
N O] o o] o £ 9
4.1 Embedded SyntaX.c. i e e 9
4.2 CaraCter SEIINGS. . o o . ottt e e e e 9
421 UNICOOE SUPPOIT. . oottt et e et e e e e e e e e e e e 9
422 Gl BT SBES. . . vttt 10
4.3 INtroduction t0 SO, . . oot 10
431 L@ 1Y T 10
43.2 SO CONSIIUCTS. .« v ot vttt e e e e e 10
433 SQL ClaUSES. . . vttt e 11
434 Binary portability. 11
4341 Binary portability reqUuIrements. 11
4342 Components of binary portable applications. 13
435 Profile OVeIVIBW. . . .o 13
435.1 ENtryInfO OVEIVIEW. . . oo e e 14
4.35.2 TYpelnfo OVEIVIBW.o 17
4353 SQLJ datatype ProPerties. . . . oottt et 18
4.3.6 HOSt Variables.o 20
4.3.7 HOSE BXPIESSIONS. . . o o ettt ettt e e e 20
438 CONNECHION COMIEXES. . o o vttt et ettt e e e e e e e e e e 21
4.3.9 Default coNNeCtion CONEXL. it e e e e e e 21
4.3.10 Schema checking using exemplar schemas. 22
4.3.11 Using multiple SQLJ contexts and CONNECLIONS.ttt 22

Contents iii

IWD 9075-10:201?(E)

4.3.12
43121
4.3.12.2
4.3.12.3
43124
4.3.13
4.3.14
4.3.15
4.3.16
4.3.16.1
4.3.17
43.17.1
4.3.17.2
4.3.17.3
43.17.4
4.3.18
4.3.19
4.3.20
4.3.20.1
4.3.20.2
4.3.20.3
4.3.20.4
4.3.20.5
4.3.20.6
4321
43211
4.3.21.2
43213
43214
4.3.215
4.3.21.6
4.3.21.7
43.21.8
43219
4.3.21.10
432111
4.3.22
4.3.23
4.3.24
4.3.25
4.3.26
4.3.26.1
4.3.26.2

Dynamic SQL and JDBC/SQLJ Connection interoperability. i 22
Creating an SQLJ ConnectionContext from a java.sqgl .Connection object. 23
Obtaining a java.sql .Connection object from an SQLJ ConnectionContext. 23
CoNNECLION ShaMNG.o e 23
Connection resource Management.ttt et e e e e e 23

SQL execution control and StatUus.ttt e e 24

=] 2 0 24

Input and output assignability. 26

Multiple Java.sqgl .ResultSet objects from SQL-invoked procedure calls. 39
Resource management with multiple results. 39

JDBC/SQLJ ResultSet interoperability. 39
Creating an SQLJ iterator from a java.sql .ResultSetobject............ 39
Obtaining a Java.sql .ResultSet object from an SQLJ iterator object. 40
Obtaining a Java.sqgl .ResultSet object from an untyped iterator object. 40
Iterator and Java.sql -.ResultSet object resource management.oo e .. 40

Multi-threading CONSIAErations.t e e 41

User-defined data types.o oot 41

BatCh UPdates.o e 42
Batchable statements and batch compatibility. 42
Statement batching APl o 43
Execution status and update COUNTS.ot e 43
Program semantics and XCEPLIONS.ottt 44
Batch cancellation and disabling. i 45
Specification of a batching limit. 45

SQLJ language BlementS. oo e 46
ol 0 0] 0 L= 46
SQL-schema, SQL-data, and SQL-transaction statements. 46
<SQL dynamic statement™. o 46
<SQL CONNECLION StAlEMEBNt>. . . .t e 47
<host variable definition>. 47
<embedded exception declaration>. 47
<SQL diagnostics Statement>. 48
CUrsOr deClaration. o 48
Input parameters to SQL-StatemMeNtS. o 48
Extracting column values from SQLJ iterators.ttt e 48
<0open StatemMENt> AN CUISOTS. . . . oot ettt et e e e e e e e e e e e e e 49

SQLJ, JDBC, and SQLExceptions and SQLWarnings.ttt 49

Profile generation and naming. i e 49

SQLJ application packaging.ottt 50

Profile customizer interface. i 51

Customization INterface. i 52
CUSTOMIZAtION USAQE. . .« . ot vttt ettt et e e e e e e e e e e 52
Customization registration. e 53

iv Object Language Bindings (SQL/OLB)

)
5.1
5.2

6
6.1

7
7.1

8
8.1
8.2

9

9.1
9.2
9.3
931
9.3.2
9.3.3

10

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

11
111
11.2
11.3
114
115
116
11.7
11.8
11.9
11.10
11.11
11.12
11.13
11.14
11.15

IWD 9075-10:201?(E)

LeXiCal ElomMeNTS. ..o o 55
<SQL terminal CharaCter>. e e e 55
<tOKEN> N0 <SEPArAlOr>. . . . ot e 56

SCalar EXPIESSIONS. . . oottt 57
<value specification> and <target specification>. 57

Additional common elements. 59
<IOULINE INVOCALIONS. oo e e e e e e e e 59

EMbDedaded SO L. ..ot e 61
<embedded SQL hoSt Program>. e 61
<embedded SQL Java Program>.ttt 64

SOQLJ reSErVEd NAMIES. . .o ittt 65
Naming runtime library COMPONENTS. e e e e 65
Temporary variable Names. o 65
Class and resource file NAMES.ot 66
It OUCTION. . . o e 66
Generated ClasSes. . .. oottt 66
Resource files and profiles. 66

Common SUDEBIEMENTS. 67
D 11100) T £ 67
<JaVA Class NAMIE>. . . .o 68
SJAVA T, o 69
SJAVA QatalY P>, . . oot 70
<jJava CONSEANT EXPIESSION . & o o\ttt ettt e et ettt e e e e e e 71
<embedded Java EXPrESSION ottt e 72
<IMPIEMENES ClaUSE>. o e 75
<declaration With Clause>. e 76

<SQLJ specific clause> and CONtENtS.t e 81
<SQLJ SPeCIfiC ClaUSE>.o 81
<connection declaration Clause>. it 82
Generated CONNECLION ClaSS.ottt e e e e e e e e 83
<iterator declaration ClauSE>.t e 88
<POSIIONEA HHEra O >,ot e e 90
Generated positioned Iterator Class.ttt 91
<NAMEd Al >, . o L oo 94
Generated named Iterator Class. oottt 96
<execUtable ClaUSE™. o 98
LCONtEXE ClaUSE ™. . o .o 105
SStAtEMENt ClaUSE™. . . . oo e 107
<delete statement: POSItIONEU>. 109
<update statement: POSItIONEd>. 111
<select statement: SiNGIe TOW>. 113
<fetCh StalemMENt>. . .. 117

Contents v

IWD 9075-10:201?(E)

11.16 <ASSIgNMENt StalEMENE>. . . L 120
11.17 <SAVEPOINE StAIEMIENE>. . . . oo 122
11.18 <release SavepOINt StAtEMENt>. 123
11.19 <COMIMIE SEA MBI, . . Lo e e e e 124
11.20 <rollback Statement>. 125
11.21 <Set transaCtion StAtEMENT>. e 126
11.22 <call StatEMENE>. . oL 127
11.23 <ASSIgNMENT ClaUSE>. . . . o e 129
11.24 SOUERY ClaUSE ™. . . ottt e 131
11.25 <fUNCHION ClaUSE>. . . . oo 135
11.26 <iterator CONVEISION ClaUSE>. o 138
11.27 <COMPOUND StalEMENE>. . . . o e e e 141
12 Package SOl .rUNLIMe.o 143
121 L@ T T 143
12.2 SQLJ runtime INerfaCes. . ..ot 143
1221 sqlj.runtime.ConnectionCoONteXt. . . .o\ttt e 143
12211 Interface OVEIVIBW.ottt et et e e e e e e e e e et e e 143
12.2.1.2 Variables. . .o 144
12.2.1.2.1 CLOSE _CONNECTION. . .\ttt et e e e e e e e e e e 144
12.2.1.2.2 KEEP_CONNECTION. . .ot e e e e e 145
12.2.1.3 MEthOUS. . .ot 145
12.2.1.3.1 ClOSE (). vttt 145
12.2.1.3.2 Close (DOONEaN).o e 145
12.2.1.3.3 getConnectedProfile (ODJect).o 146
122134 GEtCONNECTION (). . v\t ettt e 147
12.2.1.3.5 QEtEXECULIONCONTEXE (). .« . o vt ettt e e e e e e 147
12.2.1.3.6 GELTYPEMAD (). - o o vttt 147
12.2.1.3.7 ISCI0SEA (). ottt e 148
12,22 sqlj.runtime.ForUpdate. e 148
12221 Interface OVEIVIBW.ottt et e e et e e e e e e e e 148
12222 MethoOs. . .o 148
122221 GELCUISOINAME ().« .ttt et e e e 148
12.2.3 sglj.runtime.Namediterator.ot e 149
12.2.4 sqlj.runtime.Positionediterator. 149
12241 Interface OVEIVIBW.ttt ettt et e e e e e e e e e e e e 149
12242 MethOOs. . .o 150
122421 BNAFEICN (). . o .o 150
12.25 sglj.runtime.ResUltSetIterator. oo 150
12251 Interface OVeIVIEW. . . . ottt e e e e e e e 150
12.2.5.2 Variables. . ..o 150
12.25.2.1 ASENSITIVE. o 150
12.25.2.2 FETCH _FORWARD. . . .ttt e e e 151
12.25.2.3 FETCH REVERSE. . .. o e e e 151

vi Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)

12.25.24 FETCH _UNKNOWN. . ..o e e e e e e e 151
12.25.25 INSENSITIVE. . oo 151
12.25.2.6 SENSITIVE. . .o e e e 151
12.2.5.3 MeEthOUS. . . oot 151
12.25.3.1 ClearWarniNgS (). . . oo et 152
12.25.3.2 ClOSE (). v et e e e 152
12.25.3.3 GELFEICNSIZE (). . o oot 152
122534 QELRESUIESEL (). . . o v et 153
12.2.5.3.5 GEEROW (). o ettt 153
12.2.5.3.6 QELSENSILIVITY ().« o vttt 153
12.2.5.3.7 GEtWAININGS ().« ot ottt 154
12.25.3.8 ISCI0SEU ().« v ottt e 155
12.2.5.3.9 NEXE (). o e vttt 155
12.25.3.10 SetFetchSize (IND).t 155
12.2.6 sglj.runtime.Scrollable. oo 157
12.2.6.1 Interface OVeIVIEW. . . . oottt e e e e e e e 157
12.2.6.2 Variables. . ..o 157
12.2.6.3 MethOOs. . ..o 157
12.2.6.3.1 absolute (IND).o 157
12.2.6.3.2 AFEEILAST (). .. . oot 158
12.2.6.3.3 DETOrEFIISE (). . .. oot 158
12.2.6.3.4 ISt (). o e vt 158
12.2.6.3.5 GetFRtCNDIrECtiON (). . . o\ vttt 159
12.2.6.3.6 SATIEILASt (). . .ot 159
12.2.6.3.7 ISBETOrEFIISt (). . o oot 159
12.2.6.3.8 15T T) 160
12.2.6.3.9 ISLASE ().« v v o et 160
12.2.6.3.10 1ASE (). v v vttt 160
12.2.6.3.11 PrEVIOUS (). o oo vttt ettt e e e e e e e 161
12.2.6.3.12 relative (IND).o e e 161
12.2.6.3.13 setFetchDirection (INt). oo 162
12.3 SQLJ RUNIME ClaSSES. . . o vttt ittt e e e e e e e e e e e e e 163
1231 sqlj.runtime. ASCIISIraAM. . . . oo 163
12,311 Class OVBIVIBW. . . oottt ettt et e e e e e 163
12.3.1.2 CONSIIUCTONS. . o . ottt et e e e e e e e e e e e e e e 163
12.3.1.2.1 AsCiiStream (INPULSTIEAM).o o e 163
12.3.1.2.2 AsciiStream (InputStream, INt). 164
1232 sqlj.runtime. BinaryStream. o 164
12,321 ClaSS OVBIVIBW. . . oottt ettt e e e e e e e e 164
12.3.2.2 CONSITUCTONS. . . o ottt et e e e e e e e e e 165
12.3.2.2.1 BinaryStream (INpUtStream).ot 165
12.3.2.2.2 BinaryStream (InputStream, int). o 165
12.3.3 sqglj.runtime.DefaultRuntime. o 165
12.3.3.1 ClaSS OVBIVIBW. . . oottt et e e e e e e e e e e e 165

Contents vii

IWD 9075-10:201?(E)

12.3.3.2 CONSITUCTONS. . . . ottt et e e e e e e e e e e e e 166
12.33.2.1 DefaultRUNTIME ().o 166
12.3.3.3 MEthOUS. . .ot 166
12.3.3.3.1 getDefaultConnection ().ttt 166
12.3.3.3.2 getLoaderForClass (Class). vttt e 166
12.3.4 sqlj.runtime.EXecutionCoNnteXt. oo 167
12341 Class OVEIVIEW. . . oottt ettt et e e e e e e e e e e e e 167
12.3.4.2 Variables. . .o 168
12.34.2.1 ADD _BATCH _COUNT . .ot e e e e 168
12.3.4.2.2 AUT O BAT CH. ..o e e 168
12.3.4.2.3 EXEC _BATCH _COUNT. .. e 168
12.3.4.2.4 EXCEPTION _COUNT . ..ttt e e e 169
12.3.4.25 NEW _BATCH _COUNT . . .o e e e e e 169
12.3.4.2.6 QUERY _COUN T . .ttt 169
12.3.4.2.7 UNLIMITED _BAT CH. . o e e e e e 170
12.3.4.3 CONSITUCTONS. . o ottt et e e e e e e e e e 170
12.3.4.3.1 EXECULIONCONEXE ().« . vt ettt e e 170
12344 MEthOOS. . ..o e 170
12.3.4.4.1 CANCEL (). v oot 170
12.3.4.4.2 BXBCULE (). o v vttt et e e e 171
12.3.4.4.3 EXECULEBALCN (). . ..ot 172
12.3.4.4.4 BXECULBQUETY ().« o v ettt et e e e e e e e e 173
12.3.4.4.5 EXECULEUPAAtE (). . oo oot 173
12.3.4.4.6 getBatChLimit ().ot e e 174
12.3.4.4.7 getBatchUpdateCoUNES (). . .. o v vttt et e e e e e e 175
12.3.4.4.8 QEtFetChDIrECtiON (). . . .o vttt 175
12.3.4.4.9 QEtFEICRSIZE (). . . oot 175
12.3.4.4.10 getMaxFIieldSize ().ot 176
1234411 getMAXROWS ().« . oottt it it e e e e 176
12.3.4.4.12 getNeXtRESUITSEL (). . ..ot e e e e 177
12.3.4.4.13 getNextResultSet (INt). 177
12.3.4.4.14 getQUEryTIMEOUL (). . .« .ottt ettt e e e e e e e e e 178
12.3.4.4.15 getUpdateCouUnt (). . . . oottt et et e e 179
1234416 getWarnings (). - .« oo vttt e 179
12.3.4.4.17 0SBatChing (). oot e 180
12.3.4.4.18 registerStatement (ConnectionContext, Object, int). i, 180
12.3.4.4.19 releaseStatement ().ottt 181
12.3.4.4.20 setBatching (boolean). oo 182
12.3.4.4.21 setBatchLimit (INt).ot 182
12.3.4.4.22 setFetchDirection (IN). it 183
12.3.4.4.23 setFetchSize (IN). oot 183
12.3.4.4.24 setMaxFieldSize (IND). it e 184
12.3.4.4.25 SetMaXROWS (IND).ottt e e e e 184
12.3.4.4.26 setQueryTimeout (IN).ttt e e e e e 184

viii Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)

1235 sglj.runtime.RUNtIMECONTEXL.o e 185
12,351 ClaSS OVEIVIBW. . . . oottt e ettt e e e e e e e e 185
12.3.5.2 Variables. . ..o 185
12.35.2.1 DEFAULT _DATA _SOURCE. o e e e e 185
12.35.2.2 DEFAULT _RUNTIME. . . oot e 186
12.35.2.3 PROPERTY _KEY . it e 186
12.3.5.3 CONSITUCTONS. . . . oottt et e e e e e e e e e 186
12.353.1 RUNEIMECONTEXT (). .« . oottt e e e e e 186
12.3.5.4 MethOUS. . .ot 186
12.354.1 getDefaultConnection ().ttt 186
12.3.5.4.2 getLoaderForClass (Class). v vttt 187
12.35.4.3 EtRUNIIME (). . vt e e e e e 187
12.3.6 SOl.runtime. Stream VI Per. . . . oo et e e 188
12.3.6.1 ClaSs OVEIVIBW. . . oottt ettt e e e e e e e e e e 188
12.3.6.2 CONSIIUCTONS. . . o ittt ettt e e e e e e e e e e e e e e 188
12.3.6.2.1 StreamWrapper (INPUESEIeam). it 188
12.3.6.2.2 StreamWrapper (InputStream, INt). i 189
12.3.6.3 MEEhOOS. . .. 189
12.3.6.3.1 GetiNPUESTIEAM (). . . . o oot 189
12.3.6.3.2 GELLENGEN (). . . oot 189
12.3.6.3.3 SetLength (IND).ot 190
12.3.7 sqlj.runtime.UnicodeStream.ot 190
12.3.7.1 ClaSS OVEIVIEW. . . oo oottt e et e e e e e e e e e e e 190
12.3.7.2 CONSITUCTONS. . o . ottt et e e e e e e e 191
12.3.7.2.1 UnicodeStream (INPUESTIEAM).ottt 191
12.3.7.2.2 UnicodeStream (INputStream, int).t 191
12.3.8 sqlj.runtime.CharaCterStream.t 191
12.3.8.1 Class OVBIVIBW. . . oottt et e et e e e e 191
12.3.8.2 CONSHIUCTONS. . . o ottt ettt e e e e e e e e e e e 192
12.3.8.2.1 CharacterStream (ReATEN).ottt e e 192
12.3.8.2.2 CharacterStream (Reader, iNt). 192
12.3.8.3 MEEhOOS. . .o 193
12.3.8.3.1 GELREAAET ().« . vttt 193
12.3.8.3.2 QLN ().« .ot 193
12.3.8.3.3 SetLength (IN). e 193
12.3.9 sqlj.runtime.SQLNUIEXCEPtION.o e 194
12.3.9.1 Class OVEIVIEW. . . oottt et e et e e e e e e e e e e e 194
12.3.9.2 CONSIIUCTONS. . . o ottt et et et e et e e e e e e e e 194
12.39.2.1 SQLNUIEXCEPLION (). .« o vttt e e e e e e e e 194
13 Package sqglj.runtime.profile. 195
13.1 OV BIVIBW. . o ettt e e e e 195
13.2 SQLJ sqlj.runtime.profile Interfaces. 195
13.2.1 sqglj.runtime.profile.BatchContext. 195

Contents ix

IWD 9075-10:201?(E)

13.2.1. 1 Interface OVEIVIBW.ottt ettt e e et e e e e e e e e e e 195
13212 MEEhOOS. . oo 195
13.2.1.2.1 ClearBatCh (). .. .ot 195
13.2.1.2.2 EXECULEBALCN (). ..ot 196
13.2.1.2.3 setBatChLimit (IN). e 196
13.2.2 sqlj.runtime.profile.ConnectedProfile. 197
13.2.2.1 Interface OVEIVIBW.ottt et et e et e e e e e e e e 197
13222 MEEhOOS. . oo 198
13.2.2.2.1 ClOSE (). . et 198
13.2.2.2.2 GELCONNECEION (). . o\ttt e 198
13.2.2.2.3 GetProfileData (). oot 198
13.2.2.2.4 getStatement (INt, Map). oot e e 199
13.2.2.2.5 getStatement (int, BatchContext, Map). ot 199
13.2.3 sglj.runtime.profile.CUStOMIZAtioN. 200
13.2.3.1 Interface OVeIVIBW. . . . oottt e e e e e e e 200
13.2.3.2 MEthOUS. . .ot 201
13.2.3.2.1 acceptsConnection (CONNECLION).ottt ettt e 201
13.2.3.2.2 getProfile (Connection, Profile). i e 201
13.2.4 sqlj.runtime.profile.Loader.o 202
13.2.4.1 Interface OVEIVIEW.ottt e e e e e e e e e e e 202
13.2.4.2 MethOUS. . .ot 202
13.24.2.1 getResource ASStream (String).ttt 202
13.2.4.2.2 10adCIass (SHNG). . ..ot e 203
13.25 sqglj.runtime.profile.RTReSUILSEL. o e 204
13.25.1 Interface OVEIVIBW.ottt et e e e e e e e e e e e e 204
13252 MEthOOS. . oo 207
13.25.2.1 ClearWarnings (). . .« .o oot 207
13.2.5.2.2 ClOSE () v ot 207
13.2.5.2.3 fINAdCoIUMN (SHHING). . . ot 207
13.25.24 ELAITAY (IN0). . vttt e e 208
13.25.2.5 getAsciiStreamWrapper (IN1). o 209
13.2.5.2.6 getBigDecimal (INt). o 210
13.2.5.2.7 getBinaryStreamWrapper (INL).t e 210
13.2.5.2.8 GetBIOD (IND). . .o 211
13.2.5.2.9 getBooleanNONUIl (INf).o o 212
13.25.2.10 getBooleanWrapper (IN0).ttt e 213
13.2.5.2.11 getByteNONUIL (IND).ot e 214
1325212 getBYLES (IN0). . .o oottt e 215
13.25.2.13 getByteWrapper (IND). oottt 215
13.25.2.14 getCharacterStreamWrapper (INf).t 216
13.25.2.15 getClob (IN0). . ..ot e e 217
13.25.2.16 getColumnCoUNt (). . ..ottt e 218
13.25.2.17 getCUISOINAME ().« v et ettt e e e e e e e e e e e 218
13.25.2.18 getDate (INT). . . . oottt e e e 219

X Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)

13.25.2.19 getDoubleNONUIL (Int).o 220
13.25.2.20 getDoubleWrapper (INL).t 220
13.25.2.21 getFloatNONUIl (iNt). oo o 221
13.25.2.22 getFloatWrapper (IN).ot 222
13.2.5.2.23 getIntNONUIL (IND). . ..o 223
13.25.2.24 getIntWrapper (IN0).ot e 224
13.25.2.25 getIDBCRESUITSEL (). . . o oottt ittt et e e e e 224
13.25.2.26 getLongNONUIL (int). oo 225
13.2.5.2.27 getLongWrapper (IN).ottt 226
13.2.5.2.28 getObject (Int, Class). oottt e e e 226
13.2.5.2.29 getRef (IND).o 228
13.25.2.30 getShortNONUIL (InD). oo e e 228
13.2.5.2.31 getShortWrapper (IN1). oot e 229
13.2.5.2.32 getStriNg (IN0). . . o oottt e 230
13.25.2.33 getSQLXML(IND). . o oottt 231
13.25.2.34 getTime (IN0). . ..ottt 231
13.2.5.2.35 getTimestamp (IND).ttt e 232
13.25.2.36 getUnicodeStreamWrapper (iND).t e 233
1325237 QRtURL (IND). . o oo 234
13.25.2.38 getWArNiNgS (). - -« oo vttt e 235
13.2.5.2.39 0SCIOSEA ().« v v vttt 235
1325240 0SValiAROW (). . oo vttt 235
13.2.5.2.41 NEXE ().« oo ettt 236
13.2.6 sqglj.runtime.profile. RTStatement. e 236
13.2.6.1 Interface OVEIVIBW. oottt e e e e e 236
13.2.6.2 MEEhOOS. . .o 242
13.26.2.1 CANCEL (). . ettt 242
13.2.6.2.2 ClearWarniNgS (). . .« o oo 242
13.2.6.2.3 BXECULE (). v v vttt e e 242
13.2.6.2.4 eXeCUtECOMPIEte (). . ..ot e e e 243
13.2.6.2.5 EXECULERT QUETY ().« « o o ottt e e e e e e e e e e e 243
13.2.6.2.6 EXECULEUPAALE (). . . . oottt 244
13.2.6.2.7 GELAITAY (M), . . oottt 244
13.2.6.2.8 GetBatChCONTEXE (). . . . oot 245
13.2.6.2.9 getBigDecimal (IN).ot 246
13.2.6.2.20 @etBIOb (IN). . . oo o 247
13.2.6.2.11 getBooleanNONUIl (INt).ot 248
13.2.6.2.12 getBooleanWrapper (IN1).ottt e e 248
13.2.6.2.13 getByteNONUIL (iNt).o 249
13.2.6.2.14 getBYLeS (IND). . .o\ttt 250
13.2.6.2.15 getByteWrapper (IND).ottt e 251
13.2.6.2.16 QetCIOD (IN). . . o oo 251
13.2.6.2.17 @etDAte (IN). . . oo ettt e 252
13.2.6.2.18 getDoubleNONUIl (INL).o oo 253

Contents xi

IWD 9075-10:201?(E)

13.2.6.2.19
13.2.6.2.20
13.2.6.2.21
13.2.6.2.22
13.2.6.2.23
13.2.6.2.24
13.2.6.2.25
13.2.6.2.26
13.2.6.2.27
13.2.6.2.28
13.2.6.2.29
13.2.6.2.30
13.2.6.2.31
13.2.6.2.32
13.2.6.2.33
13.2.6.2.34
13.2.6.2.35
13.2.6.2.36
13.2.6.2.37
13.2.6.2.38
13.2.6.2.39
13.2.6.2.40
13.2.6.2.41
13.2.6.2.42
13.2.6.2.43
13.2.6.2.44
13.2.6.2.45
13.2.6.2.46
13.2.6.2.47
13.2.6.2.48
13.2.6.2.49
13.2.6.2.50
13.2.6.2.51
13.2.6.2.52
13.2.6.2.53
13.2.6.2.54
13.2.6.2.55
13.2.6.2.56
13.2.6.2.57
13.2.6.2.58
13.2.6.2.59
13.2.6.2.60
13.2.6.2.61
13.2.6.2.62

getDoubleWrapper (INL).o e 254
getFloatNONUIL (INt). o 255
getFloatWrapper (IND).o 255
getINtNONUIL (IN). . ..o 256
getintWrapper (IND).o 257
getIDBCCallableStatement ().oo it e 258
getJDBCPreparedStatement ().o vt 258
getLONgNONUIT (INT).t 258
getLongWrapper (IND).ot 259
GetMAXFIEldSIZE ().ot 260
GEtMAXROWS (). . o v ettt et e e 260
getMOreResUItS (IND).o e 261
getObject (INt, ClaSS). . . . oottt e e e 262
QetQUENYTIMEOUL (). . . oo vttt ettt e e e e e e e e 263
GEtRET (IND). . . .o 263
GELRESUIESEL (). . o ottt 264
getShortNONUIL (IND). . .. oo e e e 265
0etShortWrapper (IND). . ..ot e e 265
QEtSHIING (IND). . . . oot 266
GEESOQLXIML (IN0). . .o vttt e 267
GELTIME (M) . . oot e 268
GetTimestamp (IN). . .. oo 268
getUpdateCoUNt (). ..o oot 269
GEIURL (). o oo et 270
GEtWAININGS ().« « o o ottt e 270
iSBatchable ().o 271
isBatchCompatible (). 272
QLAY (INT, AITAY). . oottt e e e e 272
setAsciiStreamWrapper (int, ASCiiStream). 273
setBigDecimal (int, BigDecimal). i 274
setBinaryStreamWrapper (int, BinaryStream). 275
setBlob (int, BIOD). 275
setBoolean (int, boolean). 276
setBooleanWrapper (int, BoOI€an).t 277
SetBYte (INt, DYIE). .ot e 277
SetBytes (INt, DYLE). . .. o e e 278
setByteWrapper (int, BYte). oot 279
setCharacterStreamWrapper (int, CharacterStream).t 279
setClob (int, CloD). 280
setDate (INt, Date).t 281
setDouble (int, double). e 281
setDoubleWrapper (int, Double). 282
setFloat (int, float). oo 283
setFloatWrapper (int, FIOat).o 284

xii Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)

13.2.6.2.63 setInt (N, INE). ... 284
13.2.6.2.64 setIntWrapper (int, INTEOEY). oot e e e 285
13.2.6.2.65 setLong (int, ONG).ot 286
13.2.6.2.66 setLongWrapper (int, LONG).ottt e e 286
13.2.6.2.67 setMaxFieldSize (IND).o ot 287
13.2.6.2.68 SEtMAaXROWS (IN0).ottt e 287
13.2.6.2.69 SELODJECE (). . oot v e ettt 288
13.2.6.2.70 setQueryTimeout (IN).ttt e e e e 289
13.2.6.2.71 setRef (int, ReT). o 289
13.2.6.2.72 setShort (int, SNOM). o 290
13.2.6.2.73 setShortWrapper (int, ShOr). o 290
13.2.6.2.74 SetString (iNt, StriNg).ottt e 291
13.2.6.2.75 setSQLXML (int, SQLXML). . ..ottt e e e e 292
13.2.6.2.76 SetTime (INt, TIME).ottt et e e e e e e e e e e e 293
13.2.6.2.77 setTimestamp (int, TIMESIAMP).ottt e e e e e 293
13.2.6.2.78 setUnicodeStreamWrapper (int, UnicodeStream).t 294
13.2.6.2.79 SEtURL (int, URL). . .. oottt e e e e 295
13.2.7 sqlj.runtime.profile.SerializedProfile. 295
13.2.7.1 Interface OVEIVIBW. oottt e e e e e e e 295
13.2.7.2 MEEhOOS. . oo 296
13.2.7.2.1 QetProfile ASSIIEAM (). . . o ottt 296
13.3 SQLJ sglj.runtime.profile CIaSSeS.ot 297
13.3.1 sqlj.runtime.profile.DefaultLoader.o i 297
13311 ClasS OVEIVIEW. . . oottt et e et e e e e e e e e e e 297
13.3.1.2 CONSITUCTONS. . . . ottt et e e e e e e e e e e e 297
13.3.1.2.1 DefaultLoader (ClassLoader).ot e 297
13.3.1.3 MEthOUS. . oo 298
13.3.1.3.1 getResourceASStream (String). it 298
13.3.1.3.2 10adCIass (SHNG). . ..ottt e 298
13.3.2 sqglj.runtime.profile. EntryInfo. o 299
13321 Class OVEIVIEW. . . oottt ettt et e e e e e e e e e e e 299
13.3.2.2 Variables. . .o 299
13.3.2.21 BL O CK . o 299
13.3.2.2.2 CA L. . 299
13.3.2.2.3 CALLABLE _STATEMENT . . .o e e 300
13.3.2.2.4 COMMI T . L e 300
13.3.2.25 EXECUTE. o 300
13.3.2.2.6 EXECUTE _QUERY . . e 301
13.3.2.2.7 EXECUTE _UPDATE. . .ot e e 301
13.3.2.2.8 ITERATOR _CONVERSION. ... e e e 301
13.3.2.2.9 NAMED _RESULT e 302
13.3.2220 NO _RESULT . ..ottt e 302
13.3.2.2.01 OTHER. oo 302
13.3.2.2.12 POSITIONED. . . .o e e e 303

Contents xiii

IWD 9075-10:201?(E)

13.3.2.2.13 POSITIONED _RESULT. . .. ot 303
13.3.2.2.14 PREPARED _STATEMENT. . oo e e e e 303
13.3.2.2. 05 QUERY .. 304
13.3.2.2.16 QUERY _FOR _UPDATE.ttt e e e e e e 304
13.3.2.2.17 RELEASE _SAVEPROINT. ... e 304
13.3.2.218 ROLLBACK . . o 305
13.3.2.2.09 SAVEP OINT . . . 305
13.3.2220 SET_TRANSACTION. . . . e e e e e e 305
13.3.2221 SINGLE_ROW _QUERYttt ettt et e e e e e e e 306
13.3.2.2.22 STATEMENT . ..ot e e e 306
13.3.2223 UNTYPED _SELECT.ttt e e 306
13.3.2.2.24 VALUES. . . 306
13.3.2.3 CONSITUCTONS. . . . ottt e e e e e e e e e e e 307
13.3.2.3.1 ENtryInfo (). . ..o 307
13.3.2.4 MeEthOUS. . .o 307
13.3.24.1 execUteTYPeTOSIIING (IND). e 307
13.3.2.4.2 GEEDESCIIPIOr (). . v oottt 307
13.3.2.4.3 EtEXECULETYPE (). - v v v et ittt e e e e e e e e 308
13.3.2.4.4 getLineNUMbDEr (). . . oo 309
13.3.2.4.5 getParamCOUNT ().ottt 309
13.3.2.4.6 getParamiInfo (IN).ot 309
13.3.2.4.7 GEtRESUIESEICOUNT (). .« o vttt e 310
13.3.2.4.8 getResUltSEtINTO (IND). o 310
13.3.2.4.9 OetRESUISEINAME (). .. .ot e e 311
13.3.2.4.10 QEtRESUIESEITYPE ().« « - v v ettt e et e e e e e e e e e e e e 311
13.3.24.01 QEtROIE (). - o oo et 312
13.3.2.4.12 getSQLSIING ().« « oo vttt e 313
13.3.2.4.13 getStatementTyPe (). . .« .ottt e 313
13.3.2.4.14 getTransaCtionDeSCriptor (). ..o vttt e e 313
13.3.2.4.15 isDefinedRole (IND).ot e 314
13.3.2.4.16 isValidDescriptor (Object, iNt).ot 314
13.3.2.4.17 iSValidEXeCULETYPE (IND). . . oo\ttt et e e e e e e e e e e e e 315
13.3.2.4.18 isValidResUItSEtTYPE (IND).ottt e e 315
13.3.2.4.19 isValidRole (IND). . . .o o 315
13.3.2.4.20 isValidStatementType (IND).o vttt e 316
13.3.2.4.21 resultSetTypeToString (IND).ottt e e e e e e e e 316
13.3.2.4.22 roleTOString (IND).ot 317
13.3.2.4.23 statementTypeToString (IN).ttt e e 317
13.3.2.4.24 validateObJect (). .. oot 318
13.3.3 sqglj.runtime.profile.Profile. o 318
13.3.3.1 ClaSS OVEIVIBW. . . ottt ettt e e e e e e e e e e e 318
13.3.3.2 CONSITUCTONS. . o . ottt e e e e e e e e 319
13.3.3.2.1 Profile (Loader). 319
13.3.3.3 MEthOOS. . oo 320

xiv Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)

13.3.3.3.1 deregisterCustomization (Customization). i 320
13.3.3.3.2 getConnectedProfile (CONNECLION).t 320
13.3.3.3.3 GELCONTEXINAME (). « . oottt et et e e 321
13.3.3.34 QELCUSLOMIZALIONS ().« « o v ottt et e e e 321
13.3.3.35 getdavaType (StriNg). . ..ottt e 321
13.3.3.3.6 getdavaType (TYpelnfo). i e e e e 322
13.3.3.3.7 GELL AR (). . o v ettt 323
13.3.3.3.8 GtProfileData (). . . .« oottt 323
13.3.3.3.9 GetProfileName ().ot 323
13.3.3.3.10 getTimestamp (). . ..o o vttt e 323
13.3.3.3.11 instantiate (Loader, INPULSTrEaM). it 324
13.3.3.3.12 instantiate (Loader, StriNg).ottt 324
13.3.3.3.13 registerCustomization (CuStomization).t 326
13.3.3.3.14 registerCustomization (Customization, Customization).o i, 326
13.3.3.3.15 replaceCustomization (Customization, Customization). i, 327
13.3.4 sqlj.runtime.profile.ProfileData. 327
13.3.4.1 ClaSS OVEIVIEW. . . oottt et e e e e e e e e e e e e 327
13.3.4.2 CONSITUCTONS. . . . ottt e e e e e e e e e 328
13.34.2.1 ProfileData (). oot 328
13343 MEthOS. . oo 328
13.3.4.3.1 getEntryInfo (IND). . . .o oo 328
13.3.4.3.2 GEtPIOfIlE (). . oot 328
13.3.4.3.3 GetSOUICERIlE (). . oot 329
133434] 4= 329
13.3.5 sglj.runtime.profile.SetTransactionDesCriptor.o 329
13.3.5. 1 ClaSs OVEIVIBW. . . oottt et e e e e e e e e e e e 329
13.3.5.2 Variables. . ..o 330
13.35.2.1 READ _NONE. . . . e 330
13.35.2.2 READ _ON LY . oo 330
13.35.2.3 READ W RITE. . . 330
13.3.5.3 CONSITUCTONS. . . . oottt e e e e e e e e e 331
13.3.5.3.1 SetTransactionDescriptor (int, iNt). o 331
13.3.5.4 MethOUS. . .ot 331
13.3.54.1 GELACCESSIMOUE ().« v vttt e e 331
13.3.5.4.2 getlsolationLevel ().ot 332
13.3.6 sglj.runtime.profile. Typelnfo. o 332
13.3.68.1 Class OVEIVIEW. . . oot ottt et et e e e e e e e e e e e 332
13.3.6.2 Variables. . ..o 333
13.3.6.2.1 IN L 333
13.3.6.2.2 INOUT . . e 333
13.3.6.2.3 OU T o 333
13.3.6.3 CONSITUCTONS. . . . oottt e e e e e e e 334
13.3.6.3.1 TYPEINTO (). o oo 334
13.3.6.4 MEthOOS. . .. 334

Contents xv

IWD 9075-10:201?(E)

13.3.6.4.1 getJavaTYPENAME (). . o o oottt e e 334
13.3.6.4.2 GetMArKerINdEX (). . .. oot 335
13.3.6.4.3 GEEMOTE (). .o oot 335
13.3.6.4.4 GEENAME (). o ottt 335
13.3.6.4.5 GEtSOLTYPE (). oot ittt 336
13.3.6.4.6 OetSQLTYPENAME (). .o ot ottt e e e e 337
13.3.6.4.7 isSVAlIAMOGE (INL). . . .o oottt ettt e et e 337
13.3.6.4.8 ISVAlIASQLTYPE (IN). . .. oot e e e e e e e e 337
13.3.6.4.9 MOdeTOSIIING (INL). oot 338
13.3.6.4.10 SQLTYPeTOSLNG (IN1). . . .ottt e e e e e e e e e 338
13.3.6.4.11 validateObhject (). . . .\t e 339
14 sqglj.runtime.profile.util.ProfileCustomizer......... i i i 341
141 INterface OVEIVIBW.o e e e 341
14.2 MEENOOS. oo 343
1421 acceptsConnection (CONNECLION).\ttt e e e e e e e 343
14.2.2 customize (Profile, Connection, ErrorLog).t e 343
15 SHALUS COUBS. . .ottt ettt ettt e et e e e e e e e 345
15.1 SO ST AT . . o 345
16 CONTOIMANCE. . .\ttt et e et e e 347
16.1 Claims of conformance t0 SQL/OLB.ttt e e e 347
16.2 Additional conformance requirements for SQL/OLB. i 347
16.3 Implied feature relationships of SQL/OLB. e 347
Annex A (informative) SQL Conformance SUMMaArY.c.uiiiiiiiiiiiiiiiiiiiiniinnnnns 349
Annex B (informative) Implementation-defined elements............. ... i i, 353
Annex C (informative) Implementation-dependent elements.................. 357
Annex D (infomative) Deprecated features. 361
Annex E (informative) Incompatibilities with ISO/IEC 9075:2008. ..., 363
Annex F (informative) SQL feature taxonomy.ttt 365
Annex G (informative) Defect reports not addressed in this edition of this part of ISO/IEC 9075. .. 367
Annex H (informative) SQLJ tutorial. 369
H.1 DESIgN OIS, . . .o e 369
H.2 Advantages of SQLJ aver JDBC. 369
H.3 Consistency with existing embedded SQL languages.t 370
H.4 Profile cuStomization OVEIVIEW.ot e 370
H.4.1 Profile CUStOMIZAtioN PrOCESS. . . . oottt e e e e e e 371
H.4.2 Profile customization UtHITIeS. oo e 372
H.5 EXAMIPIES. . o 372
H.5.1 Example of Profile generation and naming. 372
H.5.2 Example of a JAR manifest file. 373
H.5.3 HOSt Variables.o 373

xvi Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)

H.5.4 HOSE @XPIESSIONS. « . o ettt e e e e e e e e e 373
H.5.5 SQL ClaUSES. . . ottt 374
H.5.6 CONNECTION COMEEXES. .« o v\ vttt et ettt e e e e e e e e e 374
H.5.7 Default connection CoNtEX.ttt e 374
H.5.8 =T = (0] £ 375
H.5.8.1 Positional bindings t0 COIUMNS. e e 375
H.5.8.2 Named bindings t0 COIUMNS. o 376
H.5.8.3 Providing names for columns of queries. 377
H.5.9 Invoking SQL-INVOKed roUtiNeS. oo 377
H.5.10 Using multiple SQLJ contexts and CONNECLIONS.ottt e 378
H.5.11 SQL execution control and StatUs. vttt e e 379
H.5.12 Multiple java.sql .ResultSet objects from SQL-invoked procedurecalls. 380
H.5.13 Creating an SQLJ iterator object from a java.sql .ResultSetobject. 381
H.5.14 Obtaining a java.sql .ResultSet object from an iterator object. 381
H.5.15 Working with user-defined types.ot 382
H.5.16 BatChing.o e e 383
H.5.17 EXample program. e e e 383
H.5.18 Host variable definition. 384
Bl OgraP Y. . o 387
L0 = 389

Contents xvii

IWD 9075-10:201?(E)

Tables
Table Page
1 Association of roles with SQLJ <executable ClauSe>S. i 15
2 SQLI BYPE PrOPEILIES. « o ottt ettt et e e 18
3 SQLJ output assignability (Part L).ot 26
4 SQLJ output assignability (Part 2).t 28
5 SQLJ output assignability (part 3). 29
6 SQLJ output assignability (part 4).o 31
7 SQLJ input assignability (Part 1).ot 33
8 SQLJ input assignability (Part 2). 34
9 SQLJ input assignability (Part 3).t 36
10 SQLJ input assignability (Part 4).ot 37
11 Methods retained from java.sql.ReSUItSEL. o 204
12 Methods not retained from java.sql.ResultSet. 205
13 Additional methods unique to RTRESUILSEL.ot e 206
14 Methods retained from java.sgl.Statement. 237
15 Methods not retained from java.sgl.Statement. 238
16 Methods retained from java.sql.PreparedStatement.t 238
17 Methods not retained from java.sql.PreparedStatement. 239
18 Methods retained from java.sgl.CallableStatement. 240
19 Methods not retained from java.sql.CallableStatement. 241
20 Additional methods unique t0 RTStatement.o i e 241
21 Customize Result INterpretation.ot 342
22 SQLSTATE class and subclass ValUEs.ot e e e e e e 345
23 Implied feature relationships of SQL/OLB. i 347
24 Feature taxonomy for optional features. 365

xviii Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of 1SO or IEC
participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental,
in liaison with ISO and IEC, also take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

In the field of information technology, 1SO and IEC have established a joint technical committee, ISO/IEC
JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national bodies
for voting. Publication as an International Standard requires approval by at least 75% of the national bodies
casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. 1SO and IEC shall not be held responsible for identifying any or all such patent rights.

International Standard ISO/IEC 9075-10 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information
technology, Subcommittee SC 32, Data management and interchange.

This third edition of ISO/IEC 9075-10 cancels and replaces the second edition (ISO/IEC 9075-10:2003), which
has been technically revised. It also incorporates Technical Corrigendum ISO/IEC 9075-10:2003/Cor.2:2007.

ISO/IEC 9075 consists of the following parts, under the general title Information technology — Database lan-
guages — SQL.:

— Part 1: Framework (SQL/Framework)

— Part 2: Foundation (SQL/Foundation)

— Part 3: Call-Level Interface (SQL/CLI)

— Part 4: Persistent Stored Modules (SQL/PSM)

— Part 9: Management of External Data (SQL/MED)

— Part 10: Object Language Bindings (SQL/OLB)

— Part 11: Information and Definition Schema (SQL/Schemata)

— Part 13: SQL Routines and Types Using the Java™ Programming Language (SQL/JRT)
— Part 14: XML-Related Specifications (SQL/XML)

NOTE 1 — The individual parts of multi-part standards are not necessarily published together. New editions of one or more parts
may be published without publication of new editions of other parts.

Foreword xix

IWD 9075-10:201?(E)

Introduction

The organization of this Part of this International Standard is as follows:
1) Clause 1, “Scope”, specifies the scope of this part of ISO/IEC 9075.

2) Clause 2, “Normative references”, identifies additional standards and publically-available specifications
that, through reference in this part of ISO/IEC 9075, constitute provisions of this part of ISO/IEC 9075.

3) Clause 3, “Definitions, notations, and conventions”, defines the notations and conventions used in this part
of ISO/IEC 9075.

4) Clause 4, “Concepts”, presents concepts used in the definition of the Object Language Bindings.
5) Clause 5, “Lexical elements”, defines the lexical elements of the language.
6) Clause 6, “Scalar expressions”, defines the elements of the language that produce scalar values.

7) Clause 7, “Additional common elements”, defines additional language elements that are used in various
parts of the language.

8) Clause 8, “Embedded SQL”, defines the host language embeddings.

9) Clause 9, “SQLJ reserved names”, defines the reserved names for SQLJ.

10) Clause 10, “Common subelements”, defines the commonly used subelements for SQLJ.

11) Clause 11, “<SQLJ specific clause> and contents”, defines the syntax and rules for SQLJ constructs.
12) Clause 12, “Package sqlj.runtime”, specifies the SQLJ runtime package.

13) Clause 13, “Package sqlj.runtime.profile”, specifies the SQLJ runtime profile package.

14) Clause 14, “sqlj.runtime.profile.util.ProfileCustomizer”, specifies the SQLJ profile customizer class.
15) Clause 15, “Status codes”, defines SQLSTATE values related to Object Language Bindings.

16) Clause 16, “Conformance”, defines the criteria for conformance to this part of ISO/IEC 9075.

17) Annex A, “SQL Conformance Summary”, is an informative Annex. It summarizes the conformance
requirements of the SQL language.

18) Annex B, “Implementation-defined elements”, is an informative Annex. It lists those features for which
the body of this part of ISO/IEC 9075 states that the syntax, the meaning, the returned results, the effect
on SQL-data and/or schemas, or any other behavior is partly or wholly implementation-defined.

19) Annex C, “Implementation-dependent elements”, is an informative Annex. It lists those features for which
the body of this part of ISO/IEC 9075 states that the syntax, the meaning, the returned results, the effect
on SQL-data and/or schemas, or any other behavior is partly or wholly implementation-dependent.

20) Annex D, “Deprecated features”, is an informative Annex. It lists features that the responsible Technical
Committee intend will not appear in a future revised version of this part of ISO/IEC 9075.

21) Annex E, “Incompatibilities with ISO/IEC 9075:2008”, is an informative Annex. It lists incompatibilities
with the previous version of this part of ISO/IEC 9075.

xX Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)

22) Annex F, “SQL feature taxonomy”, is an informative Annex. It identifies features of the SQL language
specified in this part of ISO/IEC 9075 by an identifier and a short descriptive name. This taxonomy is used
to specify conformance.

23) Annex G, “Defect reports not addressed in this edition of this part of ISO/IEC 9075, is an informative
Annex. It describes the Defect Reports that were known at the time of publication of this part of this
International Standard. Each of these problems is a problem carried forward from the previous edition of
ISO/IEC 9075. No new problems have been created in the drafting of this edition of this International
Standard.

24) Annex H, “SQLJ tutorial”, is an informative Annex. It contains tutorial information about the features of
the SQL language that are specified in this part of ISO/IEC 9075.

In the text of this part of ISO/IEC 9075, Clauses and Annexes begin new odd-numbered pages. Any resulting
blank space is not significant.

All Clauses of this part of ISO/IEC 9075 are normative.

Introduction xxi

IWD 9075-10:201?(E)

(Blank page)

xxii Object Language Bindings (SQL/OLB)

INTERNATIONAL STANDARD ISO/IEC IWD 9075-10:2017

Information technology — Database languages — SQL —

Part 10:
Object Language Bindings (SQL/OLB)

1 Scope

ISO/IEC 9075-2 specifies embedded SQL for the programming languages: Ada, C, COBOL, Fortran, MUMPS,
Pascal, and PL/I. This part of ISO/IEC 9075 defines similar features of Database language SQL that support
embedding of SQL-statements into programs written in the Java™ programming language (Java is a registered
trademark of Sun Microsystems, Inc.). The embedding of SQL into Java is commonly known as “SQLJ”. This
part of ISO/IEC 9075 specifies the syntax and semantics of SQLJ, as well as mechanisms to ensure binary
portability of resulting SQLJ applications. In addition, it specifies a number of Java packages and their contained
classes (including methods).

Throughout this part of ISO/IEC 9075, the terms “SQLJ” and “SQL/OLB” are used synonymously.

Scope 1

IWD 9075-10:201?(E)

(Blank page)

2 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
2.1 1SO and IEC standards

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including
any amendments) applies.

2.1 1SO and IEC standards

[1SO9075-1] ISO/IEC 9075-1:2011, Information technology — Database languages — SQL — Part 1:
Framework (SQL/Framework).

[1SO9075-2] ISO/IEC 9075-2:2011, Information technology — Database languages — SQL — Part 2:
Foundation (SQL/Foundation).

2.2 Other international standards

[Unicode] The Unicode Consortium, The Unicode Sandard. (Information about the latest version of the
Unicode standard can be found by using the "Latest Unicode Version" link on the "Enumerated Versions of
The Unicode Standard™ page.)
http://www.unicode.org/versions/enumeratedversions._html

[Java] The Java™ Language Specification, Third Edition, James Gosling, Bill Joy, Guy Steele, and Gilad
Bracha, Prentice Hall, June 14, 2005, ISBN 0-321-24678-0.

[JDBC] JDBC™ 4.0 Specification, Final v1.0, Lance Andersen, Sun Microsystems, Inc., November 7, 2006.

[JNDI] Java Naming and Directory Interface™, Sun Microsystems, Inc. http://java.sun.com/-
J2se/1.5.0/docs/guide/jndi/index.html.

[JavaBeans] The JavaBeans™ 1.01 Specification
http://java.sun.com/products/javabeans/docs/spec.html

Normative references 3

http://www.unicode.org/versions/enumeratedversions.html
http://java.sun.com/j2se/1.5.0/docs/guide/jndi/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/jndi/index.html
http://java.sun.com/products/javabeans/docs/spec.html

IWD 9075-10:201?(E)

(Blank page)

4 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
3.1 Definitions

3 Definitions, notations, and conventions

This Clause modifies Clause 3, “Definitions, notations, and conventions”, in |SO/IEC 9075-2.

3.1 Definitions

This Subclause modifies Subclause 3.1, “Definitions”, in |SO/IEC 9075-2.

3.1.1 Definitions provided in Part 10

For the purposes of this document, the following definitions apply:

3.1.1.1 accessor method
method that, when invoked, accesses column data returned by a result set iterator object

NOTE 2 — An accessor method is either a named accessor method or a positioned accessor method. A named
accessor method is declared as the result of an <iterator declaration clause> containing an <iterator spec declaration>
of <named iterator>. A named accessor method derives both its name and its result datatype from its defining <named
iterator> clause. A positioned accessor method is declared as the result of an <iterator declaration clause> containing
an <iterator spec declaration> of <positioned iterator>. A positioned accessor method derives its result datatype from
its defining <positioned iterator> clause.

3.1.1.2 customization
implementation-specific process of tailoring an SQLJ application's embedded SQL to run against a
target SQL-implementation

NOTE 3 — This frequently involves creating new versions of some of the object instances stored in the SQLJ trans-
lation-generated profile, to create customized profile object instances.

3.1.1.3 generated connection class
class whose methods, when invoked, maintain a named SQL-connection

NOTE 4 — The signature of this class is produced as a side effect of the direct inclusion of a <connection declaration
clause> in a program written in the Java programming language.

3.1.1.4 generated iterator class
class whose methods, when invoked, provide access to the rows and columns of SQL queries asso-
ciated with result set iterators

NOTE 5 — A generated iterator classis either a generated named iterator classor a generated positioned iterator
class. The signature of a generated named iterator class is produced as a side effect of the inclusion of a <iterator
declaration clause> that contains an <iterator spec declaration> of <named iterator>, and it specifies named accessor
methods. The signature of a generated positioned iterator class is produced as a side effect of the inclusion of a
<iterator declaration clause> that contains an <iterator spec declaration> of <positioned iterator>, and it specifies
positioned accessor methods.

3.1.1.5 getter method

Definitions, notations, and conventions 5

IWD 9075-10:201?(E)
3.1 Definitions

3.1.1.6

3117

31138

3.1.1.9

3.1.1.10

3.1.111

3.1.1.12

3.1.1.13

3.1.1.14

3.1.1.15

3.1.1.16

method defined on objects of either the RTStatement or RTResultSet class or a subclass of such a
class, and that when invoked populates host variables of a given datatype when those host variables
appear as bind variables

implementation-specific
possibly differing between SQL-implementations, but provided as part of each particular SQL-
implementation

installation (of an SQLJ application)

implementation-defined, and possibly empty, phase that includes anything other than SQLJ trandlation
and customization needed prior to the SQLJ application being able to execute against its target SQL-
implementation

Java primitive datatype
one of the following Java types: boolean, byte, short, int, long, float, or double

NOTE 6 — For interoperability with JDBC, the Java primitive datatype char is intentionally omitted from this list.

I-valued expression
Java expression that is allowed to appear as the LeftHandSde of a Java assignment, as defined in
[Java]

NOTE 7 — For example, an I-valued expression may be a named variable, such as a local variable or a field of the
current object or class, or it may be a computed variable, as can result from a field access or an array access.

profile
Java serialized object produced by an SQLJ translator, containing information regarding the input
required and output generated by individual SQL-statements, as well as the text of those statements

NOTE 8 — The serialized objects can then be accessed for additional processing by a customizer or by the SQLJ
runtime system.

profile file
file containing one or more profiles generated as a result of an SQLJ translation

runtime library component
implementation of one or more of the classes, interfaces, and abstract classes defined in this document
for use during execution of the SQLJ application

NOTE 9 — This could be a default, JIDBC-based, implementation (e.g., an implementation of RTStatement using
the java.sql . Statement interface), or an implementation-specific version used only after customization.

setter method
method defined on objects of the RTStatement class or a subclass of RTStatement, that when invoked
passes bind variables of the given datatype as input parameters to the SQL-implementation

SQLJ file
file with the suffix ".sglj' (or file type 'sqlj') containing Java source language or SQLJ constructs,
that is input to SQLJ translation

SQLJ translation

process of transforming a Java application program containing embedded SQL into two or more
different files, one identical to the original Java application except that use of embedded SQL is
replaced with Java code invoking SQLJ's runtime API, and the others being profile files

SQLJ translation unit

6 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
3.1 Definitions

collection of user-defined classes and property files defined or referenced by a given SQLJ file, and
the translator-generated classes and profile files that result after that SQLJ file is processed by an
SQLJ translator, and its resulting Java source file is compiled

3.2 Conventions

This Subclause modifies Subclause 3.3, “Conventions’, in |1SO/IEC 9075-2.

|Insert this paragraph| In addition, bolding is used when a term is first introduced in this part of ISO/IEC 9075.

3.2.1 Use of terms

This Subclause modifies Subclause 3.3.1, “Use of terms”, in | SO/IEC 9075-2.

3.2.1.1 Other terms

This Subclause modifies Subclause 3.3.1.1, “Other terms”, in |SO/IEC 9075-2.

|Insert this paragraph| In this document, the word “object” is used in phrases of the form “a java type object”,
where java type is the name of a Java class or interface. If java type is the name of a Java class, then this phrase
is meant to denote a Java object that is either an instance of the class java type, meaning that it has been created
by invocation of a constructor of the class java type, or an instance of one of the subclasses of class java type.

|Insert this paragraph| If java type is the name of a Java interface, then this phrase denotes an object that is one
of the following:

— An instance of a class that implements the interface java type.
— An instance of a class that implements an interface that extends the interface java type.

— An instance of a subclass of such class.

|Insert this paragraph\The following denotations also hold throughout this International Standard:

— A connection context object is an instance of a class that is generated by an SQLJ translator as the result
of processing a <connection declaration clause>. The generated class implements the interface
sglj -runtime.ConnectionContext.

— An execution context object is an instance of the class sqlj - runtime.ExecutionContext.

— Anamed iterator is an instance of a class that is generated by an SQLJ translator as the result of processing
an <iterator declaration clause> that contains a <named iterator>. The generated class implements the
interface sqlj - runtime.Namedl terator.

— A positioned iterator is an instance of a class that is generated by an SQLJ translator as the result of pro-
cessing a <iterator declaration clause> that contains a <positioned iterator>. The generated class implements
the interface sqlj -runtime.Positionedlterator.

— An iterator is either a named iterator or a positioned iterator.

Definitions, notations, and conventions 7

IWD 9075-10:201?(E)
3.2 Conventions

3.2.2 Specification of translator-generated classes

The conventions used in this document are defined in ISO/IEC 9075-1, with the following additions. Descriptions
of translator-generated classes and their relationships to syntax elements contained in <executable spec clause>
specified in the Subclauses of Clause 10, “Common subelements”, and Clause 11, “<SQL.J specific clause>
and contents”, are specified in terms of:

Function

Describes the purpose of the syntax element or translator-generated class.
Signature

Defines the client-visible signature of the translator-generated class.
Definitions and Rules

Defines the semantic rules for the syntax element or translator-generated class.
Profile Entrylnfo Properties

Defines the properties of the profile Entrylnfo object created for this syntax element, if any. If an EntryInfo
Java field is not listed explicitly in this heading, it defaults to the value described in Subclause 4.3.5.1,
“EntryInfo overview”.

Binary Composition

Defines additional methods and/or calls to include for binary composition in the code generated for this
clause, if any.

The property of binary composition states that each of the elements defined by <SQLJ specific clause>s
can interoperate with elements defined in other <SQL.J specific clause>s, even if the <SQLJ specific
clause>s are translated with different SQLJ translators. The Binary Composition headings define the
minimal set of expected behavior for each <SQLJ specific clause> to achieve this interoperability.

The requirements defined in these headings augment the requirements defined in the Signature headings.
Code Generation

Defines the runtime calls made to the ConnectedProfile, RTStatement, and RTResultSet interfaces of the
sglj.runtime.profile package by the various <SQLJ specific clause>s. These interfaces are implemented
by implementation-specific runtime packages, and thus the calls made to them shall be uniformly specified.

These headings are distinguished from the Binary Composition headings in that they specify the internal
implementation of the <SQL.J specific clause>s, whereas the Binary Composition headings define additions
to the client visible signature of the <SQLJ specific clause>s.

The Code Generation headings only specify the calls that shall eventually be made to the aforementioned
interfaces for each <SQLJ specific clause>. Unless otherwise stated, these headings do not specify the
exact SQLJ translation of each <SQL.J specific clause>. An SQLJ translator is free to translate each <SQLJ
specific clause> using any number of intermediate calls or helper classes, so long as the methods are
eventually called as specified in these headings.

Not all term headings are used in all Subclauses containing descriptions of translator-generated classes or of
syntax elements contained by <executable spec clause>.

8 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
4.1 Embedded syntax

4 Concepts

This Clause modifies Clause 4, “Concepts”, in 1SO/IEC 9075-2.

4.1 Embedded syntax

This Subclause modifies Subclause 4.24, ““Embedded syntax”, in | SO/IEC 9075-2.

|Rep|ace the last sentence of the lead text of the 1st paragraph\ For all <embedded SQL host program>s other
than <embedded SQL Java program>s, such a hybrid compilation unit is defined to be equivalent to:

[Insert after the 1st paragraph|When the <embedded SQL host program> immediately contains an <embedded
SQL Java program>, such a hybrid compilation unit is defined to be equivalent to a compilation unit in which
the SQL-statements have been replaced by use of Java classes whose methods, when invoked, make use of
JDBC.

4.2 Character strings

This Subclause modifies Subclause 4.2, ““Character strings”, in |SO/IEC 9075-2.

4.2.1 Unicode support

Java relies on the Unicode character set [Unicode] (also known as ISO/IEC 10646, Universal Multi-Octet Coded
Character Set (UCS); see [UCS]) for String data and for identifiers. That allows Java to represent most character
data in a uniform way. [1ISO9075-2] defines support for Unicode through its UTF8, UTF16, and UTF32 char-
acter sets, which represent different encodings for Unicode character data. When character data is moved
between an SQL-server and an SQL/OLB host program, an SQL/OLB implementation that provides SQL
character set support for UTF8, UTF16, and/or UTF32 is required to support implicit conversion between Java
string data and the supported Unicode encodings. Any support for implicit conversions to and from character
sets other than Unicode is implementation-defined. Because of Java's reliance on Unicode as an internal repre-
sentation for character data, the SQL/OLB specification does not define support for host variables that hold
character data based on character sets other than Unicode.

The rules in [1ISO9075-2] for appearance of characters in SQL <token>s of SQL-statements also govern the
appearance of characters in SQLJ clauses, with the exception of characters appearing in Java identifiers and
Java host expressions. All characters appearing in an SQLJ clause shall be defined in the Unicode character
set.

Concepts 9

IWD 9075-10:201?(E)
4.2 Character strings

4.2.2 Character sets

This Subclause modifies Subclause 4.2.7, ““Character sets”, in |SO/IEC 9075-2.

— |In 3rd paragraph||augment 1st list item| If <embedded SQL host program> immediately contains an
<embedded SQL Java program>, then <SQL special character> shall include the <number sign> (#) in
addition to the characters that it otherwise required to contain.

4.3 Introduction to SQLJ

43.1 Overview

[1SO9075-2] specifies embedded SQL, a method of embedding SQL into a host programming language. It
defines details of such an embedding for the programming languages Ada, C, COBOL, Fortran, Java, M, Pascal,
and PL/I. This Part of this International Standard specifies a different approach for the embedding of SQL into
the Java programming language. The embedding of SQL into Java is commonly known as “SQLJ".

SQLJ provides a facility to embed certain SQL language constructs in Java source language. An SQLJ trand ator
is a utility that transforms Java source langauge that contains SQLJ extensions into Java source language that
accesses an SQL-implementation through a call interface. SQLJ also provides a facility to tailor the SQLJ
extensions to run against a target SQL-implementation, overriding the default, JDBC-based, runtime. An SQLJ
customizer is a utility that extends a SQLJ translation-generated profile file such that during runtime the SQL-
statements described by the profile are executed in an implementation-specific manner.

The standards for most programming languages, including those for which embedded SQL is supported (e.g.,
C, COBOL, and Fortran), have had as their goal the portability of the source program. The specification for
the Java programming language has an associated specification for a Java Virtual Machine. Together, they have
as their goal the portability of both the source program and the binary produced by compiling the Java source.
SQLJ takes the goal of portability of the source file containing the embedded SQL much further. The goal for
SQLJ is that the source file containing the embedded SQL, the Java source file produced by an SQLJ translator,
and the binary produced by compiling the Java source, should all be portable. Furthermore, that portability
should be not only amongst different Java Virtual Machines, but also amongst different SQL implementations.
This Subclause elaborates upon how that degree of portability can be achieved.

4.3.2 SQL constructs

The following kinds of SQL constructs are permitted to appear in SQLJ programs:

— Queries: SELECT statements and expressions.

— SQL-data change statements (DML): INSERT, UPDATE, DELETE

— Data Statements: FETCH, SELECT . . . INTO

— Transaction control: COMMIT, ROLLBACK, etc.

— Data Definition Language (DDL; called “Schema Manipulation Language” in SQL): CREATE, DROP, etc.

10 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ
— Calls to SQL-invoked procedures: e.g., CALL MYPROC(:x, :y, :2)
— Invocations of SQL-invoked functions: e.g., VALUES(MYFUN(:x))

— Assignment statement: SET

4.3.3 SQLJ clauses

SQL-statements in SQLJ appear in SQLJ clauses. SQLJ clauses represent the mechanism by which SQL-
statements in Java programs are communicated to the SQL-implementation.

Each SQLJ clause begins with the token #sql , which is not a legal Java identifier, and is terminated by a
semicolon, and as such makes the clause and its SQL contents recognizable to an SQLJ translator.

The simplest SQLJ clauses are executable clausesand consist of the token #sql followed by an SQL-statement
enclosed in braces ({ and }).

In an SQLJ executable clause, the tokens that appear inside of the braces are SQL <token>s and <separator>s,
except for the tokens of the Java programming language appearing as host variables and parenthesized host
expressions. All host variables and parenthesized host expressions shall be distinguished by the colon character
in order for the translator to be able to identify them. SQL <token>s and <separator>s never occur outside of
the single pair of braces of an SQLJ executable clause.

In general, SQL <token>s are case-insensitive (except for identifiers delimited by double quotes), and can be
written in upper, lower, or mixed case. Java tokens, however, are case-sensitive. For clarity in examples, we
write case-insensitive SQL <token>s in uppercase, and write Java tokens in lowercase or mixed case.
Throughout this document, we use the lowercase nul | to represent the Java “null” value, and the uppercase
NULL to represent the SQL null value.

Host expressions are also permitted to be used as assignment targets if the host expression evaluates to a Java
I-valued expression.

4.3.4 Binary portability

4.3.4.1 Binary portability requirements

This Subclause specifies the requirements for binary portable SQLJ applications, and overviews how binary
portability is achieved. A binary portable SQLJ application has the following properties:

— Component-level interoperability

Connection context objects defined by one application can be used in SQLJ executable clauses of another
application. Similarly, result set iterator objects defined by one application can be instantiated and populated
by SQLJ executable clauses of another application.

— Packaged description of SQL-statements

Every SQLJ application shall include a set of well defined resource files that can be read to determine
information about SQL-statements performed by the application.

Concepts 11

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

— Configurable SQL execution control

The runtime execution of SQL-statements is controlled by implementation-specific components. Components
can be added and removed at any time from a binary SQLJ application, as appropriate for the eventual
runtime environment.

Binary portability is achieved though a framework that is based upon the following four aspects:
— Runtime library

This document specifies a runtime library composed of classes common to all applications produced by a
particular SQLJ translator. This includes the classes in the standard SQLJ runtime packages:

e packagesqglj.runtine
Standard classes that a client will use directly in SQLJ source code.
e packagesqlj.runtine.profile
Standard classes used by the binary portability framework, but not used directly by the client.

The runtime library also includes concrete implementations of the interfaces and abstract classes in the
above packages. These classes might vary depending on the SQLJ translator. The standard SQLJ runtime
packages are described in Clause 12, “Package sqlj.runtime”, Clause 13, “Package sqlj.runtime.profile”,
and Clause 14, “sqlj.runtime.profile.util.ProfileCustomizer”, of this document.

— Profile files

Every SQLJ application will include a set of SQLJ translation-generated resources called profiles that
describe the SQL-statements appearing in the application; a profile file contains profiles for a single SQLJ
application. This document defines the requirements for the name, number and contents of profiles created
for each SQLJ application.

— Generated class signature

The SQLJ-translation of declarative <SQLJ specific clause>s shall produce a uniform class signature such
that not only clients, but also other applications are able to use these classes interchangeably. This document
defines requirements for the signatures of classes created for SQLJ applications.

— Calls to runtime and profile

The SQLJ-translation of executable <SQLJ specific clause>s shall result in calls to routines in the SQLJ
runtime libraries and profiles. Implementation-dependent SQL execution is accomplished by implementing
runtime library components. The calls made to these components by each <SQL.J specific clause> are
defined in order to allow a standardized implementation.

Given the portability framework, implementations are able to install custom SQL execution components into
an SQLJ application. Note that implementations of the above list is not required to achieve custom SQL execution.
Rather, the above list specifies the preconditions that shall be true to enable reliable addition of custom SQL
execution components to an existing SQLJ application.

12 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

4.3.4.2 Components of binary portable applications

An SQLJ application might consist of a number of different SQLJ translation units, translated using one or
more SQLJ translators, and customized using one or more customizers. Each individual SQLJ translation unit
is binary portable with every other SQLJ translation unit within the application and the application as a whole
is binary portable with other applications so long as the required components of each SQLJ translation unit are
available at runtime, and each component conforms to the requirements specified in this document.

In addition to the classes and profiles generated by a translator, there might also be a translator-specific runtime
library component required to run the generated classes. In many cases, a translator will provide runtime library
components that implement the SQLJ standard classes and interfaces defined in this document. Similarly, a
customizer might require an implementation-specific runtime library component to run a customized version
of the application. If more than one translator or customizer is used to build the application, then there might
be a different runtime library component for each translator and customizer used.

In summary, a binary portable application consists of the following components:
1) SQLJ standard runtime classes.
2) For each translator T used to translate units in the application:
a) Runtime classes used by translator-generated code (if any).
b) For each unit translated by T:
i) User-defined classes (which might contain executable SQLJ clauses).
i) User-defined property files containing maps for user-defined data types (if any).
iii) Classes generated by T as a result of declarative SQLJ clauses.
iv) Profiles generated by T.
V) Auxiliary helper classes generated by the T (if any).

3) For each customizer used to customize profiles in the application, runtime classes used by the installed
customization (if any).

The runtime library components of a particular translator or customizer need not be packaged with the application
if the component already exists in the runtime environment. For example, an SQL-implementation might be
configured to support the runtime classes of a particular translator and customization, or a set of runtime classes
might be packaged as a downloadable plug-in for use in browsers.

4.3.5 Profile overview

SQLJ applications are binary portable, meaning that the same binary application can be run against any SQL-
server implementation without modification of the original source code and without retranslation of the original
source code using an implementation-specific SQLJ translator. Binary portability is achieved in part by
implementing the default SQLJ runtime libraries on top of JDBC. Any implementation that supports an
infrastructure that emulates the JDBC call interfaces and semantics will automatically be able to support SQLJ.

Concepts 13

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

In addition, many implementations have systems that allow SQL-statements to be optimized and executed with
greater performance than equivalent JDBC dynamic SQL. For these systems, it is desirable to be able to
implement alternative SQLJ runtime interfaces instead of the runtime JDBC interfaces.

To accommodate this need, two requirements shall be satisfied. First, the SQLJ application shall include a
complete, accessible description of the SQL-statements that it will perform. These descriptions are then used
at application deployment time by implementation-specific tools that precompile and install the SQL-statements
as appropriate for a particular DBMS. Second, the implementation shall be able to install a hook into an existing
SQLJ application such that the SQL-statements are executed using an implementation-specific runtime rather
than the default JDBC-based implementation. Each SQLJ application includes a set of SQLJ profiles that satisfy
these two requirements.

An SQLJ profile is an instance of the Java class sglj.runtime.profile.Profile. It describes every SQL-statement
appearing within the original SQLJ source file. For each SQL-statement, the profile contains an entry that
describes among other things; the operation text, the number, type and parameter mode of each parameter, and
a description of the columns that are expected to be produced by the operation, if any. SQLJ profiles are packaged
with the application either as serialized objects or as distinct subclasses of sglj.runtime.profile.Profile. Thus,
every SQLJ application includes a set of profiles that can be loaded at any time, and used to programmatically
inspect the SQL-statements it might perform.

SQLJ profiles are serializable, meaning that their state might be stored to a file (or table column) and then
restored at a later time. In addition to describing SQL-statements in the source file, profiles also contain a set
of implementation-dependent customization objects. A customization object is an implementation-dependent
object that is used by the SQLJ runtime to execute an SQL-statement described in the profile (the term *“cus-
tomization” refers to the fact that they are used to achieve implementation-dependent “customized” behavior
in the program). Customizations can be registered and deregistered with a profile. At runtime, a profile selects
the appropriate customization to use according to the SQL-connection established.

4.3.5.1 Entrylnfo overview

For each <executable clause> (except those describing a <fetch statement>), an EntrylInfo object is created and
stored in an SQLJ profile. An EntryInfo object contains a collection of Java fields that describe an <executable
clause> as defined below:

— SQL String

A Java String containing the portion of the <executable clause> appearing between braces. Unless otherwise
noted, the string contains the exact text of the original program source, including line breaks, other white
space, and comments. Case is preserved. Any <embedded Java expression> appearing in the original
<executable clause> is replaced with <dynamic parameter specification>.

— Role

Categorizes the <executable clause>. Unless otherwise stated, the role is STATEMENT. The role is used
to distinguish operations that are likely to be handled in a special way by the runtime implementation, and
are not meant to be an exhaustive list of all possible types of SQL-statements.

For example, the role SINGLE_ROW_QUERY indicates that the operation is a query that is expected to
return only a single row. It is distinguished from the more general QUERY role since a runtime might be
able to optimize queries that return only a single row. UPDATE, INSERT, and DELETE operations all
fall into the general role of STATEMENT, since they are likely to be handled the same way by the under-
lying engine.

14 Object Language Bindings (SQL/OLB)

4.3

IWD 9075-10:201?(E)
Introduction to SQLJ

Table 1, “Association of roles with SQLJ <executable clause>s”, associates roles with corresponding SQLJ

clauses.
Table 1 — Association of roles with SQLJ <executable clause>s

Role <executable clause>
QUERY <query clause>
CALL <call statement>
VALUES <function clause>
POSITIONED <delete statement: positioned>
POSITIONED <update statement: positioned>

QUERY_FOR_UPDATE

<query clause> populating ForUpdate iterator

SINGLE_ROW_QUERY

<select statement: single row>

UNTYPED_SELECT

<query clause> populating sglj.runtime.ResultSetlterator

COMMIT

<commit statement>

SAVEPOINT

<savepoint statement>

RELEASE_SAVEPOINT

<release savepoint statement>

ROLLBACK

<rollback statement>

SET_TRANSACTION

<set transaction statement>

ITERATOR_CONVER-
SION

<iterator conversion clause>

BLOCK <compound statement>

STATEMENT all other operations

OTHER reserved for implementation-defined extensions
— Statement Type

Statement type is CALLABLE_STATEMENT if the <executable clause> contains at least one <embedded
Java expression> the <parameter mode> of which is OUT or INOUT. Otherwise, statement type is PRE-
PARED_STATEMENT if the <executable clause> contains no <embedded Java expression> or all

<embedded Java expression>s have <parameter mode> IN.

NOTE 10 — An entry with a role of CALL is permitted to have statement type PREPARED_STATEMENT if no <embedded
Java expression> exists with <parameter mode> OUT.

Concepts 15

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

— Execute Type

Describes the RTStatement execute method that is used at runtime to perform this operation, one of
EXECUTE_QUERY, EXECUTE_UPDATE, or EXECUTE. The execute type is EXECUTE_UPDATE
unless otherwise noted.

— Parameter Attributes

Describes the <embedded Java expression>s appearing in the <executable clause>. Parameter information
is composed of a number of Java fields.

Param Count
Gives the number of <embedded Java expression>s appearing in the <executable clause>, k.
Param Info

A collection of Typelnfo objects (defined below) that describe the set of <embedded Java expression>s
that appear in an <executable clause>. For each <embedded Java expression>, HE;, the i-th Typelnfo

object, describes HE; of the original <executable clause> (or, equivalently, the i-th <dynamic param-

eter specification> in the SQL String Java field), where i is in the range 1 (one) < i < k. The Typelnfo
object returned has the mode of the <parameter mode> of HE;. It has Java type name corresponding

to the name of the type of HE;. If HE; is a <simple variable>, then the Typelnfo object returned has
the same name as that of the <simple variable>. Otherwise, if HE; is a <complex expression>, then
the Typelnfo object returned has name = null.

— Result Set Column Java fields

Describes the columns expected to be produced by the <executable clause>. Result set column information
is composed of a number of Java fields.

Result Set Type

Describes the way in which the result set columns are expected to be bound. One of NO_RESULT,
NAMED_RESULT, POSITIONED_RESULT. Result set type is NO_RESULT if the <executable
clause> is an operation that does not produce a result set.

Result Set Count

The number of result set columns that the <executable clause> is expected to produce as indicated by
the cardinality of the <iterator spec declaration>.

If the result set type is NO_RESULT, then result set count is O (zero).
Result Set Info

A collection of Typelnfo objects that describe the <iterator spec declaration>. For result set usage of
a Typelnfo, mode and dynamic parameter marker index have no meaning and are defaulted to return
OUT and -1.

This is empty unless otherwise stated.
Result Set Name

The class name of the iterator object populated by this <executable clause>. If the result set type is
NO_RESULT, the result set name is null.

16 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

— Descriptor

Contains any extra information not otherwise provided by the other Java fields. The descriptor is null
unless otherwise stated.

4.3.5.2 Typelnfo overview

Each <embedded Java expression> and expected result set column of an <executable clause> is described by

a Typelnfo object. For user-defined data types, the content of a Typelnfo object is in part determined using the
associated connection context type map. This is the type map specified in the <connection declaration clause>
of the connection context object with which the <executable clause> is associated. A Typelnfo object contains
a collection of Java fields describing the <embedded Java expression> or result set column, as described below.

— Java Type Name

The name of the Java Class or primitive type that is the type of the <embedded Java expression> or result
set column.

In most cases, the name returned is the same as the internal name of the type, as defined by [Java]; primitive
types have their simple names (e.g., int), classes are fully qualified (e.g., java.sql.Date), and nested classes
are delimited with “$” (e.g., X.y.OuterClass$InnerClass). Array naming uses a more readable convention
than the internal type name: if the name returned represents an array, the string “[” is prepended to the full
name of the component type. For example, an array of array of String has the name “[[java.lang.String”.

— SQL Type

A java.sgl. Types-defined constant that corresponds for predefined data types to the default mapping of
the Java type of the <embedded Java expression> or result set column into an SQL type, as defined by
[JDBC]. For user-defined data types that are covered by a property definition in the associated connection
context type map, this field contains the SQL type (i.e, STRUCT, DISTINCT, or JAVA_OBJECT)
corresponding to the Java type name as defined in that property definition. If the property definition for
the Java type does not specify an SQL type, then the following default mechanism is used for determining
the SQL type: If the Java type of the <embedded Java expression> or result set column implements the
interface java.sql.SQLData, then the SQL Type field is set to STRUCT; otherwise, it is set to
JAVA_OBJECT. If no property entry is found in the connection type map for the given Java type name,
or no type map has been associated with the connection context class, then the SQL Type is OTHER. This
mapping is also given in columns one and two of Table 2, “SQLJ type properties”.

NOTE 11 — SQL Type is not a representation of the SQL types. Instead, it exists as an established default mapping between

Java types and [JDBC]-defined SQL type constants. It might be disregarded or remapped as appropriate by implementation-
defined profile customizations.

— SQL Type Name

If the SQL Type field of the Typelnfo object is either STRUCT, DISTINCT, or JAVA_OBJECT, then
this field contains a String giving the user-defined name of the SQL type corresponding to the Java type
of the <embedded Java expression> or result set column, as defined by the associated connection context
type map.

— Mode

One of IN, INOUT, or OUT. Gives the <parameter mode> of a <host expression>. For result set columns,
the mode is always OUT.

Concepts 17

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ
— Name

Gives the name of the <embedded Java expression> or result set column, if available. If the Typelnfo
object represents a <embedded Java expression> the rules for determining the name are specified in
EntryInfo-Param Info. If the Typelnfo object represents a column of <named iterator> then name is
determined by its <iterator spec declaration>. If the Typelnfo object represents a column of a <positioned
iterator>, then name=null.

— Dynamic Parameter Marker Index

Gives the zero-based index of the <dynamic parameter specification> appearing in the SQL String that
corresponds to the <embedded Java expression> represented by this Typelnfo object. The dynamic
parameter marker index is —1 if this Typelnfo object describes a result set column.

4.3.5.3 SQLJ datatype properties

Every bind variable, return result, and column type is described in an SQLJ profile by means of a Typelnfo
object.

Table 2, “SQLJ type properties”, describes the datatypes supported by SQLJ.

— The first column lists the names of the Java datatypes that are supported by SQLJ.

— The second column lists the java.sql. Types constant value of the given datatype.

— The third column lists the “getter method” used to fetch bind variables of the given datatype either as an
out-parameter (RTStatement) or column type (RTResultSet).

— The fourth column lists the “setter method” used to pass bind variables of the given datatype as input
parameter (RTStatement) to the SQL-implementation.

Table 2 — SQLJ type properties

Java type name java.sgl.Types | getter method setter method
value

boolean BOOLEAN getBooleanNoNull setBoolean

byte TINYINT getByteNoNull setByte

short SMALLINT getShortNoNull setShort

int INTEGER getIntNoNull setint

long BIGINT getLongNoNull setLong

float REAL getFloatNoNull serFloat

double DOUBLE getDoubleNoNull setDouble

java.lang.Boolean BOOLEAN getBooleanWrapper setBooleanWrapper

18 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

Java type name

java.sql. Types
value

getter method

setter method

java.lang.Byte TINYINT getByteWrapper setByteWrapper
java.lang.Short SMALLINT getShortWrapper setShortWrapper
java.lang.Integer INTEGER getIntWrapper setintWrapper
java.lang.Long BIGINT getLongWrapper setLongWrapper
java.lang.Float REAL getFloatWrapper setFloatWrapper
java.lang.Double DOUBLE getDoubleWrapper setDoubleWrapper
java.lang.String VARCHAR getString setString
java.math.BigDecimal NUMERIC getBigDecimal setBigDecimal
byte[]* VARBINARY getBytes setBytes

java.sql. ArrayG ARRAY getArray setArray
java.sql.Blob® BLOB getBlob setBlob
java.sql.Clob® CLOB getClob setClob
java.sgl.Date DATE getDate setDate
java.sgl.Time TIME getTime setTime
java.sgl.Timestamp TIMESTAMP getTimestamp setTimestamp
java.net. URL DATALINK getURL setURL
sqlj.runtime.AsciiStream? | OTHER getAsciiStream® setAsciiStream
sqlj.runtime.BinaryStream? | OTHER getBinaryStream® setBinaryStream
sglj.runtime.Character- OTHER getCharacterStream- setCharacterStreamWrap-
Stream? Wrapper per

sqlj.runtime. UnicodeStream? | OTHER getUnicodeStream® setUnicodeStream
java.sgl.Ref REF getRef setRef
java.sgl.SQLXML SQLXML getSQLXML setSQLXML

Concepts 19

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

Java type name java.sql. Types getter method setter method
value

any other cl ass’ STRUCT, DIS- | getObject setObject
TINCT,
JAVA OBIJECT,
OTHER

1 The Java type name Java field stored in a Typelnfo object for a byte array is named “[byte”, not “byte[]”.

2 The sqlj.runtime. XXXStream classes are subclasses of java.io.InputStream. Explicit type names allow the type of the stream
data to be encoded statically in the type name, and therefore to be determined at translate time rather than runtime. They also
add a “length” Java field that is needed when streams are passed to an SQL-server.

3 Getter methods for stream types are only available on the RTResultSet interface, but not the RT Statement interface. This is
for symmetry with JDBC.

4 The Blob and Clob data type implementations are recommended to be based on large object locators. In order to retrieve or
provide the actual Lob values instead of location, one can use host variables of type BinaryStream, AsciiStream, or UnicodeStream
instead of Blob and Clob.

5 There is no single default java.sql.Types value for the Java type name in this case. The “java.sql.Types value” column lists the
alternative values permitted in this case. The actual value stored in a Typelnfo object that is part of the profile entry is determined
by the SQLJ translator according to the Rules given in Subclause 4.3.5.2, “Typelnfo overview”.

6 The Array data type implementation is recommended to be based on array locators.

4.3.6 Host variables

Arguments to embedded SQL-statements are passed through host variables, which are variables of the host
language that appear in the SQL-statement. Host variable names are prefixed by a colon (:). A host variable
contains an optional parameter mode identifier (IN,OUT, INOUT) followed by a Java host variable that is a
Java identifier, naming a parameter, variable, or Java field. The evaluation of a Java identifier does not have
side effects in a Java program, so it is permitted to appear multiple times in the Java code generated to replace
an SQLJ clause.

4.3.7 Host expressions

SQLJ extends the traditional embedded support by allowing Java host expressions to appear directly in SQL-
statements. Host expressions are prefixed by a colon (:) followed by an optional parameter mode identifier
(IN, OUT, INOUT) followed by a parenthesized expression clause. An expression clause contains a Java
expression that either evaluates to a single value (in the case of IN mode) or is a Java I-valued expression (in
the case of an OUT or INOUT mode).

The evaluation of host expressions does have side effectsin a Java program as they are evaluated by Java
rather than the SQL-server. Host expressions are evaluated left to right within the SQL-statement prior to sub-
mission to the SQL-server.

Host expressions are always passed to and retrieved from the SQL-server using pure value semantics.

Assignments to output host expressions are also performed in lexical order.

20 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

4.3.8 Connection contexts

Each SQLJ executable clause requires, either explicitly or implicitly, a connection context object that designates
the SQL-connection with which the SQL-statement specified in that clause will be executed.

The connection context object designates an SQL-implementation at which the SQL-statements will be executed,
and the session and transaction in which they are executed. A connection context is an object of a connection
context class, which is defined by means of an SQLJ connection clause. Given a java.sgl .Connection
object, a URL (see [RFC2368], and [RFC3986] for more details about URLS), or a URL and information such
as a user name and password (it is also possible to include user name and password in a URL), a connection
context class has methods for identifying and, if necessary, opening an SQL-connection. At run time, an SQLJ
program uses one of those methods to establish an SQL-connection before any SQLJ clauses are executed.

NOTE 12 — The connection context object implicitly specifies an SQL-implementation, and the default catalog and schema, as
per a Java.sql .Connection object.

4.3.9 Default connection context

If an SQLJ clause contains an expression designating the connection context object on which it will be executed,
then that clause is said to use an explicit connection. If the connection context object is omitted from a clause,
then that clause is said to use the default connection.

The specification of the default connection context is implementation-defined. Portable applications should
always use explicit connection contexts.

If an invocation of an SQLJ translator indicates that the default connection context class is some class connctx,
then all SQLJ clauses that use the default connection context are translated as if they had explicitly used the
connection context object connct x .getDefaultContext().

Programs are permitted to install a connection context object as the default connection by calling setDefaul t-
Context.

The default connection context object for a program is stored in a static variable of the default connection
context class. Some SQLJ programs will wish to avoid using static variables. For example, Applets, reentrant
libraries, and some multithreaded programs will avoid static variables. Those programs will wish to use SQLJ
clauses with explicit connection contexts objects.

If an SQLJ program is executing as an external routine (or is otherwise executing in an environment that auto-
matically provides a connection context), calls to method ConnectionContext.getDefaultContext
always return an object representing the connection in which the program is executing. An SQLJ program can
detect whether it is executing in an environment that implicitly supplies a connection context by calling Con-
nectionContext.getDefaultContext beforeitcalls ConnectionContext.setDefaultCon-
text toinstall a connection context object. An execution environment that automatically supplies a connection
context will return a non null connection context object.

The SQL-connection used by the default connection context is defined by the data source bound to the name
Jjdbc/defaultDataSource using JNDI. If this name is not defined, the SQL-connection used is imple-
mentation-defined.

NOTE 13 — “JNDI” is the Java Naming Directory Interface, defined in [JNDI].

Concepts 21

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

4.3.10 Schema checking using exemplar schemas

At SQLJ translation time, a connection context class plays a different role. It symbolizes the “type” of SQL-
schema to which the SQLJ program will connect at run time. The notion of the “type of an SQL-schema” is
informal. It includes the names and privileges associated with tables and views, the “shapes” of their rows,
SQL-invoked routines, and so forth. The type of a schema is symbolized by an exemplar schema, which is
simply a schema that contains the tables, views, SQL-invoked routines, and privileges that would be required
in order for the SQL-statements in SQLJ clauses to execute successfully. An exemplar schema might be the
actual runtime schema, or it might be another schema that is a “typical” schema, in ways relevant to the SQLJ
program being translated.

If an exemplar schema is being used, then the invoker of an SQLJ translator provides a mapping of connection
context classes to exemplar schemas. An SQLJ translator connects to the exemplar schema in order to provide
syntax checking, type checking and schema checking for all SQLJ clauses that will be executed in the connection
context of the class “exemplified” by that schema. In that way, the exemplar schema represents the schema to
which the application will connect at runtime. It is the responsibility of the application developer to pick an
exemplar schema that represents the run time schemas in relevant ways, e.g., having tables, views, and SQL-
invoked routines with the same names and types, and having privileges set appropriately.

If no connection to an appropriate exemplar schema or SQL-implementation for a connection type is established
during SQLJ translation, then SQLJ clauses to be executed on connections of that type will not be schema
checked at SQLJ translation time, and will instead be checked later at installation or customization time.

The mapping of connection context classes to exemplar schemas is provided to an SQLJ translator in an
implementation-defined way, typically by pairing connection context class names with connect strings and
passwords. For example, a client side SQLJ translator is permitted to require that mapping on the command
line in an invocation of the translator. Those connect strings and passwords are then used as arguments to
invocations of ConnectionContext class constructors that establish an SQL-connection to the exemplar schema.

Since the connection context is optional in an SQLJ clause, if the connection context is absent from an SQLJ
clause, there shall be a default connection context class specified. The clause is then checked against the
exemplar schema corresponding to the class of the default connection context object for the program.

4.3.11 Using multiple SQLJ contexts and connections

SQLJ supports concurrent connections to multiple SQL-servers. SQLJ models ach SQL-server that is connected
at runtime as a distinct connection context class. Multiple schemas co-located within a single SQL-server are
all accessible by a single connection context. Schemas located on different SQL-servers require separate con-
nection contexts, one per SQL-connection. The specification of the appropriate connection context associated
with an #sql statement allows type checking across multiple SQL-servers at translate time.

4.3.12 Dynamic SQL and JDBC/SQLJ Connection interoperability

The SQLJ language provides direct support for SQL-statements that are known at the time the program is
written. If some or all of a particular SQL-statement cannot be determined until runtime, it is a dynamic operation.
To perform dynamic SQL from an SQLJ program, the application may use JDBC. A ConnectionContext
object contains a Java.sql . Connection object that can be used to create Java.sql .Statement
objects needed for dynamic SQL.

22 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

4.3.12.1 Creating an SQLJ ConnectionContext from a java.sgl.Connection object

Every SQLJ ConnectionContext class includes a constructor that takes as an argumenta java.sql . Connec-
tion object. This constructor is used to create an SQLJ connection context object that shares its underlying
SQL-connection with that of the Java.sql . Connection object.

4.3.12.2 Obtaining a java.sgl.Connection object from an SQLJ ConnectionContext

Every SQLJ ConnectionContext object has a getConnection method that returnsa java.sql .Connection
object. The java.sqgl .Connection object returned shares the underlying SQL-connection with the SQLJ
connection context. It can be used to perform dynamic SQL as described in [JDBC].

4.3.12.3 Connection sharing

An SQLJ ConnectionContext always contains a java.sql . Connection object and relies upon it to provide
communication with the underlying SQL-connection. Accordingly, calls to methods that affect connection state
on one object will also be reflected in the other object, as it is actually the underlying shared SQL-connection
that is being affected.

JDBC defines the default values for session state of newly created connections. In most cases, SQLJ adopts
these default values. However, whereas a newly created Java.sql . Connection object has auto commit
mode on by default, an SQLJ connection context requires the auto commit mode to be specified explicitly upon
construction.

4.3.12.4 Connection resource management

The close method of a connection context object causes the associated java.sqgl . Connection object and
the underlying SQL-connection to be closed. However, because connection contexts are permitted to share the
underlying SQL-connection with other connection contexts and/or java.sgl . Connection objects, an
option is available to release resources maintained by the connection context object, but not close the associated
Java.sql .Connection object and the underlying SQL-connection.

If a connection context object is not explicitly closed before it is garbage-collected, then close(KEEP_CON-
NECTION) is called by the finalize method of the connection context. This allows connection related resources
to be reclaimed by the normal garbage collection process while maintaining the underlying SQL-connection
for other JIDBC and SQL.J objects that might be using it. Note that if no other JDBC or SQL.J objects are using
the SQL-connection, then the SQL-connection will also be closed and reclaimed by the garbage collection
process.

Both SQLJ connection context objects and Java.sql . Connection objects respond to the close method.
When writing an SQLJ program, it is sufficient to call the close method on only the connection context object.
This is because closing the connection context will also close the Java.sql . Connection object associated
with it. However, it is not sufficient to close only the java.sqgl . Connection object returned by the get-
Connection method of a connection context. This is because the close method of a java.sqgl .Connection
object will not cause the containing connection context to be closed, and therefore, resources maintained by
the connection context will not be released until it is garbage-collected.

Concepts 23

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

The isClosed method of a connection context returns true if any variant of the close method has been called
on the connection context object. If isClosed is true, then calling close is a no-op, and the effect of calling any
other method is implementation-dependent.

4.3.13 SQL execution control and status

The execution semantics of SQL-statements can be queried and modified via the execution context associated
with the operation. An execution context exists as an instance of class sql j - runtime . ExecutionContext.

The following ExecutionContext Java fields control the execution environment of SQL-statements. The
get XXX and set XXX methods read and change the XXX value. Once set, they affect all SQL-statements sub-
sequently executed on that execution context.

— MaxRows specifies the maximum number of rows to be returned by any query.

— MaxFi el dSi ze specifies the maximum number of bytes to be returned as data for any column or output
variable.

— QueryTi nmeout specifies the number of seconds to wait for an SQL-statement to complete.

NOTE 14 — Runtime support of the above ExecutionContext Java fields, if set to anything other than their respective default
values, is not part of Core SQLJ. See Subclause 11.9, “<executable clause>".

The following ExecutionContext Java fields describe the results of the last SQL-statement executed.
— Updat eCount specifies the number of rows updated, inserted, or deleted during the last operation.
— SQ.War ni ngs describes any warnings that occurred during the last operation.

An execution context is associated either explicitly or implicitly with each SQLJ executable clause appearing
in an SQLJ program.

If explicit execution contexts are used, each SQL-statement can be executed using a different execution context
object. If an explicit connection context is also being used, both are available to be queried and modified during
execution of the SQL-statement.

If an execution context is not supplied explicitly, a default execution context is used implicitly. The default
execution context for a particular SQLJ executable clause is obtained via the getExecutionContext()
method of the connection context used in the SQLJ executable clause.

If neither a connection context nor an execution context is explicitly supplied, the execution context associated
with the default connection context is used.

The use of an explicit execution context overrides the execution context associated with the connection context,
referenced explicitly or implicitly by an SQL clause.

4.3.14 lterators

A capability central to SQL is the ability to execute queries that retrieve a “result set” of rows from an SQL-
implementation. An SQLJ clause might evaluate a query and return a result set iterator object containing the
result set selected by that query. Depending on the type of the iterator object, it might be used with the
FETCH. . . | NTOidiom of SQL to extract data into host variables, or it might return column data through

24 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

named accessor methods having the names and types of columns returned by the query. The iterator declaration
clause is permitted to appear wherever a Java class definition may appear.

An SQLJ iterator is a Java object that implements the interface sqlj.runtime.ResultSetlterator and from
which the data returned by an SQL query can be retrieved. In that role, it corresponds to the cursor of SQL,
from which data are fetched. Unlike the cursor, however, an iterator object is a first class object. An iterator
object can be passed as a parameter to a method, and can be used outside the SQLJ translation unit that creates
it, without losing its static type for the purposes of type checking of component interfaces.

An iterator object has one or more columns with associated Java types. Names that are Java identifiers can
optionally be provided for the iterator object columns. If the expressions selected by a query are unnamed, or
have SQL names that are not valid Java identifiers, then SQL column aliases can be used to name them. The
columns of an iterator object (which have Java types) are conceptually distinct from the columns of a query
(which have SQL types), and therefore, a means of matching one to the other shall be chosen. SQLJ supports
two mechanisms for matching iterator object columns to query columns. They are bind by position and bind
by name.

Bind by position means that the left to right order of declaration of the iterator object columns places them in
correspondence with the expressions selected in an SQL query. Traditional FETCH. . . | NTOsyntax is used
to retrieve data from the iterator object into Java variables. An iterator class that binds by position is declared
by providing a parenthesized, comma-separated list of data types, one per column of the rows returned by the
iterator object. The list specifies only the data types of the columns and does not specify a name for the columns.
The data types in the list shall appear in exactly the same sequence as the data types of the columns of the rows
returned by the iterator object. The types of the SQL columns in the query shall be convertible to the types of
the positionally corresponding iterator object columns, according to the SQL to Java type mappings of SQLJ.
Those conversions are statically checked at SQLJ translation time if an SQL-connection to an exemplar schema
is provided to the translator.

Bind by name means that the name of each iterator object column is matched to the name of a column returned
by the SQL query, independent of the order in which that column appeared in the query. Named accessor
methods are generated by the SQLJ translator for each column of the iterator object. The name of a named
accessor method matches the name of a column returned by a query and its return type is the Java type of the
iterator object column. The FETCH. . . | NTOsyntax is not permitted to be used with an iterator object of this
type, as the named accessor methods provide the mechanism for transferring the data. An iterator class that
binds by name is declared by providing a parenthesized, comma-separated list of data types and identifiers,
one per column of the rows returned by the iterator object. The list specifies the data types and the name of
each column of the rows returned by the iterator object. The sequence of data types and identifiers in the list
need not be the same sequence as the columns of the rows returned by the iterator object. A Java compiler will
detect type mismatch errors in the uses of named accessor methods. Additionally, if a connection to an exemplar
schema is provided at translate time, then the SQLJ translator will statically check the validity of the types and
names of the iterator object columns against the SQL queries associated with it.

An iterator declaration clause designates whether objects of that iterator type use bind by position or bind by
name. The two styles of access to result set data are mutually exclusive; an iterator class supports either bind
by position or bind by name, but not both. Program development tools might prefer to generate SQLJ programs
using bind by position, since these tools can generate SQLJ code that is “correct by construction”. People
writing SQLJ programs “by hand” might prefer to use bind by name, to make their applications resilient against
changes to the program or SQL-schema.

Concepts 25

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

4.3.15 Input and output assignability

An SQL type ST is SQLJ output assignable to a Java class or primitive type JT if Table 3, “SQLJ output
assignability (part 1)”, Table 4, “SQLJ output assignability (part 2)”, Table 5, “SQLJ output assignability (part
3)”, or Table 6, “SQLJ output assignability (part 4)”, contains an X' in the cell identified by the column for the
jJava.sql . Types value of ST and the row in which JT is specified in the first column. In addition, the fol-
lowing conditions shall hold for structured and distinct types (i.e., java.sqgl . Types values STRUCT and

DISTINCT).

— Ifthe java.sqgl . Types value of ST is either DISTINCT or STRUCT, and JT is not one of the Java

classes or primitive types identified in the first column of Table 5, “SQLJ output assignability (part 3)”,
(i.e., “any other class/interface” applies), then the user-defined type map that is associated with the connec-
tion context class of the SQLJ clause for which output assignability is checked shall specify a Java class
or primitive type JT that corresponds to ST.

If the Java.sql . Types value of ST is DISTINCT, and JT is one of the Java classes or primitive types
identified in the first column of Table 5, “SQLJ output assignability (part 3)”, then there exists an SQL
type ST1, where ST1 is either the representation type of ST, or a transform group has been specified for
ST in the connection context class of the SQLJ clause for which output assignability is checked, and ST1
is the result type of the from-sql transform function or method of that transform group. ST1 shall be SQLJ
output assignable to JT.

If the Java.sql . Types value of ST is STRUCT, and JT is one of the Java classes or primitive types
identified in the first column of Table 5, “SQLJ output assignability (part 3)”, then a transform group has
been specified for ST in the connection context class of the SQLJ clause for which output assignability is
checked, and the result type of the from-sgl transform function or method of that transform group is SQLJ
output assignable to JT.

Table 3 — SQLJ output assignability (part 1)

java.sgl. Types constants®
Java Data Types and Classes | Tl Sl IN Bl RL FL DB DC
boolean X X X X X X X X
byte X X X X X X X X
short X X X X X X X X
int X X X X X X X X
long X X X X X X X X
float X X X X X X X X
double X X X X X X X X
java.lang.Boolean X X X X X X X X
java.lang.Byte X X X X X X X X

26 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)

4.3 Introduction to SQLJ
java.sgl. Types constants®
Java Data Types and Classes | T1 Sl IN BI RL FL DB DC
java.lang.Short X X X X X X X X
java.lang.Integer X X X X X X X X
java.lang.Long X X X X X X X X
java.lang.Float X X X X X X X X
java.lang.Double X X X X X X X X
java.lang.String X X X X X X X X
java.math.BigDecimal X X X X X X X X

byte[]

java.sgl.Array

java.sgl.Blob

java.sgl.Clob

java.sgl.Date

java.sgl.Ref

java.sgl.Time

java.sgl.Timestamp

sglj.runtime.AsciiStream

sglj.runtime.BinaryStream

sglj.runtime.CharacterStream

sglj.runtime.UnicodeStream

java.net. URL

java.sgl.SQLXML

any other class/interface

1where: Tl corresponds to TINYINT, Sl to SMALLINT, IN to INTEGER, Bl to BIGINT, RL to REAL, FL to FLOAT,

DB to DOUBLE, and DC to DECIMAL

Concepts 27

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

Table 4 — SQLJ output assignability (part 2)

java.sgl. Types constants®
Java Data Types and Classes | NU BO CH |[VC LC CL
boolean X X X X X
byte X X X X X
short X X X X X
int X X X X X
long X X X X X
float X X X X X
double X X X X X
java.lang.Boolean X X X X X
java.lang.Byte X X X X X
java.lang.Short X X X X X
java.lang.Integer X X X X X
java.lang.Long X X X X X
java.lang.Float X X X X X
java.lang.Double X X X X X
java.lang.String X X X X X
java.math.BigDecimal X X X X X
byte[]
java.sgl.Array
java.sgl.Blob
java.sqgl.Clob X
java.sgl.Date X X X
java.sgl.Ref

28 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
Introduction to SQLJ

4.3
java.sgl. Types constants®
Java Data Types and Classes | NU BO CH VvC LC CL BI VB
java.sgl.Time X X X
java.sgl.Timestamp X X X
sglj.runtime.AsciiStream X X X X X
sglj.runtime.BinaryStream X X
sglj.runtime.CharacterStream X X X X X
sglj.runtime.UnicodeStream X X X X X
java.net. URL X X X
java.sql.SQLXML
any other class/interface
L where: NU correspondds to NUMERIC, BO to BOOLEAN, CH to CHAR, VC to VARCHAR, LC to
LONGVARCHAR, CL to CLOB, Bl to BINARY, and VB to VARBINARY
Table 5 — SQLJ output assignability (part 3)
java.sql.Types constants?
Java Data Types and Classes | LB BL DT ™ | TS RF DS ST
boolean X X
byte X X
short X X
int X X
long X X
float X X
double X X
java.lang.Boolean X X
java.lang.Byte X X
java.lang.Short X X

Concepts 29

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

java.sgl. Types constants®

Java Data Types and Classes | LB BL DT ™ | TS RF DS ST
java.lang.Integer X X
java.lang.Long X X
java.lang.Float X X
java.lang.Double X X
java.lang.String X X X X X X
java.math.BigDecimal X X
byte[] X X X
java.sql.Array

java.sgl.Blob X X X
java.sqgl.Clob X X
java.sgl.Date X X X X
java.sql.Ref X

java.sgl.Time X X X X
java.sgl.Timestamp X X X X
sglj.runtime.AsciiStream X X X
sglj.runtime.BinaryStream X X X
sglj.runtime.CharacterStream | x X X
sglj.runtime.UnicodeStream X X X
java.net. URL X X
java.sql.SQLXML

any other class/interface X X

L where: LB corresponds to LONGVARBINARY, BL to BLOB, DT to DATE, TM to TIME, TS to TIMESTAMP,
RF to REF, DS to DISTINCT, and ST to STRUCT

30 Object Language Bindings (SQL/OLB)

Table 6 — SQL.J output assignability (part 4)

IWD 9075-10:201?(E)

4.3 Introduction to SQLJ

java.sgl. Types constants®

Java Data Types and Classes | JO oT DL AR

XL

boolean

byte

short

int

long

float

double

java.lang.Boolean

java.lang.Byte

java.lang.Short

java.lang.Integer

java.lang.Long

java.lang.Float

java.lang.Double

java.lang.String

java.math.BigDecimal

byte[]

java.sgl.Array

java.sgl.Blob

java.sqgl.Clob

java.sgl.Date

java.sgl.Ref

Concepts 31

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

java.sgl. Types constants®

Java Data Types and Classes | JO oT DL AR XL
java.sgl.Time

java.sgl.Timestamp

sglj.runtime.AsciiStream

sglj.runtime.BinaryStream X
sglj.runtime.CharacterStream X
sglj.runtime.UnicodeStream X
java.net. URL X
java.sql.SQLXML X
any other class/interface X X

L where: JO corresponds to JAVA_OBJECT, OT to OTHER, DL to DATALINK, AR to ARRAY, and XL to SQLXML

A Java class or primitive type JT is SQLJ input assignable to an SQL type ST if Table 7, “SQLJ input
assignability (part 1)”, Table 8, “SQLJ input assignability (part 2)”, Table 9, “SQLJ input assignability (part
3)”, or Table 10, “SQLJ input assignability (part 4)”, contains an 'x' for the cell identified by the column for
the Java.sql . Types value of ST and the row in which JT is specified in the first column. In addition, the
following condition shall hold for structured and distinct types (i.e., Java.sql . Types values STRUCT and

DISTINCT).

— Ifthe Java.sqgl . Types value of ST is either DISTINCT or STRUCT, and JT is not one of the Java
classes or primitive types identified in the first column of Table 9, “SQLJ input assignability (part 3)”,
(i.e., “any other class/interface” applies), then the user-defined type map that is associated with the connec-
tion context class of the SQLJ clause for which input assignability is checked shall specify a Java class or

primitive type JT that corresponds to ST.

— Ifthe Java.sql . Types value of ST is DISTINCT, and JT is one of the Java classes or primitive types
identified in the first column of Table 9, “SQLJ input assignability (part 3)”, then there exists an SQL type
ST1, where ST1 is either the representation type of ST, or a transform group has been specified for ST in
the connection context class of the SQLJ clause for which input assignability is checked, and ST1 is the
input parameter type of the to-sql transform function or method of that transform group. JT shall be SQLJ

input assignable to ST1.

— Ifthe Java.sql . Types value of ST is STRUCT, and JT is one of the Java classes or primitive types
identified in the first column of Table 9, “SQLJ input assignability (part 3)”, then a transform group has
been specified for ST in the connection context class of the SQLJ clause for which input assignability is
checked, and JT is SQLJ input assignable to the input parameter type of the to-sql transform function or

method of that transform group.

32 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
Introduction to SQLJ

4.3
Table 7 — SQLJ input assignability (part 1)
java.sgl. Types constants®
Java Data Types and Classes | Tl Si IN Bl RL FL DB DC
boolean X X X X X X X X
byte X X X X X X X X
short X X X X X X X X
int X X X X X X X X
long X X X X X X X X
float X X X X X X X X
double X X X X X X X X
java.lang.Boolean X X X X X X X X
java.lang.Byte X X X X X X X X
java.lang.Short X X X X X X X X
java.lang.Integer X X X X X X X X
java.lang.Long X X X X X X X X
java.lang.Float X X X X X X X X
java.lang.Double X X X X X X X X
java.lang.String X X X X X X X X
java.math.BigDecimal X X X X X X X X
byte[]
java.sgl.Array
java.sgl.Blob
java.sqgl.Clob
java.sgl.Date
java.sgl.Ref

Concepts 33

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

java.sgl. Types constants®

Java Data Types and Classes

Tl

Si

IN

Bl

RL

FL

DB

DC

java.sgl.Time

java.sgl.Timestamp

sglj.runtime.AsciiStream

sglj.runtime.BinaryStream

sglj.runtime.CharacterStream

sglj.runtime.UnicodeStream

java.net. URL

java.sql.SQLXML

any other class/interface

Lwhere: Tl corresponds to TINYINT, Sl to SMALLINT, IN to INTEGER, Bl to BIGINT, RL to REAL, FL to FLOAT,
DB to DOUBLE, and DC to DECIMAL

Table 8 — SQLJ input assignability (part 2)

java.sql.Types constants?

Java Data Types and Classes | NU BO CH |[VC LC CL BI VB
boolean X X X X X
byte X X X X X
short X X X X X
int X X X X X
long X X X X X
float X X X X X
double X X X X X
java.lang.Boolean X X X X X
java.lang.Byte X X X X X
java.lang.Short X X X X X

34 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
Introduction to SQLJ

4.3

java.sgl. Types constants®
Java Data Types and Classes | NU BO CH VvC LC CL BI VB
java.lang.Integer X X X X X
java.lang.Long X X X X X
java.lang.Float X X X X X
java.lang.Double X X X X X
java.lang.String X X X X X X X
java.math.BigDecimal X X X X X
bytef] X X
java.sql.Array
java.sgl.Blob
java.sqgl.Clob X
java.sgl.Date X X X
java.sql.Ref
java.sgl.Time X X X
java.sgl.Timestamp X X X
sglj.runtime.AsciiStream X X X X X X
sglj.runtime.BinaryStream X X
sglj.runtime.CharacterStream X X X X X X
sglj.runtime.UnicodeStream X X X X X X
java.net. URL X X X
java.sql.SQLXML
any other class/interface

L\where: NU corresponds to NUMERIC, BO to BOOLEAN, CH to CHAR, VC to VARCHAR, LC to LONGVARCHAR,

CL to CLOB, BI to BINARY, and VB to VARBINARY

Concepts 35

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

Table 9 — SQLJ input assignability (part 3)

java.sgl. Types constants®

Java Data Types and Classes | LB BL DT ™ TS

boolean

byte

short

int

long

float

double

java.lang.Boolean

java.lang.Byte

java.lang.Short

java.lang.Integer

java.lang.Long

java.lang.Float

java.lang.Double

java.lang.String X X X X

java.math.BigDecimal

byte[] X

java.sgl.Array

java.sgl.Blob X

java.sqgl.Clob

java.sgl.Date X X

java.sgl.Ref

36 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

java.sgl.Types constants®
Java Data Types and Classes | LB BL DT ™ TS RF DS ST
java.sgl.Time X X X X
java.sgl.Timestamp X X X X
sglj.runtime.AsciiStream X X X
sglj.runtime.BinaryStream X X X X
sglj.runtime.CharacterStream X X X
sglj.runtime.UnicodeStream X X X
java.net. URL X X
java.sql.SQLXML
any other class/interface X X
L where: LB corresponds to LONGVARBINARY, BL to BLOB, DT to DATE, TM to TIME, TS to TIMESTAMP, RF to REF,
DS to DISTINCT, and ST to STRUCT

Table 10 — SQLJ input assignability (part 4)

java.sql.Types constants?

Java Data Types and Classes

JO

oT

DL

AR

XL

boolean

byte

short

int

long

float

double

java.lang.Boolean

java.lang.Byte

java.lang.Short

Concepts 37

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

java.sgl.Types constants®

Java Data Types and Classes

JO

oT

DL

AR

XL

java.lang.Integer

java.lang.Long

java.lang.Float

java.lang.Double

java.lang.String

java.math.BigDecimal

byte[]

java.sql.Array

java.sgl.Blob

java.sqgl.Clob

java.sgl.Date

java.sql.Ref

java.sgl.Time

java.sgl.Timestamp

sglj.runtime.AsciiStream

sglj.runtime.BinaryStream

sglj.runtime.CharacterStream

sglj.runtime.UnicodeStream

java.net. URL

java.sql.SQLXML

any other class/interface

X

X

L where: JO corresponds to JAVA_OBJECT, OT to OTHER, DL to DATALINK, AR to ARRAY, and XL to SQLXML

38 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

4.3.16 Multiple java.sgl.ResultSet objects from SQL-invoked procedure calls

Under some situations, a single SQL CALL statement might return multiple java.sqgl . ResultSet objects.
Because SQL has no mechanism to define java.sqgl .ResultSet objects as formal OUT or INOUT
parameters, such java.sql .ResultSet objects are referred to as side-channel result sets. The Execution-
Context method “getNextResultSet” allows navigation through these results.

After implicit or explicit use of some ExecutionContext execCon in association with an SQL CALL statement,
the first call to execCon.getNextResultSet returns the first side-channel result set produced by that CALL
statement. Subsequent calls to getNextResultSet optionally close the current java.sql .ResultSet object,
and advance to and return the next. getNextResultSet returns null if there are no further side-channel result
sets.

4.3.16.1 Resource management with multiple results

Under normal circumstances, the resources associated with the execution of an SQL-statement are released as
soon as the execution completes. However, if there are multiple results, the resources are not released until all
results have been processed using getNextResultSet. If an execution context with pending results is used to
execute another SQL-statement, then the pending results are discarded.

If the invocation of an SQL-invoked procedure does not produce side-channel result sets, then all resources are
automatically reclaimed as soon as the CALL execution completes.

4.3.17 JDBC/SQLJ ResultSet interoperability

To facilitate the interaction between dynamic SQL and SQLJ's strongly-typed iterators, SQLJ provides a way
to obtaina java.sqgl .ResultSet object from an SQLJ iterator object and to create an SQLJ iterator object
from a Java.sqgl .ResultSet object.

4.3.17.1 Creating an SQL.J iterator from a java.sql.ResultSet object

The SQLJ iterator conversion statement allows a java.sql .ResultSet object to be manipulated as an
SQLJ strongly-typed iterator object. Given a java.sql .ResultSet object rs and a strongly typed SQLJ
iterator object iter, the iterator conversion statement can be used to assign a new iterator object to iter based
on the contents of rs:

#sql iter = {CAST :rs };
NOTE 15 — Closing an iterator object created by an iterator conversion statement will also close the associated
jJava.sql .ResultSet object.

The iterator conversion statement can be used to instantiate an SQLJ strongly-typed iterator object from a
jJava.sql -.ResultSet object provided the type, name and number of columns in the

Java.sql .ResultSet object are compatible with those of the declared iterator object. See the <iterator
conversion clause> for further details.

Concepts 39

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

Once an iterator object has been created by an <iterator conversion clause>, the result of calling methods on
the original Java.sql .ResultSet object is implementation-defined.

4.3.17.2 Obtaining a java.sgl.ResultSet object from an SQLJ iterator object

Every SQLJ iterator object has a getResultSet method that returns a java.sqgl .ResultSet object repre-
sentation of its data. The getResultSet method is part of the sgl j - runtime.ResultSetlterator
interface, which is implemented by SQLJ strongly typed iterator classes (both named and positioned). It allows
query results to be processed using a java.sql .ResultSet object rather than an SQLJ iterator object.

NOTE 16 — Support for the getResultSet method is runtime implementation-defined, and is not part of Core SQLJ. See
Subclause 12.2.5.3.4, “getResultSet ()”.

4.3.17.3 Obtaining a java.sql.ResultSet object from an untyped iterator object

SQLJ does not support the direct creation of a java.sql .ResultSet object as the result of an SQLJ query.
Toobtaina java.sqgl .Resul tSet object associated with an SQLJ query, an SQLJ iterator object is populated
as the result of the query, and the getResultSet method of the iterator object is called to return a

jJava.sql _.ResultSet object, as described in the previous Subclause. In cases where the client needs only
a java.sql .ResultSet object and does not wish to process results with a strongly-typed iterator object,
a client is permitted to use an untyped ResultSetlterator object instead. An untyped ResultSetlterator object is
declared as an instance of interface sql j . runtime.ResultSetlterator.

The ResultSetlterator interface is the root interface of all SQLJ iterators and supports the getResultSet and
close methods, among others. As such, it can be used to obtain the results of an SQLJ query and later return
them to the client as a Java.sql .ResultSet object. Further, it is used to release SQLJ related resources
once the results have been processed.

An untyped ResultSetlterator object provides a convenient way to obtain the results of an SQLJ query and later
access them using a Java.sql .ResultSet object. Unlike its strongly-typed counterpart, the untyped
ResultSetlterator object does not require an additional class declaration. If using an untyped ResultSetlterator
object in an SQLJ query, translate-time type checking of the select list items is not performed.

4.3.17.4 Iterator and java.sql.ResultSet object resource management

Calling the close method of an SQLJ iterator object causes the associated java.sqgl .ResultSet object (if
any) to be closed. If an iterator object is not explicitly closed before it is garbage collected, then the finalize
method of the iterator object implicitly calls close. Iterator objects consume resources in the Java Virtual
Machine and, typically, in the SQL-environment for as long as they remain open. So, it is important to explicitly
close Iterator objects when the application is done with them rather than waiting for garbage collection.

Both SQLJ iterator objects and java.sgl .ResultSet objects respond to the close () method. When an
iterator object produces a java.sql . ResultSet object via the getResultSet () method, it is sufficient
to close only the iterator object, as this will also close the associated java.sql -.ResultSet object. However,
it is not sufficient to close only the associated java.sql .ResultSet object, as this does not cause the
containing iterator object to be closed, and therefore, resources maintained by the iterator object will not be

40 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

released until it is garbage-collected. These restrictions are true of untyped ResultSetlterator objects as well as
named and positioned iterator objects.

The isClosed method of an iterator object returns true if the close method has been called on the iterator object.
If isClosed is true, invocation of close has no effect, and the effect of invoking any other method is implemen-
tation-defined. The semantics of calling close on a java.sgl .Resul tSet object that has already been
closed is implementation-defined.

4.3.18 Multi-threading considerations

SQLJ can be used to write multithreaded applications. The SQLJ runtime supports multiple threads sharing the
same connection context. However, SQLJ programs are subject to synchronization limitations imposed by the
underlying DBMS implementation. If a DBMS implementation mandates explicit synchronization of statements
executed in a specific connection, then an SQLJ program using that implementation would require a similar
synchronization of SQL-statements.

Whereas connection contexts can be safely shared between threads, execution contexts should only be shared
if their use is properly synchronized. If an execution context is shared, the results of an SQL-statement performed
by one thread will be visible in the other thread. If both threads are executing SQL-statements, a race condition
can occur in which the results of an execution in one thread are overwritten by the results of an execution in
the next thread before the first thread has processed the original results. Furthermore, if a thread attempts to
execute an SQL-statement using an execution context that is currently being used to execute an operation in
another thread, a runtime exception is thrown. To avoid such problems, each thread should use a distinct exe-
cution context whenever an SQL-statement is executed on a shared connection context.

4.3.19 User-defined data types

SQLJ supports the manipulation of instances of user-defined data types, such as structured types and distinct
types. Instances of such data types can be retrieved into or created from host variables of an appropriate Java
type, based on type mapping information specified for a specific connection context class. Java resource bundles
are used as the mechanism for specifying type mapping information.

Type mapping is specified in one or more entries contained in a properties file. Each property entry in the file
defines a correspondence between a Java class and an SQL user-defined type. The entry may indicate that the
SQL type is a structured type or a distinct type with the keyword STRUCT or DISTINCT preceding the type

name, respectively; such an indication is optional, and is only needed to resolve ambiguities in cases where the
SQL type is required for registering OUT parameters.

Java classes used in the definition of a type mapping for structured and distinct types have to fulfill the
requirements specified in the chapter “Customized Type Mapping” of [JDBC]. In other words, they have to
implement the interface java.sql.SQLData, which is used by the SQLJ runtime implementation to supply the
newly created instance of the Java class with data from the instance of the respective SQL type.

A type map specified in a properties file can be attached to a connection context class as part of the connection
context declaration in the following way:

Concepts 41

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

#sql context Ctx with (typeMap = '‘packagename.filename'™);

The SQLJ translator and runtime will interpret the specified type map as a Java resource bundle family name,
and look for an appropriate properties or class file using the Java class path. This means that the type map can
be packaged with the rest of the SQLJ application or application module.

SQLJ applications can then define host variables or iterator objects based on the Java types that participate in
the type map.

A positioned iterator object is used in conjunction with a FETCH...INTO statement to retrieve data, including
instances of user-defined types mapped in the properties file.

In the same way, a Java variable whose type corresponds to a user-defined type can be used for the definition
of named iterator objects, as host variables, and in host expressions.

The SQLJ translator also checks for type correctness for user-defined types.

This mechanism also handles SQL type hierarchies and, correspondingly, Java class hierarchies.

4.3.20 Batch updates

Batch updates allow statements to be grouped together and then sent as a batch to the SQL-implementation for
execution using a single round trip. This feature is typically used for a series of UPDATE, INSERT, or DELETE
statements within a loop. This subclause outlines how SQLJ supports batch updates.

4.3.20.1 Batchable statements and batch compatibility

A batchable statement is a statement that is able to be grouped with one or more other statements for execution
as a batch at runtime. Such a group of batchable statements is called a statement batch, or simply batch. As
with JDBC, batching in SQLJ is an optional capability. Accordingly, whether a particular statement is batchable
or not depends on the connection and customization used to execute the statement at runtime. In general, DML,
DDL and SQL-invoked procedure calls with no OUT parameters are considered batchable.

The following types of statements are never batchable:
— Queries (single and multi row)

— Transaction control (COMMIT, ROLLBACK, SET TRANSACTION, SAVEPOINT, RELEASE SAVE-
POINT)

— Statements with OUT parameters (SQL-invoked functions, PSM assignment, SQL-invoked procedures
with outs or side-channel results, blocks with outs)

A statement is batch compatible with a particular statement batch if the statement is both batchable and com-
patible with (can be added to) the batch. Whether a particular statement is batch compatible with a particular
statement batch depends on the connection and customization used to execute the statement at runtime. For an
implementation based on [JDBC], a batchable statement with one or | Nparameters is only batchable with other
instances of the same statement. A batchable statement with no | N parameters is only batchable with other
statements with no | N parameters. However, runtime implementations that do not rely solely on [JDBC] may

42 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

additionally allow unrelated statements with | N parameters to be batched together. Any batchable statement
may potentially be batched with any other batchable statement that is created using the same connection.

Two batchable statements that are executed through different SQL-implementations (using different SQL-
connections) are never batch compatible.

4.3.20.2 Statement batching API

In SQLJ, batch update capability is enabled using the setBatching method of the ExecutionContext
class. When batching is enabled on a particular execution context object (via setBatching), then any
batchable statement encountered is deferred for batched execution. In such cases, the execution context object
is said to contain a pending statement batch. Subsequent re-execution of the statement causes the statement to
be added again to the statement batch (with possibly different host expression values). A pending statement
batch can be explicitly executed at any time using ExecutionContext.executeBatch().

In terms of the earlier definitions, if a pending statement batch exists on a particular execution context object
and a batch compatible statement is encountered, then it is added to the batch for deferred execution. A statement
is batch compatible if it is the same as all others in the statement batch. A statement batch that contains only
instances of the same statement (possibly differing only in host expression bind values) is called a homogeneous
batch. It is also possible to have a heterogeneous batch in which one or more statements differ from others in
the batch. Typically, a heterogeneous batch consists of statements that do not contain any bind expressions.

The fact that a particular statement is batchable does not mean that it is compatible with every statement batch.
The runtime connection and customization ultimately determine batch compatibility. For implementations of
[JDBC], statements with bind expressions can only be added to homogeneous batches, and heterogeneous

batches can only contain statements without bind expressions. When a batchable statement is encountered that
is not compatible with the current statement batch, then the statement batch is executed implicitly and the

statement is added to a new statement batch. Similarly, when a statement that is not batchable (such as SELECT
or COMMIT) is encountered, the statement batch is implicitly executed prior to the execution of the statement.
Implicit batch execution allows programs to use batch updates without explicitly calling executeBatch().

Note that the update counts resulting from the last implicitly executed batch can be obtained using the method
ExecutionContext.getBatchUpdateCounts().

A given execution context object can only manage one statement batch at a time. A client who wants to batch
two statements that are not batch compatible with one another shall use two distinct execution context objects.

It should be noted that explicit specification of an execution context object is not required for batch updates.
As an alternative, batching can be enabled on the execution context object contained within a particular connec-
tion context object.

4.3.20.3 Execution status and update counts

When a statement is batched instead of executed, calling ExecutionContext.getUpdateCount()
returns the constant ExecutionContext.NEW _BATCH_COUNT if a new statement batch was created, or
ExecutionContext.ADD BATCH_COUNT if the statement was added to the pending statement batch.
Checking for this constant is a reliable way to determine whether the last statement was batched, and if so,
whether it was added to the pending batch or started a new batch.

Concepts 43

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

When a pending statement batch exists, calling ExecutionContext.executeBatch() executes the
batch. The update count is set to ExecutionContext.EXEC_BATCH_COUNT. An array of intis returned
reflecting the individual update counts of each statement in the batch. The array is ordered according to the
order in which statements were added to the batch. The update count array for the last batch executed can also
be obtained using the method ExecutionContext.getBatchUpdateCounts(). This is particularly
useful when the batch was updated implicitly rather than explicitly. The array returned by getBatchUpdate-
Counts() reflects the result of the last successful implicit or explicit call to executeBatch (). Itis ordered
according to the order in which commands were inserted into the batch, and each element either contains an
update count, or the value -2 as a generic success indicator, or the value -3 as a generic failure indicator. If a
failure occurs during batch execution that prevents the remainder of the batch to be executed, then the array
returned may also be shorter than the original batch and—in this case—each element shall contain either a hon-
negative update value or the value -2 as a generic success indicator. The array is not updated when the call to
executeBatch() results in an exception. The array is null if no batch has yet been completed.

4.3.20.4 Program semantics and exceptions

When a statement batch is executed using executeBatch(), the statements contained in the batch are executed
in order. If execution of one of the statements results in an exception, the remaining statements are not executed
and the exception is thrown by executeBatch(). Note, however, that the exception does not rollback the
statements that were executed earlier in the batch. When appropriate, the exception is an instance of
Java.sql .BatchUpdateException, which is a class that extends java.sql . SQLException and
adds information about the statements in the batch that completed successfully. If a statement batch is implicitly
executed as a result of executing another statement, and the execution of the batch results in an exception, the
statement that triggered the batch execution is not executed.

Because exceptions can happen in the middle of a batch, it is generally recommended that autocommit is turned
off when using batch updates. Disabling autocommit allows the application to decide whether or not to commit
the transaction in the event that an error occurs and some of the commands in a batch fail to execute.

As implied by the above rules, the execution semantics of programs that use batch updates are somewhat dif-
ferent than programs that do not. These differences are summarized in the following list.

— Assingle exception is thrown for the batch of statements, not each individual statement.

— Once an exception occurs, the rest of the pending statements in the statement batch are not executed. There
is no convenient way to handle the exception and continue execution of the rest of the statements.

— Statement execution is deferred until the batch is executed rather than when the statement is first encountered.
When a batch is implicitly executed during the execution of another statement, an exception resulting from
the batch execution may be appear to be thrown as the result of the current statement's execution.

When a batch is implicitly executed by another statement, the batch is executed before the statement is executed,
but after I N parameters have been evaluated and passed to the statement. Deferring batch execution until after
I N parameters have been bound allows the runtime engine to collect as much information as possible before
determining whether a statement is compatible with a particular batch. This allows, for example, positioned
updates using WHERE CURRENT OF to be batched if the input iterator object is the same iterator object in
each case.

44 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

4.3.20.5 Batch cancellation and disabling

A pending statement batch can be canceled before execution using the method ExecutionContext.can-
cel (). Once cancel () has been called, the pending batch is cleared and can no longer be executed. The
next batchable statement encountered will be added to a new statement batch.

It is the responsibility of the client to execute or cancel a pending statement batch before discarding the execution
context object that contains the batch. The execution context object's finalizer will not implicitly execute or
cancel a pending statement batch.

Batching can be disabled using the method ExecutionContext.setBatching(false). Disabling
batching in this way means that further statements will not be added to the pending batch. However, the pending
batch, if any, is not affected. It will be executed by the next implicit or explicit call to executeBatch(), or
canceled with a call to cance l (), as usual. A client can use the method ExecutionContext. isBatch-
1ng () to determine whether or not batching is currently enabled on a particular execution context object. Note
that this method is used only to determine whether batching is currently enabled, but not whether a pending
batch exists.

4.3.20.6 Specification of a batching limit

The method ExecutionContext.setBatchLimit() permits users to specify that calls to execute-
Batch() should be performed implicitly. The batch limit may be given in the following ways:

— As a positive integer n — in this case, the executeBatch() method will be executed whenever the
current batch size reaches n.

— Asaconstant ExecutionContext.UNLIMITED_BATCH—in this case, no implicit call to execute-
Batch will be performed, unless one of the conditions for implicit batch execution discussed earlier is
met.

— As a constant ExecutionContext.AUTO_BATCH — in this case, the executeBatch() method
will be executed at a point that is chosen by the SQLJ runtime implementation. The point when the current
batch is executed implicitly should be chosen so that out-of-memory conditions due to batching are reason-
ably avoided.

By default, ExecutionContext objects are initialized to a batch limit of UNLIMITED_BATCH. By permitting
users to specify a batch limit, an SQLJ program can very easily be changed to a batching SQLJ program.

Consider the scenario when one Java SQL-invoked procedure uses SQLJ to call another Java SQL-invoked
procedure, which in turn uses SQLJ to execute another SQL-statement, and both execute in the same Java
Virtual Machine with the same execution context object (often associated with the default connection context
object). The behavior for batching in this situation conforms to the existing behavior for similar operations.

The batching attribute of the execution context object (set via ExecutionContext.setBatching())
behaves like the other execution control attributes (max fields size, max rows, query timeout). Once set, it
affects the next SQLJ executable clause to start executing regardless of whether the next SQLJ executable
clause is made at the same call level, in a recursive call level, or in an outer call level.

A pending batch is treated in the same way that pending side-channel results are. Just as pending side-channel
results are implicitly cleaned up and closed when another SQL-statement is encountered or an outer call completes
execution, pending batches are implicitly executed when another SQL-statement is encountered or an outer
call completes execution. As an example, suppose batching is enabled and we execute a non-batchable SQL-

Concepts 45

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

statement that results in a call to a Java SQL-invoked procedure, which in turn performs some SQL-statements
that are added to a new batch. If the called Java SQL-invoked procedure returns without executing the batch,
then the originating SQL-statement will implicitly execute the batch when execution control is returned. Implicit
batch execution also happens when control returns from any batch execution (via ExecutionContext.exe-
cuteBatch()) since statements contained in a batch could themselves add statements to a new batch when
executed.

4.3.21 SQLJ language elements

Elements of the SQL language are treated in various ways by SQLJ.

— Executable SQL statements: This part of ISO/IEC 9075 directly adopts the executable SQL-statements
(most of the <SQL schema statement>s, <SQL data statement>s, and <SQL transaction statement>s) that
manipulate SQL data, definitions, and transactions, substantially as they are specified in embedded SQL
and in SQL's module language.

— Dynamic SQL: SQLJ does not directly support dynamic SQL, which is handled separately by JDBC.

— Declarations: This part of ISO/IEC 9075 replaces <declare cursor> and <host variable definition> by
declarations of Java types for declaring iterator classes and other data items that have SQL attributes.

— Program control: The <embedded exception declaration>, <SQL session statement>s, <SQL connection
statement>s, and <SQL diagnostic statement>s that serve to knit together SQL and host language environ-
ments by managing exceptions, SQL-connections, and diagnostics are omitted in SQLJ. Java directly
expresses the types of exceptions, SQL-connections, and diagnostics, and can manipulate those objects
using standard programming techniques.

4.3.21.1 <cursor name>

In SQL language, <cursor name> is a simple identifier. The equivalent SQLJ construct is <iterator host
expression>. <iterator host expression> is a Java expression, the result type of which shall be an instance of a
generated iterator class (that is, a generated named iterator class or a generated positioned iterator class), or a
subclass of such a class.

4.3.21.2 SQL-schema, SQL-data, and SQL-transaction statements

The SQL-schema, SQL-data, and SQL-transaction statements are treated as SQLJ clauses in this part of ISO/IEC
9075 and are consequentially treated as ordinary embedded SQL-statements.

4.3.21.3 <SQL dynamic statement>

The categories of <SQL dynamic statement> and <dynamic declare cursor> are omitted from this part of
ISO/IEC 9075. In addition, the dynamic statements PREPARE, DESCRIBE, EXECUTE, DEALLOCATE,

46 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

GET DESCRIPTOR, and SET DESCRIPTOR are omitted from this part of ISO/IEC 9075 since, in Java
application programs, dynamic operations are subsumed by [JDBC].

4.3.21.4 <SQL connection statement>

The <SQL connection statement> is replaced in this part of ISO/IEC 9075 by direct Java construction and
manipulation of connection objects (defined by the interface sql j - runtime.ConnectionContext).
That enables the capability for SQLJ programs to open multiple SQL-connections simultaneously to the same
or different SQL-servers by explicit use of connection objects in SQLJ clauses.

4.3.21.5 <host variable definition>

Embedded SQL specifies that <host variable definition>s are contained in special program sections bound by
EXEC SQL BEGIN DECLARE SECTION and EXEC SQL END DECLARE SECTION. This part of ISO/IEC
9075 does not define a <host variable definition> section. Any Java variable, parameter, or Java field (of an
object) is permitted to be used as a host variable.

This part of ISO/IEC 9075 extends traditional embedded SQL support by allowing Java host expressions to
appear directly in embedded SQL-statements. Host expressions are prefixed by a colon (:) followed by an
optional parameter mode identifier (IN, OUT, INOUT) followed by a parenthesized expression clause. An
expression clause contains a Java expression that either evaluates to a single value (in the case of IN mode) or
is a Java I-valued expression (in the case of an OUT or INOUT mode).

The evaluation of host expressions does have side effects in a Java program as they are evaluated by the Java
Virtual Machine rather than the SQL-server. Host expressions are evaluated left to right within the SQL-statement
prior to submission to the SQL-server.

4.3.21.6 <embedded exception declaration>

This part of ISO/IEC 9075 does not define an <embedded exception declaration>. In [ISO9075-2], the
<embedded exception declaration> has these forms:

EXEC SQL WHENEVER exception_condition GOTO program_label;
EXEC SQL WHENEVER exception_condition CONTINUE;

The Java language does not support any form of “go to” statement; therefore the direct transliteration of the
<embedded exception declaration> into Java is not possible. Instead, Java provides a try...catch statement that
associates a handler for certain exceptions in the Java block in which those exceptions might be raised.

NOTE 17 — In addition, Java has well-developed rules for declaring and handling exceptions; thus, the <embedded exception
declaration> does not add value. Other object oriented languages have facilities for declaring and handling exceptions, similar to
those in Java.

JDBC defines an exception, globally named java.sqgl . SQLException, as the superclass of exceptions
that are returned from SQL. This part of ISO/IEC 9075 follows that precedent, to facilitate interoperability
between this part of ISO/IEC 9075 and [JDBC].

Concepts 47

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

4.3.21.7 <SQL diagnostics statement>

This part of ISO/IEC 9075 follows the [JDBC] methodology for handling return information traditionally found
in the diagnostics areas of SQL. Abnormal termination and certain runtime errors (e.g., NULL retrieval to non-
nullable datatypes) are processed using exception handling. Other status information (e.g., update count) are
processed by using methods on the connection context and execution context objects.

4.3.21.8 Cursor declaration

The <declare cursor> statement of SQL language declares a single name for both a query and its associated
result set in the host program. This part of ISO/IEC 9075, by contrast, distinguishes between a query and the
result set that it returns. If an SQLJ clause containing a query is evaluated, it returns an iterator object containing
the result set of rows selected by that query. The type of an iterator object is a Java class that encodes the
number and types (and names) of columns in the result set, allowing type checking of operations on an iterator
object.

Beneath the layer of abstraction provided by SQLJ iterators, an SQL-server creates and manipulates cursors.
The implicit cursor of an iterator UC is the cursor manipulated by an SQL-server when methods are invoked
against the corresponding instance of an object, the type of which implements sqlj . runtime.Result-
Setlterator. Theimplicit <declarecursor> of an iterator UC is the <declare cursor> effectively performed
by an SQL-server as a result of the execution of an <assignment clause> whose <assignment spec clause>
immediately contains a <query clause>.

When <assignment spec clause> immediately contains <query clause>, the <query clause> provides the implicit
<declare cursor>'s <query expression>. An implicit <declare cursor>'s <cursor returnability> is always WITH
RETURN. The <Lval expression> LV immediately contained in <assignment clause> either refers to an object
of a generated iterator class or to an object the type of which implements sql j . runtime .ResultSetlt-
erator. When LV refers to an object of a generated iterator class, the associated <iterator declaration clause>'s
<declaration with list> specification of the iterator's sensitivity, holdability, and updateColumns respectively
provide the implicit <declare cursor>'s <cursor sensitivity>, <cursor holdability>, and update <column name
list> specifications. In addition, <cursor scrollability> is implicitly SCROLL if the associated <iterator decla-
ration clause>'s <interface list> contains the <predefined interface class> sqlj . runtime.Scrollable;
otherwise, it is implicitly NO SCROLL.

4.3.21.9 Input parameters to SQL-statements

This part of ISO/IEC 9075 extends the approach of SQL language for input parameters to SQL-statements by
allowing generalized host expressions to appear wherever host variables are allowed to appear.
4.3.21.10Extracting column values from SQLJ iterators

SQLJ supports two approaches to accessing column values from iterator objects: by position and by name. The
<fetch statement> of SQL accesses columns only by position. In the following example, the first column in the
row is assigned to varl, the second to var2, and the third to var3:

48 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

EXEC SQL FETCH cursorl INTO :varl,:var2,:var3;

SQLJ supports a modified version of the FETCH statement. It also supports access to columns by name, through
generated methods with the names and types of the columns.

4.3.21.11<open statement> and cursors

SQL has an <open statement> to open and re-open its named cursors that represent both a query and its set of
result rows, (that is, its result set):

EXEC SQL OPEN cursorl;
This part of ISO/IEC 9075 does not provide an OPEN operation to open or re-open iterator objects.

This part of ISO/IEC 9075 does not name a static query nor treat it as data. Instead, a query returns an iterator
object that is manipulated as data. An application can, in effect, name a query by writing it in an SQLJ clause
in the body of a method. Methods are invoked by their names, and can return iterator objects as their values.

4.3.22 SQLJ, JDBC, and SQLExceptions and SQLWarnings

In the text of other parts of ISO/IEC 9075, the normal or abnormal termination of statement execution and
expression evaluation is indicated by stating that a "condition™ is "raised", followed by a statement of what
specific condition is raised (e.g., "a completion condition is raised: no data" or "an exception condition is raised:
data exception — division by zero.").

This part of ISO/IEC 9075, because of its close relationship to the Java programming language and to [JDBC],
uses different terminology. In this part of ISO/IEC 9075, many abnormal terminations are indicated by stating
that an "SQLEXxception condition" is "thrown", followed by a statement of the specific condition class and
subclass (e.g., "an SQLEXxception condition is thrown: OLB-specific error — unsupported feature™).

In other situations, the statement is made that "an exception is thrown" or "throws an exception", with no
specification of what particular exception is thrown. The absence of that specification is caused by SQLJ's
dependence on [JDBC]. When that sort of statement is made, the exception that is thrown is determined by the
JDBC driver vendor, and not by ISO/IEC 9075. In practice, JDBC drivers specify the SQLSTATE, and other
pertinent details, in the SQLWarning or SQLEXxception objects resulting from a completion or exception con-
dition originating in an SQL-implementation. However, when the completion or exception condition originates
within the JDBC driver itself, details of the resulting SQLWarning or SQLEXxception objects are implementation-
defined.

4.3.23 Profile generation and naming

An SQLJ profile represents the SQL-statements performed on a particular connection context class within a

particular source file. Every <executable clause> in an SQLJ program is associated with exactly one <connection
context> (which might be implicit or explicit). <executable clause>s are grouped within a program according
to the class of the associated <connection context> and this grouping is reflected in the profile. If the number

Concepts 49

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

of <connection context> classes associated with <executable clause>s in an SQLJ program is greater than one,
then a distinct profile is created for each <connection context> class.

The generated name of a profile is composed, textually, of parts, with no additional separators occurring between
those parts. Its parts include:

— An optional representation of its associated package that will, if specified, be followed by a period.

— The original source file name without its filename extension.

— The predefined text string'_SJProfile'.

— A profile identification number that is unique among profile identification numbers in the source profile.

Informally presented in BNF form, this might appear as follows:

[packagePart<period>]FfilenamePart_SJProfileidentificationNumber
where:

— packagePart is the package name defined by the package declaration in the original source file. If there is
no package declaration in the original source file, then this component of the name is omitted.

— filenamePart is the name of the original source file, without a filename extension. If the original source is
not associated with a file that has a logical name, then filenamePart is the name of the first public class
appearing in the source, or, in the absence of any public classes, the first class appearing in the source.

— identificationNumber is a non-negative integer used to uniquely identify the profile. A single source file
can produce more than one profile. In such cases, the profiles produced are numbered consecutively,
starting with 0 (zero). If a source file produces only one profile, identificationNumber is 0 (zero).

This naming convention enables easy recognition of profile files and determination of the source file with which
they are associated.

4.3.24 SQLJ application packaging

After development of an SQLJ application has been completed, the application might be packaged for deployment
as a JAR file. JAR (Java Archive) is a platform-independent file format specified by Java that aggregates many
files into one. SQLJ applications are packaged as JAR files in order that they can be inspected and modified
as a unit by profile customization utilities.

Every JAR file includes a manifest file that describes the contents of the JAR. For each SQLJ profile in the
application, a section is created in the manifest file contained in the JAR file. The manifest file is used by the
SQLJ customization utilities to locate and load the appropriate application profiles. The SQLJ profile section
of the manifest file has entries that specify the name of the profile file. The name of a profile is composed,
textually, of parts with no additional separators between those parts. Its parts include:

— A specification of the profile's package, given in path format.
— A directory separator '/' (<solidus>).
— The profile name without its filename extension.

— A period.

50 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ
— The class or ser filename extension.

Informally presented in BNF form, this might appear as follows:

profileName ::=
pathPart<solidus>profileFilePart<period>{ class | ser }

And, when used in the JAR manifest;
— Name: profileName SQLJProfile: TRUE
where:

— pathPart is the package name of the profile in path format, as specified by the manifest file format for
“Name” headers.

— profileFilePart is the name of the profile.

— If the profile exists in class file format, then the name has the extension .class. Otherwise, if the profile
exists as a serialized object, then the name has extension .ser. Only two file formats (.class and .ser) are
currently supported. Other file formats might be added in the future. Note that the customization process
will modify the contents of an existing profile such that any customized profile will exist in serialized
format only.

4.3.25 Profile customizer interface

A profile customizer is a JavaBean component, as defined by [JavaBeans], that customizes a profile to allow
implementation-defined features, extensions and/or behavior. A class is a profile customizer if it implements
the sqlj.runtime.profile.util.ProfileCustomizer interface, provides an accessible parameterless constructor,
and conforms to the JavaBeans API to expose its properties.

A profile customizer implements the following methods:

— acceptsConnection

publ i ¢ bool ean accept sConnecti on(java. sql . Connecti on conn)

Returns true if this customizer is able to customize profiles using the passed java.sgl .Connection
object, and returns false otherwise. A null connection indicates that customization will be performed
“offline” (without a connection).

— customize

publ i ¢ bool ean custom ze(sqlj.runtine.profile.Profile profile,
j ava. sql . Connecti on conn,
sqlj.framework. error. ErrorlLog | og)

Customizes the passed profile. If the profile was modified in the process of customization, then true is
returned. Otherwise, false is returned.

See Clause 14, “sqlj.runtime.profile.util.ProfileCustomizer”, for further details on these methods and an overview
of the class usage.

Concepts 51

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

4.3.26 Customization interface

Each profile object contains a number of Customization objects. Each Customization is an implementation-
specific object implementing the sqlj.runtime.profile.Customization interface that is able to create an
sqlj.runtime.profile.ConnectedProfile object. Customization objects implement two methods:

1) acceptsConnection

public boolean acceptsConnection (java.sql.Connection conn)

Returns true if this Customization can create a connected profile object for the given java.sql .Con-
nection object, and returns false otherwise.

2) sqlj.runtime.profile.getProfile

public sqlj.runtime.profile.ConnectedProfile getProfile (
java.sqgl .Connection conn,
sqlj.runtime.profile.Profile baseProfile)
throws SQLException

Returns a connected profile for the baseProfile on the given java.sql . Connection object.

Documentation for this interface is specified in sqlj.runtime.profile. Customization.

4.3.26.1 Customization usage

The getConnectedProfile method of a profile object is called by the code generated for an <executable clause>.
For each <executable clause>, except those containing a <fetch statement>, getConnectedProfile is used to
obtain a connected profile object. The connected profile object creates a RTStatement object that is used to
execute the <executable clause>'s SQL-statement.

The getConnectedProfile method is implemented using the customization objects that are currently registered
with the profile, as follows.

1) Let this represent the profile object on which getConnectedProfile is invoked.

2) Let C represent the Java.sql .Connection object passed to the getConnectedProfile method.
3) Let k represent the number of customization objects currently registered with the profile.

4) Letirepresent a number ranging from 1 (one) to k.

5) For each registered customization object RC;:

a) Define that RC; accepts C if the result of invoking the acceptsConnection method on RC; passing
C as an argument returns true.

b) /7 1f RG accepts C, then
// return the connected profile for RG
if RG . acceptsConnection(C) then
return RG . getProfile(C, this);

52 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

6) Ifnoregistered Customization object accepts the Java.sgl . Connection object, then return the default
ConnectedProfile object.

The default connected profile is implemented using calls to the JDBC API. This means that, by default, SQLJ
applications will work with any compliant JDBC driver and therefore do not require a custom runtime imple-
mentation on the part of a particular implementation if a JDBC driver exists.

4.3.26.2 Customization registration
Customization objects can be registered, deregistered, and enumerated with a profile. The class sqglj.runtime.pro-
file.Profile supports the following Customization object-related methods:

— registerCustomization

public void registerCustomn zati on(Custoni zati on custom zati on)

Registers a Customization object for this profile object. The Customization object is added after all currently
registered Customization objects.

— registerCustomization

public void registerCustomni zation
(Cust om zati on newCust om zati on,
Cust omi zati on next Cust omi zati on)

Registers a Customization object for this profile object. The new Customization object is added to the list
just prior to the next Customization object argument.

— replaceCustomization

public void repl aceCustom zation
(Custom zati on newCust om zati on,
Cust om zati on ol dCustoni zati on)

Replaces a Customization object registration for this profile object. The new Customization object is added
to the list in place of the old Customization object argument. The new Customization object retains the
position of the old Customization object.

— deregisterCustomization

public void deregisterCuston zati on(Custom zation custom zation)
Drop a Customization object from the profile's list.

— Enumeration

public Enuneration get Custom zations()
Returns an enumeration of all Customization objects currently registered with the profile object.
See Clause 13, “Package sqlj.runtime.profile”, for further details on these methods.

Customization objects are serializable. This means that, once registered with a profile object, they are stored
and restored with the profile object. Serialization allows the profile objects associated with an SQLJ application
to be loaded at any time. Once loaded, any number of customization objects can be registered with the profile

Concepts 53

IWD 9075-10:201?(E)
4.3 Introduction to SQLJ

object. The profile object and its registered customization objects can then be reserialized to persistent storage.
When the SQLJ application is actually run, all the customization objects that were previously registered with
the profile object are also loaded and used to determine what connected profile object should be used to execute

the SQL-statements.

54 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
5.1 <SQL terminal character>

5 Lexical elements

This Clause modifies Clause 5, “Lexical elements”, in ISO/IEC 9075-2.

5.1 <SQL terminal character>

This Subclause modifies Subclause 5.1, “<SQL terminal character>"’, in ISO/IEC 9075-2.

Function

Define the terminal symbols of the SQL language and the elements of strings.

Format

<SQL special character> ::=
11 All alternatives from 1SO/1EC 9075-2
| <number sign>

<number sign> ::=
#

Syntax Rules

1) |Insert this SR| If <SQL special character> is not contained in an <embedded SQL Java program>, then
<SQL special character> shall not immediately contain <number sign>.

2) |Insertthis SR|If the character set SQL_TEXT does not include <number sign>, then <number sign> shall
be immediately contained in an <SQL prefix> that is contained in an <embedded SQL Java program>.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

Lexical elements 55

IWD 9075-10:201?(E)
5.2 <token> and <separator>

5.2 <token>and <separator>

This Subclause modifies Subclause 5.2, “<token> and <separator>"’, in |SO/IEC 9075-2.

Function

Specify lexical units (tokens and separators) that participate in SQL language.

Format

<comment> ::=
11 All alternatives from I1SO/IEC 9075-2
| <Java comment>

<Java comment> ::=
<Java comment introducer> [<comment character>...] <newline>

<Java comment introducer> ::=
<solidus> <solidus>

Syntax Rules

1) |Insert this SR| There shall be no <separator> separating the first <solidus> and second <solidus> of a
<Java comment introducer>.

2) |Insert this SR|If a <comment> is contained in an <embedded SQL Java program>, then
Case:

a) If the <comment> is contained in a <statement spec clause> or an <assignment spec clause> immedi-
ately contained in an <SQLJ specific clause> and is not contained in an <embedded Java expression>,
then it shall be a <simple comment> or a <bracketed comment>.

b) Otherwise, the <comment> shall be either a <bracketed comment> or a <Java comment>.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

56 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
6.1 <value specification> and <target specification>

6 Scalar expressions

This Clause modifies Clause 6, ““Scalar expressions”, in | SO/IEC 9075-2.

6.1 <value specification> and <target specification>

This Subclause modifies Subclause 6.4, ““<value specification> and <target specification>"", in ISO/IEC
9075-2.

Function

Specify one or more values, host parameters, SQL parameters, dynamic parameters, or host variables.

Format

No additional Format items.

Syntax Rules

1) |Insert this SR|If <embedded variable specification> is contained in an <embedded SQL Java program>,
then <embedded variable specification> shall not immediately contain <indicator variable>.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

Scalar expressions 57

IWD 9075-10:201?(E)

(Blank page)

58 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
7.1 <routine invocation>

7 Additional common elements

This Clause modifies Clause 10, ““Additional common elements’, in |SO/IEC 9075-2.

7.1 <routine invocation>

This Subclause modifies Subclause 10.4, ““<routine invocation>"’, in | SO/IEC 9075-2.

Function

Invoke an SQL-invoked routine.

Format

No additional Format items.

Syntax Rules

1) [Replace SR 9)g)iii)2)| Case:

a) If XA isan <embedded variable name> contained in an <embedded SQL Java program>, then P; shall
be SQLJ output assignable to XA;.

b) Otherwise, if XA; is an <embedded variable specification> or a <host parameter specification>, then
P; shall be assignable to XA;, according to the Syntax Rules of Subclause 9.1, “Retrieval assignment”,
with XA; as TARGET and P; as VALUE.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

Additional common elements 59

IWD 9075-10:201?(E)

(Blank page)

60 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
8.1 <embedded SQL host program>

8 Embedded SQL

This Clause modifies Clause 21, “Embedded SQL™, in ISO/IEC 9075-2.

8.1 <embedded SQL host program>

This Subclause maodifies Subclause 21.1, “<embedded SQL host program>"’, in ISO/IEC 9075-2.

Function

Specify an <embedded SQL host program>.

Format

<embedded SQL host program> ::=
11 All alternatives from ISO/1EC 9075-2
| <embedded SQL Java program>

<statement or declaration> ::=
11 All alternatives from I1SO/1EC 9075-2
| <SQLJ specific clause>

<SQL prefix> ::=
11 All alternatives from ISO/1EC 9075-2
| <number sign>sqgl !! "sql® shall be lowercase

<embedded variable name> ::=
11 All alternatives from ISO/IEC 9075-2
| <embedded Java expression>

NOTE 18 — The <SQL prefix> for Java was chosen to be “#sqgl” since it is not a valid Java identifier, and as such cannot conflict
with other Java syntax.

Syntax Rules
1) |Replace SR 2)|Case:

a) An <embedded SQL statement> or <embedded SQL MUMPS declare> that is contained in an
<embedded SQL MUMPS program> shall contain an <SQL prefix> that is “<ampersand>SQL<left
paren>". There shall be no <separator> between the <ampersand> and “SQL” nor between “SQL”
and the <left paren>.

b) An<embedded SQL statement> that is contained in an <embedded SQL Java program> shall contain
an <SQL prefix> that is “<number sign>sql”. There shall be no <separator> between the <number
sign>and “sql” and “sqgl” shall be specified using lowercase letters.

Embedded SQL 61

IWD 9075-10:201?(E)
8.1 <embedded SQL host program>

2)

3)

4)

5)

6)

¢) An<embedded SQL statement>, <embedded SQL begin declare>, or <embedded SQL end declare>
that is not contained in an <embedded SQL MUMPS program> or an <embedded SQL Java program>
shall contain an <SQL prefix> that is “EXEC SQL".

[Insert after SR 3)c)| An <embedded SQL statement> contained in an <embedded SQL Java program>,
shall contain an <SQL terminator> that is a <semicolon>.

NOTE 19 — |Replace Note 557 | With the exception of <embedded SQL Java program>, which does not support <embedded
SQL declare section>s, there is no restriction on the number of <embedded SQL declare section>s that may be contained in
an <embedded SQL host program>.

Insert this SR | Case:

a) If <statement or declaration> is contained in an <embedded SQL Java program>, then <statement or
declaration> shall immediately contain an <SQLJ specific clause>.

b) Otherwise, <SQLJ specific clause> shall not be specified.

Insert this SR | Case:

a) If <embedded variable name> is contained in an <embedded SQL Java program>, then <embedded
variable name> shall immediately contain an <embedded Java expression>.

b) Otherwise, <embedded Java expression> shall not be specified.

[Replace SR 16)] Case:

a) If <embedded Java expression> is contained in an <embedded SQL Java program>, then <expression>s
immediately contained in <embedded Java expression> shall conform to scoping rules specified by
[Java].

b) Otherwise, any <host identifier> that is contained in an <embedded SQL statement> in an <embedded
SQL host program> shall be defined in exactly one <host variable definition> contained in that
<embedded SQL host program>. In programming languages that support <host variable definition>s
in subprograms, two <host variable definition>s with different, non-overlapping scope in the host
language are to be regarded as defining different host variables, even if they specify the same variable
name. That <host variable definition> shall appear in the text of the <embedded SQL host program>
prior to any <embedded SQL statement> that references the <host identifier>. The <host variable
definition> shall be such that a host language reference to the <host identifier> is valid at every
<embedded SQL statement> that contains the <host identifier>.

[Replace SR 18)] Case:

a) Each <expression> immediately contained in an <embedded Java expression> that is contained in an
<embedded SQL Java program> has an accessible host language data type provided by the Java lan-
guage environment. For predefined host language data types, an equivalent SQL <data type> can be
found by first looking up the host language data type in Table 2, “SQLJ type properties”; the corre-
sponding java.sql . Types-defined constant can then be used with the default mapping
Java.sql . Types to SQL <data type>s, as defined by [JDBC].

** Editor's Note (number 1) **

Should the references to <data type> really be <host parameter data type>? See WG3:KOA-030/DM32.2-2011-00098 and
Possible Problem |[OLB-033 |

62 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
8.1 <embedded SQL host program>

b) Otherwise, a <host variable definition> defines the host language data type of the <host identifier>
and the equivalent SQL <host parameter data type>, as specified in the operative embedded language
Subclause.

7) |Replace SR 19)] If <embedded SQL host program> does not contain an <embedded SQL Java program>,
then <embedded SQL host program> shall contain a <host variable definition> that specifies SQLSTATE
as the <host identifier>.

8) \Replace the first paragraph of SR 21)| Given an <embedded SQL host program> H that does not contain
an <embedded SQL Java program>, there is an implied standard-conforming SQL-client module M and
an implied host language program P derived from H. The derivation of the implied program P and the
implied <SQL-client module definition> M of an <embedded SQL host program> H effectively precedes
the processing of any host language program text manipulation commands such as inclusion or copying
of text.

9) \Replace the lead text of SR 22)| For the <embedded SQL host program> H that does not contain an
<embedded SQL Java program>, M is derived from H as follows:

10) \Replace the lead text of SR 23)| For the <embedded SQL host program> H that does not contain an
<embedded SQL Java program>, P is derived from H as follows:

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

Embedded SQL 63

IWD 9075-10:201?(E)
8.2 <embedded SQL Java program>

8.2 <embedded SQL Java program>

Function

Specify an <embedded SQL Java program>.

Format

<embedded SQL Java program> ::=
11 See the Syntax Rules.

Syntax Rules

1) An<embedded SQL Java program> is a compilation unit that consists of Java text and SQL text. The Java
text shall conform to [Java]. The SQL text shall consist of one or more <embedded SQL statement>s.

Access Rules

None.

General Rules

None.

Conformance Rules

1) Without Feature JOO1, “Embedded Java”, conforming SQL language shall not specify an <embedded SQL
Java program>.

64 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
9.1 Naming runtime library components

9 SQLJ reserved names

This Subclause describes the names reserved for the SQLJ standard runtime and reference implementation
components, and the names reserved by the SQLJ translator for naming temporary variables, generated classes,
and resource files.

9.1 Naming runtime library components

The 'sql j' package name and any subpackages thereof (for example, 'sql j - runtime’) are reserved for the
use of the SQLJ standard runtime and reference implementation classes. Runtime library components associated
with implementation-specific translator and customizer implementations shall use the Java-specified package
naming conventions to avoid conflict with the libraries of the SQLJ reference implementation and other
implementations.

The effect of violating SQLJ's reserved package name space is implementation-dependent.

9.2 Temporary variable names

An SQLJ translator replaces each occurrence of an <executable clause> with a generated Java statement block,
which may contain a number of temporary variable declarations. The name of any such temporary declaration
will include the prefix __sJT_. The following declarations are examples of those that might occur in an SQLJ-
generated statement block.

int _ sJT_index;
Object __ sJT key;
sqlj.runtime.profile.RTStatement __ sJT_stmt;

The string “__sJT_" is a reserved prefix for SQLJ-generated variable names. The effect of using this string as
a prefix for any the following is implementation-dependent:

1) host variable names.
2) Names of variables declared in blocks that include executable SQL-statements.
3) Names of parameters to methods that contain executable SQL-statements.

4) Names of Java fields in classes that contain executable SQL-statements, or the subclasses or enclosed
classes of which contain executable SQL-statements.

SQLJ reserved names 65

IWD 9075-10:201?(E)
9.3 Class and resource file names

9.3 Class and resource file names

9.3.1 Introduction

For each file translated by SQLJ, a number of internal classes and resource files might be generated as part of
the SQLJ translation. The name of every such class and resource file has a prefix composed of the name of the
original input file followed by the string “_SJ”.

9.3.2 Generated classes

SQLJ internal classes are classes created during SQLJ translation for internal use by generated code. The input
to the translation process should not contain references to SQLJ internal classes. SQLJ declared classes are
classes created during SQLJ translation that are explicitly named and declared by the SQLJ class declaration
constructs <connection declaration clause> and <iterator declaration clause>. The input to the translation process
is allowed to contain references to SQLJ declared classes.

All generated classes appear in the same package as is declared in the original input file. Note that declared
classes might themselves declare internal classes.

SQLJ internal classes might appear at the end of the translated input file, or might appear in a new Java file
created during SQLJ translation. In the case of newly created Java files, the filename is the same as the short
name of the generated internal class, and has the .java extension.

The effect of declaring a top-level class with a name of the form a_SJb where a is the name of an existing class
included in the SQLJ application and b has the form of a Java identifier is implementation-dependent. If the
name of a file included with the application has the same format as names of files that might be generated by
SQLJ, the effect is implementation-dependent.

9.3.3 Resource files and profiles
An SQLJ translator may generate a number of resource files to store information used by SQLJ generated code
that is not conveniently represented as a Java class.

Resource files are named using the same rules as defined above for files containing generated internal classes;
every resource filename starts with the name of the original input file name followed by the string “_SJ”. See
Subclause 4.3.23, “Profile generation and naming”, for further details on names used for SQLJ profiles.

If the name of a file included with the application has the same format as the names that might be generated
by the SQLJ implementation as the names of resource files, the effect is implementation-dependent.

66 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
10.1 <modifiers>

10 Common subelements

10.1 <modifiers>

Function

Represents valid Java class modifiers composed of Java class modifier keywords (e.g., static, public, private,
protected, etc.), as defined by [Java]. <modifiers> represent one or more Java class modifier keywords (e.g.,
static public).

Format

<modifiers> ::=
11 See the Syntax Rules

Syntax Rules

1) <modifiers> specifies one or more Java class modifier keywords as defined by [Java].

Access Rules

None.

General Rules

None.

Conformance Rules

None.

Common subelements 67

IWD 9075-10:201?(E)
10.2 <java class name>

10.2 <java class name>

Function

Identify a valid Java class name as defined by [Java].

Format

<java class name> ::=
11 See the Syntax Rules

Syntax Rules

1) <java class name> specifies a valid Java class name, as defined by [Java].

Access Rules

None.

General Rules

None.

Conformance Rules

None.

68 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
10.3 <javaid>

10.3 <javaid>

Function

Identify a valid Java variable as defined by [Java].

Format

<java id> ::=
11 See the Syntax Rules

Syntax Rules

1) <java id> specifies a valid Java variable, as defined by [Java].

Access Rules

None.

General Rules

None.

Conformance Rules

None.

Common subelements 69

IWD 9075-10:201?(E)
10.4 <java datatype>

10.4 <java datatype>

Function

Identify a valid Java data type as defined by [Java].

Format

<java datatype> :@:=
11 See the Syntax Rules

Syntax Rules

1) <java datatype> specifies a valid Java data type, as defined by [Java].

Access Rules

None.

General Rules

None.

Conformance Rules

1) Without Feature JO08, “Datalinks via SQL language”, conforming SQL language shall not contain a <java
datatype> that specifies Java.net._URL.

2) Without Feature JO10, “XML via SQL language”, conforming SQL language shall not contain a <java
datatype> that specifies java.sql . SQLXML.

70 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
10.5 <java constant expression>

10.5 <java constant expression>

Function

Identify a valid Java constant expression as defined by [Java].

Format

<java constant expression> ::=
11 See the Syntax Rules

Syntax Rules

1) <java constant expression> specifies a valid Java constant expression, as defined by [Java].

Access Rules

None.

General Rules

None.

Conformance Rules

None.

Common subelements 71

IWD 9075-10:201?(E)
10.6 <embedded Java expression>

10.6 <embedded Java expression>

Function

Identifies a Java variable or a Java expression that resolves to a Java variable.

Format

<embedded Java expression> ::=
<colon> [<parameter mode>] <expression>

<expression> ::=
<simple variable>
| <left paren> <complex expression> <right paren>

<simple variable> ::=
11 See the Syntax Rules

<complex expression> ::=
<Rval expression>
| <Lval expression>

<Rval expression> ::=
11 See the Syntax Rules

<Lval expression> ::=
11 See the Syntax Rules

Syntax Rules

1) <simple variable> shall conform to the Java rules for simple name specified by [Java] in section 6.2.

2) <Rval expression> shall conform to the Java rules for AssignmentExpression specified by [Java] in section

15.26.

3) <Lval expression> shall conform to the Java rules for LeftHandSide specified by [Java] in section 15.26.

4) Case:
a) If <embedded Java expression> is contained in an argument for a parameter of the subject routine of
a <call statement> whose <parameter mode> is IN, then
Case:
i) If <parameter mode> is specified, then <parameter mode> shall be IN.

b)

i) Otherwise, a <parameter mode> of IN is implicit.

If <embedded Java expression> is contained in an argument for a parameter of the subject routine of
a <call statement> whose <parameter mode> is OUT, then a <parameter mode> of OUT shall be
specified.

If <embedded Java expression> is contained in an argument for a parameter of the subject routine of
a <call statement> whose <parameter mode> is INOUT, then a <parameter mode> of INOUT shall
be specified.

72 Object Language Bindings (SQL/OLB)

d)

IWD 9075-10:201?(E)
10.6 <embedded Java expression>

If <embedded Java expression> is contained in a <value specification> and is not contained in an
argument for a parameter of the subject routine of a <call statement>, then

Case:

i) If <parameter mode> is specified, then <parameter mode> shall be IN.

i) Otherwise, a <parameter mode> of IN is implicit.

If <embedded Java expression> is contained in an <assignment target> and is not contained in an
argument for a parameter of the subject routine of a <call statement>, then

Case:
i) If <parameter mode> is specified, then <parameter mode> shall be OUT.

i) Otherwise, a <parameter mode> of OUT is implicit.

Access Rules

None.

General Rules

None.

Definitions and Rules

1)
2)
3)

4)

A <complex expression> is a proper superset of <simple variable>.

An <Rval expression> is a proper superset of <Lval expression>.

During execution of an SQLJ program, an <Rval expression> is evaluated to determine its value, according
to the rules of Java expression evaluation. The determination of an <Rval expression>'s value results in
all side effects of the <Rval expression> evaluation becoming visible.

During execution of an SQLJ program, an <Lval expression> is evaluated to determine a pair comprising
both the value and the location of the <Lval expression>. The determination of both of these properties
results in all side effects of the <Lval expression> evaluation becoming visible.

a)

b)

During execution of an SQLJ program, the value of <Lval expression> is determined according to the
rules of Java expression evaluation.

At the same time, during execution of an SQLJ program, the location of <Lval expression> is determined
as follows:

i) If <Lval expression> is a simple Java identifier, denoting a Java variable X, then the location
of <Lval expression> is the location of X.

i) If <Lval expression> references a Java field called F of a Java <Rval expression> denoting a
Java object O, then the location of <Lval expression> is the location of:

O.F

Common subelements 73

IWD 9075-10:201?(E)
10.6 <embedded Java expression>

iii) If <Lval expression> references an element of a Java <Rval expression> array A with index
<Rval expression> I, then the location of <Lval expression> is the location of the array element:

All]

Conformance Rules

1) Without Feature J008, “Datalinks via SQL language”, conforming SQL language shall not contain an
<embedded Java expression> whose Java type is java.net.URL.

2) Without Feature J010, “XML via SQL language”, conforming SQL language shall not contain a <embedded
Java expression> whose Java type is java.sql . SQLXML.

74 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
10.7 <implements clause>

10.7 <implements clause>

Function

Specifies a set of one or more interface classes to a generated class declaration.

Format

<implements clause> ::=
implements [<interface list>]

<interface list> ::=
<interface element> [{ <comma> <interface element> }...]

<interface element> ::=
<predefined interface class>
| <user defined interface class>

<user defined interface class> ::=
<java class name>

<predefined interface class> ::=
sqlj -runtime.ForUpdate
| sglj-runtime.Scrollable

Syntax Rules

1) <user defined interface class> shall specify a user-defined interface class.

Access Rules

None.

General Rules

None.

Definitions and Rules

1) The <interface list> is appended to the generated class definition by text substitution.

Conformance Rules

None.

Common subelements 75

IWD 9075-10:201?(E)
10.8 <declaration with clause>

10.8 <declaration with clause>

Function

Specifies a set of one or more initialized variables to a generated class declaration.

Format

<declaration with clause> ::=
with <left paren> <declaration with list> <right paren>

<declaration with list> ::=
<with element> [{ <comma> <with element> }...]

<with element> ::=
<with keyword> <equals operator> <with value>

<with keyword> ::=
<predefined iterator with keyword> <predefined connection with keyword>
| <user defined with keyword>
<predefined iterator with keyword> ::=
sensitivity
| holdability
| updateColumns

<predefined connection with keyword> ::=
dataSource
| typeMap
| path
| transformGroup

<user defined with keyword> ::=
<java id>

<with value> ::=
<java constant expression>

Syntax Rules

1) No <with keyword> shall be specified more than once.

Access Rules

None.

General Rules

None.

76 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
10.8 <declaration with clause>

Definitions and Rules

1)

2)
3)

4)

5)

6)

7)

8)

Each <with element> is added as a public static final variable the type of which is derived from the type
of its associated <java constant expression> to the generated class declaration.

Support for each <predefined iterator with keyword> is implementation-defined.

If the <predefined iterator with keyword> is sensi ti vi t y, then the <with value> shall be one of the
sqlj.runtime.ResultSetlterator defined int constants SENSITIVE, INSENSITIVE, or ASENSITIVE.

a) Thekeywordsensi ti vity specifies the semantics defined for <cursor sensitivity> in Subclause 14.1,
“<declare cursor>", .

b) The effective sensitivity of an iterator refers to the runtime value that would be returned by an invocation
of getSensitivity() onthatiterator. JDBC mandates that an implementation that cannot support
the requested sensitivity enforce the closest matching sensitivity supported to that requested.

¢) The default sensitivity of an iterator refers to the compile time sensitivity value when the keyword
sensi tivi ty isnot specified. The default sensitivity shall be ASENSI TI VE, as specified in
Subclause 14.1, “<declare cursor>", in .

If the <predefined iterator with keyword> is hol dabi | i t y, then the <with value> shall be the boolean
value true or false.

a) The keyword hol dabi | i ty specifies the semantics defined for <cursor holdability> in
Subclause 14.1, “<declare cursor>", .

b) The default holdability of an iterator when the keyword hol dabi I i t y is not specified shall be
W THOUT HCLD, as specified in Subclause 14.1, “<declare cursor>", in .

If the <predefined iterator with keyword> is updat eCol unms, then the <with value> shall be a String
literal containing a comma-separated list of column names.

If an <iterator declaration clause> contains a <declaration with clause> that contains a <predefined iterator
with keyword> of updat eCol unms, then the <iterator declaration clause> shall also contain an
<implements clause> specifying a <predefined interface class> that contains sqglj.runtime.ForUpdate.

If the <predefined connection with keyword> is dataSource, then the <with value> shall be a String literal
naming a JNDI resource of type javax.sql .DataSource, as specified by [JDBC].

If the <predefined connection with keyword> is typeMap, then the <with value> shall adhere to the fol-
lowing rules:

a) The <with value> shall be a String literal containing one name or a comma-separated list of multiple
names of Java resource bundle(s). The name of a resource bundle shall adhere to the required syntax
for resource bundle family names as specified in [Java], and shall refer to a Java properties class or
file that contains type mapping information.

b) A property definition contained in the class or file that is recognized by the SQLJ translator as defining
a type mapping shall be specified in the following way:

i) The name of the property has the following syntax:

<type map property name> ::= cl ass.<java class name>

where <java class name> is a full class name that includes a package name.

Common subelements 77

IWD 9075-10:201?(E)
10.8 <declaration with clause>

9)

10)

11)

12)

i) The value of the property has the following syntax:

<type map property value> ::=
[<sql type>] <user-defined type name> [TRANSFORM <group name>]
<sgl type> :@:=
DISTINCT
| STRUCT
| JAVA_OBJECT

c) Each <type map property name> shall be unique across all type maps specified in the <with value>
of a single <connection declaration clause>.

d) A <user-defined type name> that is contained in a <type map property value> shall not be contained
in any other <type map property value> of the same type map or any other type map specified in the
<with value> of the same <connection declaration clause>.

e) The class <java class name> has to specify that it implements either java.sgl.SQLData or
java.io.Serializable.

f) If <type map property value> TMPV contains a transform <group name>, then let TG be that <group
name> and let UDT be the <user-defined type name> contained in TMPV. The <group specification>
“TG FOR TYPE UDT” is called a property group specification of the type map properties file.

If the <predefined connection with keyword> is path, then the <with value> shall be a <schema name
list>, and an <embedded path specification> of the form “PATH <with value>"isimplicitly specified
and precedes any <SQLJ specific clause> executed in the scope of the connection context class.

If the <predefined connection with keyword> is transformGroup, then the <with value> shall be of the
form *“{ <single group specification> | <multiple group specification> }”. If <single group specification>
is specified, then no property class or file contained in the <with value> of a typeMap shall contain a
property group specification. An <embedded transform group specification> of the form “TRANSFORM
GROUP <with value>"is implicitly specified and precedes any <SQLJ specific clause> executed in
the scope of the connection context class.

If <multiple group specification> is specified, then no <user-defined type name> contained in the <multiple
group specification> shall also be part of a property group specification that is contained in a property
class or file specified in the <with value> of a typeMap.

If no <single group specification> is specified, then let MGU be the comma-separated list of all <group
specification>s contained in a <multiple group specification> and all the property group specifications
contained in the property classes or files specified as part of the <declaration with clause> of the <connection
declaration clause>. If MGU is not empty, then an <embedded transform group specification> of the form
“TRANSFORM GROUP MGU ™ is implicitly specified and precedes any <SQLJ specific clause> executed
in the scope of the connection context class.

Conformance Rules

1)

2)

78

Without Feature S071, “SQL paths in function and type name resolution”, conforming SQL language shall
not contain a <predefined connection with keyword> that simply contains path.

Without Feature S241, “Transform functions”, conforming SQL language shall not contain a <predefined
connection with keyword> that is transformGroup.

Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
10.8 <declaration with clause>

3) Without Feature S241, “Transform functions”, conforming SQL language shall not contain a user-defined
type map specified using a <predefined connection with keyword> that simply contains typeMap and that

contains a property group specification.

Common subelements 79

IWD 9075-10:201?(E)

(Blank page)

80 Object Language Bindings (SQL/OLB)

11 <SQLJ specific clause> and contents

11.1 <SQLJ specific clause>

Function

Specify an embedded SQLJ clause inside a Java application.

Format

<SQLJ specific clause> ::=
<connection declaration clause>
| <iterator declaration clause>
| <executable clause>

Syntax Rules

None.

Access Rules

None.

General Rules

None.

Conformance Rules

None.

IWD 9075-10:201?(E)
11.1 <SQLJ specific clause>

<SQLJ specific clause> and contents 81

IWD 9075-10:201?(E)
11.2 <connection declaration clause>

11.2 <connection declaration clause>

Function

Specify a named connection context declaration inside a Java application.

Format

<connection declaration clause> ::=
[<modifiers> Jcontext <java class name>
[<implements clause>] [<declaration with clause>]

Syntax Rules

1) An <implements clause> shall not specify a <predefined interface class>.

2) A <declaration with clause> shall not specify a <predefined iterator with keyword>.

Access Rules

None.

General Rules

None.

Definitions and Rules

1) SQLJ connection contexts are objects of classes that are defined by means of the <connection declaration
clause> and result in the generation of a generated connection class declaration.

2) A <connection declaration clause> is permitted to appear anywhere a Java class definition may appeatr.

Conformance Rules

None.

82 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
11.3 Generated connection class

11.3 Generated connection class

Function

To define the signature (i.e., associated methods) of a generated connection class.

Signature
In the following signature, let withType represent the <java datatype> of its associated <with keyword>.

<modifiers> cl ass <java class name>
i mpl ements sqlj.runtine. Connecti onCont ext
[. <interface list>] // Optional; not literal []

// Optional and repeatable; not literal [] or {} or ...
[{ static public final withtype

<with keyword> = <with value> ; }...]
<create connection constructors>

public <java class name>
(ConnectionContext other)
throws SQLException ;
public <java class name>
(java.sql . Connection conn)
throws SQLException ;
static public <java class name>
get Def aul t Context () ;
static public void setDefaul t Cont ext
(<java class name> ctx) ;
public java.util.Mp
} get TypeMap () ;

A generated connection class implements interface sql j . runt i me. Connect i onCont ext .

<create connection constructors> ::=
<data source constructors>
| <url constructors>

<data source constructors> ::=
public <java class name> ()
t hrows SQLException ;
| public <java class name> (String user, String password)
t hrows SQLException ;

<url constructors> ::=
public <java class name> (String url, Properties info, boolean autoComit)
throws SQLException ;
| public <java class name> (String url, boolean autoCommit)
throws SQLException ;
| public <java class name> (String url, String user, String password, bool ean autoConm t

)
throws SQLException ;

<SQLJ specific clause> and contents 83

IWD 9075-10:201?(E)
11.3 Generated connection class

Definitions and Rules

1)

2)

3)

4)

5)

6)

7)

84

A generated connection class is generated using the specified <modifiers> and <java class hame> as a side
effect of the direct inclusion of a <connection declaration clause>.

If the <connection declaration clause> contains a <declaration with clause> that specifies the <predefined
connection with keyword> dataSource, then the generated connection class signature uses <data source
constructors>; otherwise, the generated connection class signature uses <url constructors>.

If the <connection declaration clause> contains a <declaration with clause> that specifies the <predefined
connection with keyword> typeMap, then let TM be the corresponding <with value>. The invocation of
the method getTypeMap () of the generated connection class returns an instance of a class that implements
java.util.Map that contains the user-defined type mapping information provided by the properties files
listed in TM in the form specified in [JDBC]. This method is invoked by code generated by the SQLJ
translator for <executable clause>s and <iterator declaration clause>s, but it can also be invoked to create
a Java.util .Map object that may be passed to methods of a java.sqgl . Statement object. The
implementation of this method attempts to load the properties files based on the Java class path. If the
<connection declaration clause> does not contain a <declaration with clause> that specifies the <predefined
connection with keyword> typeMap, then this method returns Java null.

At runtime, a connection context object and its underlying Java.sql - Connection object have an
associated connection context user identifier, which is by default used as the current user identifier for all
SQL-statements executed in the scope of the connection context object, and is defined as follows.

Case:

a) If the connection context object is created using <data source constructors> or <url constructors> that
have a user parameter, or if a user name is provided as part of the 1 nfo parameter, then the connection
context user identifier is the user name provided.

b) If the connection context object is created using the constructor that takes an existing connection
context object, then the connection context user identifier is the user identifier of the existing connection
context object.

c) If the connection context object is created using the constructor that takes an existing
jJava.sql .Connection object, then the connection context user identifier is the user name that
was provided during creation of the java.sql .Connection object.

d) Otherwise, the connection context user identifier is implementation-defined.

The semantics of constructors defined by <data source constructors> are as described for overloadings of
method getConnection of class javax.sqgl .DataSource in [JDBC]. If one of these constructors is

called, JNDI is used to obtain the data source object named by the <with value> of the dataSource <with
keyword>. The data source object is used to create the connection. The auto commit mode is set as specified
by the given data source.

The semantics of constructors defined by <url constructors> are as described for overloadings of method
get Connecti on ofclassj ava. sql . Dri ver Manager in [JDBC]. The connection is created with
an auto commit mode set as specified by the value of the “autoCommit” argument.

The constructor that takes an existing connection context object as its argument causes the object on which
the method is invoked to share its SQL-session, i.e., its underlying SQL-connection. The auto commit
mode is that of the passed connection context object.

Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
11.3 Generated connection class

8) The constructor that takes an existing Java.sql . Connection object as its argument causes the object
on which the method was invoked to share its SQL-session, i.e., its underlying SQL-connection. The auto
commit mode is that of the passed connection object.

9) Method setDefaultContext sets the default connection context for this class.
10) Case:

a) IfsetDefaultContext has been called, then getDefaultContext returns the default connection context
object for this class.

b) If a data source is defined in JNDI for the name j dbc/ def aul t Dat aSour ce, then getDefault-
Context returns a connection context object that uses the connection created by this data source.

¢) Ifadefault SQL-connection exists in the runtime environment, then getDefaultContext returns a
connection context object that shares the underlying default SQL-connection.

d) Otherwise, getDefaultContext returns null.

11) All other methods are defined in sqglj.runtime.ConnectionContext.

Binary Composition
The following rules are defined for binary composition in every generated connection class.

1) The generated class includes a static public method named getProfileKey:

public static Object getProfil eKey
(sqlj.runtinme.profile.Loader | oader,
String profil eNane) throws SQ.Exception;

getProftileKey() returns a key associated with the profile having the given profileName. If the key

for a profile with this name already exists, then it is returned; otherwise, a new profile is instantiated with
the given name and Loader and a new key for this profile is returned. An exception is thrown if a profile

cannot be loaded with the given name and Loader.

The object returned is an opaque, implementation-defined key for use in a subsequent call to getPro-
file() orgetConnectedProfile(). This method is used by translator-generated code that replaces
<executable clause>s to obtain a key with which a particular profile can be identified within a connection
context.

— Parameters:
» loader — The profile loader with which the profile should be loaded if it doesn't already exist.
» profileName — The fully qualified name of the profile.
— Returns:
* A key for the profile with the given name in this context.
— Throws:
» SQLException — If a profile with this name cannot be loaded.

2) The generated class includes a static public method named getProfile:

<SQLJ specific clause> and contents 85

IWD 9075-10:201?(E)
11.3 Generated connection class

3)

public static sqglj.runtine.profile.Profile getProfile (Cbject profileKey);

getProfile returns a top-level profile associated with profile key returned by an earlier call to getProfileKey
in this context class. Each connection context class maintains a static set of profiles that collectively define
all possible SQL-statements that are permitted to be performed on this context.

— Parameters:
» profileKey — the key associated with the desired profile.
— Throws:
» IllegalArgumentException — If the profileKey is null or invalid.

The generated class includes a public method named getConnectedProfile:

public sqglj.runtine.profile.ConnectedProfile
get Connect edProfil e(Cbj ect profil eKey)
t hrows SQLExcepti on;

getConnectedProfile returns the connected profile associated with a profileKey for this connection context
object. Each connection context object maintains a set of connected profiles on which SQL-statements are
prepared. Collectively, the set of connected profiles contained in a connection context represent the set of
all possible SQL-statements that are permitted to be performed between the time the connection context
object is created and the time it is destroyed.

The profileKey object shall be an object that was returned via a prior call to getProfileKey(). An
exception is thrown if a connected profile object could not be created for this connection context.

For each <executable clause>, except those containing a <fetch statement>, getConnectedProfile is used
by translator-generated code that replaces <executable clause>s to obtain a connected profile. The connected
profile in turn creates a RTStatement object that is used to execute the <executable clause>'s SQL-statement.

— Parameters:
» profileKey — The key associated with the desired profile.
— Throws:
» lllegalArgumentException — If the profileKey is null or invalid.

» SQLException — If the connected profile object could not be created.

Code Generation

In addition to managing the SQL-connection, the connection context class implementation is responsible for
instantiating profile and connected profile objects at runtime, as follows:

1)
2)
3)

Let PL represent a profile loader.
Let PN represent a profile name.

If getProfileKey is called with values PL and PN, and a key for PN does not exist, then:

86 Object Language Bindings (SQL/OLB)

4)
5)

6)

b)

IWD 9075-10:201?(E)
11.3 Generated connection class

A new profile is instantiated using the instantiate method:

sqlj.-runtime._profile_Profile p =
sqlj.runtime.profile.Profile.instantiate (PL, PN) ;

An implementation-dependent key is created and returned that is associated with PN, and that if refer-
enced by members of this generated connection class uniquely identifies the newly-instantiated profile.

Let PK represent a profile key returned by a call to getProfileKey.

If getProfile is called with argument PK, then return the profile instantiated during the call to getProfileKey
associated with PK.

If getConnectedProfile is called with argument PK, then:

a)

b)
c)

d)

Let C represent the underlying Java.sql . Connection object associated with the current connec-
tion context object.

Let P represent the Profile associated with PK. This can be found using the static getProfile method.

Let CP represent the ConnectedProfile associated with PK in the current connection context object,
or null if none exists.

If CP is Java null, then a new connected profile is created using the getConnectedProfile method of
P:

CP = P.getConnectedProfile (C) ;

Return CP

<SQLJ specific clause> and contents 87

IWD 9075-10:201?(E)
11.4 <iterator declaration clause>

11.4 <iterator declaration clause>

Function

Specify either a positioned iterator class declaration or a named iterator class declaration inside a Java application.
An iterator is an object that contains the result of the evaluation of a query. Iterators are objects that implement
the interface sqglj.runtime.ResultSetlterator, and are declared by an SQLJ translator in response to an <iterator
declaration clause>.

The SQLJ clause for declaring an iterator class has two forms, distinguishing a <named iterator> from a
<positioned iterator>.

Format

<iterator declaration clause> ::=
[<modifiers> Jiterator <java class name>
[<implements clause>] [<declaration with clause>]
<left paren> <iterator spec declaration> <right paren>

<iterator spec declaration> ::=
<positioned iterator>
| <named iterator>

Syntax Rules

1) A <declaration with clause> shall not specify a <predefined iterator with keyword>.

Access Rules

None.

General Rules

None.

Definitions and Rules

1) The two kinds of iterators, positional and named, are distinct and incompatible Java types implemented
with different interfaces.

2) Thetwo kinds of iterators, positional and named, cannot be used interchangeably. Separate class (interface)
hierarchies for named and positional iterators enforce this restriction.

3) A <iterator declaration clause> is permitted to appear anywhere a Java class definition is permitted to
appear.

4) Without Feature JO02, “ResultSetlterator access to JDBC ResultSet”, if an implementation of either the
sglj-runtime.ResultSetlterator interface's public method getResultSet() or the

88 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
11.4 <iterator declaration clause>

sglj.-runtime.profile.RTResultSet interface's public method getJDBCResultSet() is
invoked, then an SQLexception condition shall be thrown: OLB-specific error — unsupported feature.

Signature

From an <iterator declaration clause>, an SQLJ translator generates an iterator class. All iterator classes
implement interface Resul t Set | t er at or. The Resul t Set | t er at or interface includes the public
method getResultSet(), which, using the public method getJDBCResultSet() of sqlj . run-
time.profile.RTResultSet, returns the Java.sql .Resul tSet object associated with this iterator.

If the <iterator declaration clause> contains an <implements clause> with the Scrollable interface, the iterator
class implements the interface Scrollable.

Conformance Rules

1) Without Feature JO02, “ResultSetlterator access to JDBC ResultSet”, conforming SQL language shall not
contain an invocation of the sqlj - runtime.ResultSetlterator interface's public method
getResultSet() orthe sqlj.runtime.profile.RTResultSet interface's public method
getJDBCResultSet().

<SQLJ specific clause> and contents 89

IWD 9075-10:201?(E)
11.5 <positioned iterator>

11.5 <positioned iterator>

Function

Specify a positioned iterator inside a Java application.

Format

<positioned iterator> ::=
<java type list>

<java type list> ::=

<java datatype> [{ <comma> <java datatype> }...

Syntax Rules

None.

Access Rules

None.

General Rules

None.

Conformance Rules

None.

90 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
11.6 Generated positioned iterator class

11.6 Generated positioned iterator class

Function

To define the signature (i.e., associated methods) of a generated positioned iterator class.

Signature

In a <positioned iterator>, no names are provided for the columns in the iterator class declaration, and an SQLJ
translator will generate code for positional access to the columns of SQL queries associated with iterators of
type <java class name>.

In the following signature, let withType represent the <java datatype> of its associated <with keyword>.

<modifiers> cl ass <java class name>
i mpl ements sqlj.runtine. Positionedlterator
// Optional; not literal []
[. <interface list>]

{
// Optional and repeatable; not literal [], {}, or ...
[{ static public final withtype
<with keyword> =
<with value> ; }...]
// Methods are defined in sqglj.runtime.Positionedlterator
}

For a <positioned iterator>, an SQLJ translator will generate an iterator class implementing interface
sqlj.runtine. Positionedlterator.

Definitions and Rules

1) A generated positioned iterator class is generated using the specified <modifiers>, <java class name>,
<interface list>, and <declaration with clause> of its containing <iterator declaration clause>.

Binary Composition
The following rules are defined for binary composition in every generated positioned iterator class.

1) The generated class includes a public constructor that has an RTResultSet parameter, and might throw an
SQLException:

public <java class name>
(sqlj.runtinme.profile. RTResultSet rs)
throws java.sql.SQ.Exception ;

This constructor is used by translator-generated code replacing any <assignment clause> that populates a
<positioned iterator> result.

2) The generated class includes a public method named next () the semantics of which are the same as
those defined for the next () method of the <named iterator> class:

<SQLJ specific clause> and contents 91

IWD 9075-10:201?(E)
11.6 Generated positioned iterator class

3)
4)
5)

public next ()
throws SQLException ;

This method is used by translator-generated code that replaces the <fetch statement> to advance the iterator
to the next row.

Let k represent the cardinality of the <java type list>.
Let i represent a variable ranging from 1 (one) to k.

For each <java datatype> JT in <java type list>, the generated class includes a public method named
getCol the return type of which is JTj:

public JT; getColi ()
throws SQLException ;

This method is used by translator-generated code that replaces the <fetch statement> to fetch the data
corresponding the i-th column of the current iterator row.

Code Generation

As described in the binary composition section, a <positioned iterator> object is constructed using an instance
of class sglj.runtime.profile.RTResultSet. The iterator class implementation shall use the passed RTResultSet
to fetch data from the implicit cursor, as follows:

1)
2)
3)
4)
5)
6)

Let RT represent the sqlj.runtime.profile.RTResultSet object passed during construction of this iterator.
Let k be the cardinality of the <positioned iterator>.

Let m represent the number of columns in RT.

If m % k, then an SQLEXxception is thrown by the iterator constructor.

Let i represent a variable ranging from 1 (one) to k.

For each <java datatype> JT in <java type list>:

a) Let GM represent the getter method corresponding to JTj, as given in Table 2, “SQLJ type properties”.

b) If GM is getObiject, then the implementation of getColi returns the result of calling the getObject
method on RT using the compile-time class of JTj:

JT; getColi () throws SQLException

{
return RT.getObject (i, JT;.class) ;

}
c) If GMis not getObiject, then the result of getCali returns the result of calling the GM method on RT:

JT; getColi () throws SQLException
{

92 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
11.6 Generated positioned iterator class

return RT.GM (i) ;
}

NOTE 20 — The above requirements define that a method call to the underlying RTResultSet is made each time getColi is called.
By uniformly defining when the call is made, the underlying RTResultSet implementations are able to reliably implement optimiza-
tions such as preparing all results during the next() call or caching column results.

<SQLJ specific clause> and contents 93

IWD 9075-10:201?(E)
11.7 <named iterator>

11.7 <named iterator>

Function

Specify a named iterator inside a Java application.

Format

<named iterator> ::=
<java pair list>

<java pair list> ::=
<java pair> [{ <comma> <java pair> }...]

<java pair> ::=

<java datatype> <java id>

Syntax Rules
1) No <java id> contained in a <java pair list> shall be equivalent to any other <java id> in that <java pair

list> (using a case-sensitive comparison).

Access Rules

None.

General Rules

None.

Definitions and Rules

1) The <fetch statement> shall not be used in conjunction with <named iterator>.
2) An accessor method will be generated for each <java id>, with the following specifications:
a) One accessor method will be generated for each specified <java id>.

b) Each accessor method will have as its name the corresponding <java id> and be of the exact case as
that specified by <java id>.

¢) Each accessor method will be of the form <java id>(), returning the corresponding Java type <java
datatype> and throwing type SQLEXxception.

d) If<java datatype> is a Java primitive datatype and the column value is an SQL null value, then the
accessor method will raise an exception of type sqglj.runtime.SQLNullException.

94 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
11.7 <named iterator>

Conformance Rules

None.

<SQLJ specific clause> and contents 95

IWD 9075-10:201?(E)
11.8 Generated named iterator class

11.8 Generated named iterator class

Function

To define the signature (i.e., associated methods) of a generated named iterator class.

Signature

For a <named iterator>, the SQLJ translator will generate accessors for each column in the <java pair list> in
order to provide named access to the columns of SQL queries associated with an iterator of type <java class
name>. In the following signature, let withType represent the <java datatype> of its associated <with keyword>.

<modifiers> cl ass <java class name>
i mpl ements sqlj.runtine. Nanedlterator
[, <interface list>] // Optional, not literal []

// Optional and repeatable; not literal [], {}, or ...
[{ static public final withtype
<with keyword> = <with value> ; }...]
// Repeatable; not literal {} or ...
{ public <java datatype> <java id> ()
throws SQLException ; }...
// All other Methods are defined in sglj.runtime.Namedlterator

}
For a <named iterator>, an SQLJ translator will generate a class implementing interface Named I terator.

Definitions and Rules

1) Aqgenerated named iterator class is generated using the specified <modifiers>, <java class hame>, <interface
list>, and <declaration with clause> of its containing <iterator declaration clause>.

Binary Composition
The following rules are defined for binary composition in every generated named iterator class.

1) The generated class includes a public constructor that has an RTResultSet parameter, and might throw an
SQLException.

This constructor is used by translator-generated code replacing any <assignment clause> that populates a
<named iterator> result.

Code Generation

As described in the binary composition section, a <named iterator> object is constructed using an instance of
class sqglj.runtime.profile. RTResultSet. The iterator class implementation shall use the passed RTResultSet
to fetch data from the implicit cursor, as follows.

1) Let RT represent the sqlj.runtime.profile.RTResultSet object passed during construction of this iterator.

96 Object Language Bindings (SQL/OLB)

2)
3)

4)
5)
6)

IWD 9075-10:201?(E)
11.8 Generated named iterator class

Let k be the cardinality of the <named iterator>.

Let m represent the number of columns in RT:

m = RT.getColumnCount () ;

If m <k, then an SQLException is thrown by the iterator constructor.

Let i represent a variable ranging from 1 (one) to k.

For each <java pair> JP in <java pair list>:

a)
b)
c)

d)
e)

f)

Let JT represent the <java datatype> of JP;.
Let JI represent the <java id> of JP;.
Let n represent the index of JI in RT, as defined by findColumn:

n = RT.findColumn (JI) ;
NOTE 21 — Because FindColumn(), due to its basis in JDBC, uses case-insensitive comparison, column names in
the <query clause>'s select list that differ only in the case of one or more characters should use the SQL AS clause to
avoid ambiguity, even if one or both of those column names are specified using <delimited identifier>s.
Let GM represent the getter method corresponding to JT, as given in Table 2, “SQLJ type properties”.
If GM is getObject, then the implementation of the accessor method for JP; returns the result of calling
getObject on RT, using the compile-time class of RT:

JT JI () throws SQLException
{

}

If GM is not getObject, then the implementation of the accessor method for JP; returns the result of
calling the GM method on RT:

return RT.getObject (n, JT.class) ;

JT JI () throws SQLException
{

}

return RT.GM (n) ;

NOTE 22 — The above requirements define that a method call to the underlying RTResultSet is made each time an accessor
method is called. By uniformly defining when the call is made, the underlying RTResultSet implementations are able to reliably
implement optimizations such as preparing all results during the next() call or caching column results.

NOTE 23 — It is not required that the findColumn method is called each time an accessor method is called since the result of
findColumn is invariant for a particular column name in a particular RTResultSet object. Accordingly, findColumn need only
be called once for each column of each iterator constructed.

<SQLJ specific clause> and contents 97

IWD 9075-10:201?(E)
11.9 <executable clause>

11.9 <executable clause>

Function

Specify the execution of an SQL-statement.

Format

<executable clause> ::=

[<context clause>] <executable spec clause>

<executable spec clause> ::=

<statement clause>

| <assignment clause>

Syntax Rules

None.

Access Rules

None.

General Rules

None.

Definitions and Rules

1)
2)
3)

4)

5)

6)

98

An <executable clause> is permitted to appear anywhere a Java statement is permitted to appear.
An <executable clause> might throw exception j ava. sql . SQLExcepti on.

All runtime exceptions raised during the execution of an <executable spec clause> will be caught as an
SQLException as defined by [JDBC].

If a runtime exception is raised during the execution of an <executable clause>, then the values of any
OUT or INOUT <embedded Java expression> is implementation-dependent.

Without Feature JO03, “Execution control”, if an implementation of the sql j - runtime.Execution-
Context class's public methods setMaxFieldSize(int), setMaxRows(int), or setQueryTimeout(int) is
invoked to set the corresponding ExecutionContext Java field to anything other than its default value,
and an attempt is made to register a statement with such an ExecutionContext (which, as specified
under Code Generation in this Subclause, invokes the sql j . runtime.profile._RTStatement
interface's methods of the same name), then an SQLEXxception condition is thrown: OLB-specific error —
unsupported feature.

Without Feature J004, “Batch update”, if an implementation of the sql j - runtime . ExecutionCon-
textclass's public methods executeBatch(), getBatchLimit(), getBatchUpdateCounts(),

Object Language Bindings (SQL/OLB)

7)

8)
9)

10)

IWD 9075-10:201?(E)
11.9 <executable clause>

isBatching(), setBatching(boolean), or setBatchLimit(int) isinvoked, thenthe result
is implementation-defined.

Without Feature JO09, “Multiple Open ResultSets”, if an implementation of the sgl j - runtime.Exe-
cutionContext class's public method getNextResultSet(int) is invoked with any value other than
Java.sql .Statement.CLOSE_CURRENT_RESULT, then an SQLEXxception condition is thrown:
OLB-specific error — unsupported feature.

Let n represent the number of <embedded Java expression>s appearing in the <executable clause>.

Let BP;, 1 (one) =i < n, represent the bind parameters in the SQL-statement corresponding to <executable
clause>.

a) Every bind parameter BP; can either set an input value, or return an output value, or both.

b) If <executable clause> is an <assignment clause>, then let BP(represent the bind parameter than can
return the output value of the SQL-statement.

The semantics of executing <executable spec clause> with <embedded Java expression>s HE;, with
parameter mode Pj, 1 (one) < i < n, are as follows.

a) If <executable clause> contains an implicit or explicit <context clause>, then:
)] Let DC represent the implementation-defined class name of the default connection context.

i) If <context clause> contains a <connection context> then set CCtx to the value specified by
<connection context>; otherwise, set CCtx to the value of DC.getDefaultContext().

iii) If <context clause> contains an <execution context> then set ECtx to the value specified by
<execution context>; otherwise, set ECtx to the value of CCtx . getExecutionContext().

b) If <executable clause> is an <assignment clause> (i.e,, it contains <Lval expression>), then set L g
to the location of <Lval expression>.

c) Foralli,1(one)<i<n,do:

i) If P; = IN, then HE; shall be SQLJ input assignable to V;. The Syntax Rules of Subclause 9.2,
“Store assignment”, in are not applied when setting V;j to the value of HE;. BP; can set an input
value.

i) If P; = INOUT, then HE; shall be SQLJ input assignable to V;. The Syntax Rules of
Subclause 9.2, “Store assignment”, in are not applied when simultaneously setting V; to the
value of HE; and setting L to the location of HE;. BP; can set an input value and return an
output value.

iii) If Pj = OUT, then set L; to the location of HE;. BP; can return an output value.
d) Forevery BP;, 1 (one) <i < n, that can set an input value, set BP; to V;.

e) Execute the SQL-statement, using connection context CCtx and execution context ECtx. Execution
results in the following values becoming available:

<SQLJ specific clause> and contents 99

IWD 9075-10:201?(E)
11.9 <executable clause>

)] Values O;j for every BP;, 1 (one) <i < n, that can return an output value shall be SQLJ output
assignable to HE;. The Syntax Rules of Subclause 9.1, “Retrieval assignment”, in are not
applied.

i) If <executable clause> is an <assignment clause>, then the value O for BPg shall be SQLJ

output assignable to <Lval expression>. The Syntax Rules of Subclause 9.1, “Retrieval
assignment”, in are not applied.

f) Foralli, 1 (one)<i<n,if Pj=O0UT, or INOUT, then set the value at Java location L to O;.

g) If <executable clause> is an <assignment clause>, then set the value at Java location Lj,g to O.

Binary Composition

Unless explicitly specified, this Subclause defines the semantics of Binary Composition for all <executable
clause>s.

The binary portability rules state that an <executable clause> should be able to:

— Use a passed <connection context> the type of which is a context class generated by any SQLJ-conformant
translator (not necessarily the current translator).

— Instantiate and populate an iterator-valued <Lval expression> the type of which is an iterator class generated
by any SQLJ-conformant translator (not necessarily the current translator).

The Binary Composition sections of the generated iterator and connection context classes define methods to
support the above requirements. In particular:

— A connection context class defines getProfileKey and getConnectedProfile methods from which a con-
nected profile object can be created. The connection context returned by these methods shall be used to
obtain the sqlj.runtime.profile. RTStatement object that executes the SQL-statement.

— lterator classes can be constructed using an instance of an sqlj.runtime.profile. RTResultSet. Any <exe-
cutable clause> returning an iterator type shall construct the iterator using an RTResultSet object returned
from the RTStatement object of the previous step.

Code Generation

With the exception of <fetch statement>, all <executable clause>s share a common mechanism for obtaining
an executable statement from a connection context, as described below.

1) Let LC be the name of the loading context class. The loading context class is any class that appears in the
current SQLJ translation unit. It might be a class that is generated as a side effect of the code generation
for the <executable clause>.

The purpose of the loading context class is to be able to associate a profile stored as a serialized resource
file with the appropriate class(es) at runtime. A profile shall be uniquely identified given the name of the
profile and its associated loading context class. The loading context class shall be able to be used to uniquely
identify the profile associated with a particular <executable clause>. By default, the loading context class
will have a non-null class loader that can be used to load a resource by name as a Java stream. This would
allow the profile resource to be read from the same JAR file that contained the loading context class, for

100 Obiject Language Bindings (SQL/OLB)

2)

3)
4)

5)

6)

7)

8)
9)

10)

IWD 9075-10:201?(E)
11.9 <executable clause>

example. In other cases, the class might contain other identifying information such as a schema lookup
path that would allow an associated resource file to be found in an appropriate schema.

A system class is not permitted to be used as a loading context class.

Let PN be the name of the profile associated with the current executable clause, as defined in
Subclause 4.3.23, “Profile generation and naming”.

Let CT be the name of the <connection context> class, which is the type of CCtx.

Let i be the number of <executable clause>s appearing in the current SQLJ translation unit prior to the
current <executable clause> the <connection context> class of which is the same as CT. If this is the first
such <executable clause>, then i is 0 (zero).

A profile loader for the <executable clause> is obtained using LC.

sqlj -runtime.profile.Loader | oader =
sqlj.runtime._RuntimeContext.getRuntime ().getLoader (LC.class) ;

For a particular Java Virtual Machine invocation, the value of loader will not change. The loader variable
does not need to be re-evaluated each time <executable clause> is executed. Accordingly, it is safe to store
loader as a static variable.

A profile key is obtained from CT using the loader and PN:

Object profil eKey = CT.getProfileKey (| oader, PN) ;
The getProfileKey method is a static method invoked on CT.

For a particular Java Virtual Machine invocation, the value of profileKey will not change. The profileKey
variable does not need to be re-evaluated each time <executable clause> is executed. Accordingly, it is
safe to store profileKey as a static variable.

A connected profile is obtained from CCtx using profileKey:

sqlj.runtime_profile._ConnectedProfile connProfile =
CCt x .getConnectedProfile (profileKey) ;

Since the value of CCtx is only known at runtime, connProfile shall be re-evaluated each time <executable
clause> is encountered.

Let ECtx be the current execution context object.

If ECtx has batching enabled and a pending statement batch context object, then let BC be the pending
statement batch context object. Otherwise, let BC be null.

If ECtx does not have batching enabled, then the statement object to be executed is obtained from con-
nProfile using i and the user-defined type map associated with CT.

sqlj -runtime.profile_RTStatement stnt =
connProfile.getStatement (i, CT.getTypeMap()) ;

Otherwise, the statement object to be executed is obtained from connProfi le using i, BC, and the user-
defined type map associated with CT.

<SQLJ specific clause> and contents 101

IWD 9075-10:201?(E)
11.9 <executable clause>

sqlj -runtime.profile_RTStatement stmt =
connProfile.getStatement (i, BC, CT.getTypeMap()) :

The statement stmt is used to execute the SQL-statement described by the i-th entry of profile PN, which
can be obtained as follows:

sqlj.runtime.profile.Entrylnfo entry =
CT.getProfile (profileKey).getEntryIlnfo (i) ;

Once the statement stmt has been obtained, but before the statement is executed, execution control methods
are permitted to be called as needed given the current <execution context>, ECtx. Execution control methods
are defined by the following RT Statement interface methods:

— getMaxFieldSize
— setMaxFieldSize
— getMaxRows
— setMaxRows
— getQueryTimeout
— setQueryTimeout

Once the statement stmt has been executed but before the executionComplete method is called, execution
status methods can be called. Execution status methods are defined by the following RTStatement interface
methods:

— getWarnings
— clearWarnings

Other method calls made to the statement stmt vary according to the type of <executable clause>. The following
rules represent the default calls made to bind inputs, execute, fetch outputs, and release the statement.

Unless explicitly specified, the following rules define the statement specific Code Generation calls for all
<executable clause>s.

1) Let k represent the number of <embedded Java expression>s appearing in the <executable clause>.
2) Letirepresent a variable ranging from 1 (one) to k.

3) For each <embedded Java expression> HE appearing in the <executable clause>, if the <parameter mode>
of HE; is IN or INOUT, then:

a) LetJT represent the <java datatype> of HE;.

b) Let SM represent the setter method corresponding to JT, as given in Table 2, “SQL.J type properties”.
c) HE;is bound to the statement using SM:

stmt.SM (i, HE;) ;

4) If ECtx has a batch context object with a pending statement batch and one or more of the following condi-
tions are false:

102 Obiject Language Bindings (SQL/OLB)

5)

6)

7)

8)

IWD 9075-10:201?(E)
11.9 <executable clause>

a) [ECtx has batching enabled, as defined by the 1sBatching() method.
b) The statement is batchable, as defined by the 1sBatchable() method.
c) The statement is batch compatible, as defined by the i sBatchCompatible () method.

then the pending statement batch is executed on the batch context object using the method execute-
Batch().

BC.executeBatch();

If batching is enabled on ECtX, as defined by isBatching(), and the statement is batchable, as defined
by isBatchable(), then the statement is placed into a batch context object which becomes the current
batch context object.

BC = stnt .getBatchContext();

Otherwise, if batching is not enabled on ECtx or the statement is not batchable, then the statement is exe-
cuted using executeUpdate:

st mt .executeUpdate () ;

For each <embedded Java expression> HE appearing in the <executable clause>, if the <parameter mode>
of HE; is OUT or INOUT, then

a) LetJT represent the <java datatype> of HE;.

b) Let GM represent the getter method corresponding to JT, as given in Table 2, “SQLJ type properties”.

c) If GM is getObject, then HE; is fetched from the statement using getObject and the compile-time
class of JT:

HE; = stmt.getObject (i, JT.class) ;
d) If GM is not getObject, then HE; is fetched from the statement using GM:
HE = stmt.GM (i) ;

A call to executeComplete defines the end of the statement method invocations. It is called even if an
exception occurs in an earlier step.

stmt.executeComplete () ;

Conformance Rules

1)

Without Feature JO03, “Execution control”, conforming SQL language shall not contain an invocation of
the sgl j - runtime.ExecutionContext class's public methods setMaxFieldSize(int), set-
MaxRows(int), or setQueryTimeout(int) that sets the corresponding ExecutionContext Java field
to anything other than its default value, and shall not contain an attempt is made to register a statement
with such an ExecutionContext (which, as specified under Code Generation in this Subclause, invokes
the sglj.runtime.profile.RTStatement interface's methods of the same name).

<SQLJ specific clause> and contents 103

IWD 9075-10:201?(E)
11.9 <executable clause>

2) Without Feature JO04, “Batch update”, conforming SQL langauge shall not contain an invocation of an
implementation of the sqlj - runtime.ExecutionContext class's public methods execute-
Batch(), getBatchLimit(), getBatchUpdateCounts(), isBatching(), setBatch-
ing(boolean), or setBatchLimit(int).

3) Without Feature JO09, “Multiple Open ResultSets”, conforming SQL language shall not contain an invo-
cation of an implementation of the sgl j - runtime.ExecutionContext class's public method get-
NextResultSet(int) with any value other than java.sqgl .Statement.CLOSE_CURRENT_RESULT.

104 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
11.10 <context clause>

11.10 <context clause>

Function

Specify an execution context or statement context.

Format

<context clause> ::=
<left bracket> <context spec clause> <right bracket>

<context spec clause> ::=
<connection context>

| <execution context>
| <connection context> <comma> <execution context>

<connection context> ::=
<java id>

<execution context> ::=
<java id>

Syntax Rules

None.

Access Rules

None.

General Rules

None.

Definitions and Rules

1) A <connection context> shall reference a Java expression the type of which is generated connection class,
or a subclass of such a class.

2) If <connection context> is not explicitly stated, then the default connection is used for the executable
statement.

3) An <execution context> shall reference a Java expression the type of which is sqlj.runtime.Execution-
Context, or a subclass of such a class.

4) If <execution context> is not explicitly stated, then the <execution context> is taken from the statement's
connection context.

<SQLJ specific clause> and contents 105

IWD 9075-10:201?(E)
11.10 <context clause>

Conformance Rules

None.

106 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
11.11 <statement clause>

11.11 <statement clause>

Function

Specify the execution of a subset of SQL-statements.

Format

<statement clause> ::=
<left brace> <statement spec clause> <right brace>

<statement spec clause> ::=
<SQL procedure statement>
| <compound statement>

Syntax Rules

1) An<SQL procedure statement> contained in a <statement spec clause> that immediately contains an <SQL
executable statement> that immediately contains an <SQL control statement> shall immediately contain
a <call statement>.

2) An <SQL procedure statement> contained in a <statement spec clause> shall not immediately contain an
<SQL executable statement> that immediately contains an <SQL data statement> that immediately contains
<open statement>, <close statement>, <free locator statement>, or <hold locator statement>.

3) An <SQL procedure statement> contained in a <statement spec clause> shall not immediately contain an
<SQL executable statement> that immediately contains an <SQL transaction statement> that immediately
contains <start transaction statement>.

4) An <SQL procedure statement> contained in a <statement spec clause> shall not immediately contain an
<SQL executable statement> that immediately contains an <SQL connection statement>, <SQL session
statement>, <SQL diagnostics statement>, or <SQL dynamic statement>.

Access Rules

None.

General Rules

None.

Profile Entrylnfo Properties

— SQL String — Default as described in Subclause 4.3.5.1, “EntryInfo overview”.
— Role — STATEMENT

<SQLJ specific clause> and contents 107

IWD 9075-10:201?(E)
11.11 <statement clause>

Conformance Rules

1) Without Feature JOO5, “Call statement”, conforming SQL language shall not contain a <statement spec
clause> that contains a <call statement>.

108 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
11.12 <delete statement: positioned>

11.12 <delete statement: positioned>

This Subclause modifies Subclause 14.8, “<delete statement: positioned>"’, in ISO/IEC 9075-2.

Function

Delete a row of a table.

Format

<delete statement: positioned> ::=
11 All alternatives from ISO/1EC 9075-2
| DELETE FROM <target table> WHERE CURRENT OF <iterator host expression>

<iterator host expression> ::=
<embedded Java expression>

Syntax Rules
1) |Insert this SR|Case:

a) If <delete statement: positioned> is contained in an <embedded SQL Java program>, then <iterator
host expression> shall be specified.

b) Otherwise, <iterator host expression> shall not be specified.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Definitions and Rules

1) <iterator host expression> shall result in an instance of either a generated positioned iterator class or a
generated named iterator class that implements the interface sqglj.runtime.ForUpdate.

2) The DELETE privilege for the execution of <delete statement: positioned> is based upon the authorization
identifier that was used to execute the <query clause> associated with <iterator host expression>.

Profile Entrylnfo Properties

— SQL String — Default as described in Subclause 4.3.5.1, “EntryInfo overview”, with the <iterator host
expression> replaced by a <dynamic parameter specification>.

— Role — POSITIONED

<SQLJ specific clause> and contents 109

IWD 9075-10:201?(E)
11.12 <delete statement: positioned>

— Parameter Java fields — Describes the <embedded Java expression>s of the <delete statement: positioned>,
including the <iterator host expression>.

— Descriptor — A 1-based java.lang.Integer value denoting the index of the <iterator host expression>
within the Parameter Java fields. This is used to be able to conveniently determine which parameter corre-

sponds to the positioned iterator.

Conformance Rules

No additional Conformance Rules.

110 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
11.13 <update statement: positioned>

11.13 <update statement: positioned>

This Subclause modifies Subclause 14.13, “<update statement: positioned>"’, in ISO/IEC 9075-2.

Function

Update a row of a table.

Format

<update statement: positioned> ::=
11 All alternatives from I1SO/1EC 9075-2
| UPDATE <target table> SET <set clause list> WHERE CURRENT OF <iterator host expression>

Syntax Rules
1) |Insert this SR| Case:

a) If <update statement: positioned> is contained in an <embedded SQL Java program>, then <iterator
host expression> shall be specified.

b) Otherwise, <iterator host expression> shall not be specified.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Definitions and Rules

1) <iterator host expression> shall result in an instance of either a generated positioned iterator class or a
generated named iterator class that implements the interface sqglj.runtime.ForUpdate.

2) The UPDATE (column-specific) privilege for the execution of <update statement: positioned> is based
upon the authorization identifier that was used to execute the <query clause> associated with <iterator host
expression>.

Profile Entrylnfo Properties

— SQL String — Default as described in Subclause 4.3.5.1, “EntryInfo overview”, with the <iterator host
expression> replaced by a <dynamic parameter specification>.

— Role — POSITIONED

<SQLJ specific clause> and contents 111

IWD 9075-10:201?(E)
11.13 <update statement: positioned>

— Parameter Java fields — Describes the <embedded Java expression>s of the <update statement: posi-
tioned>, including the <iterator host expression>.

— Descriptor — A 1-based java.lang.Integer value denoting the index of the <iterator host expression>
within the Parameter Java fields. This is used to be able to conveniently determine which parameter corre-
sponds to the positioned iterator.

Conformance Rules

No additional Conformance Rules.

112 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
11.14 <select statement: single row>

11.14 <select statement: single row>

This Subclause modifies Subclause 14.7, “<select statement: single row>"", in ISO/IEC 9075-2.

Function

Retrieve values from a specified row of a table.

Format

No additional Format items.

Syntax Rules

1) [Replace SR 3)b)iv)|For each <target specification> TSthat is an <embedded variable specification>,

Case:

a) If <select statement: single row> is contained in an <embedded SQL Java program>, then the value
of the corresponding element of the <select list> shall be SQLJ output assignable to T.

b) Otherwise, the Syntax Rules of Subclause 9.1, “Retrieval assignment”, shall apply to TSas TARGET
and the corresponding element of the <select list> as VALUE.

Access Rules

No additional Access Rules.

General Rules

1) [Replace GR 4)b)iv)| For each <target specification> TSthat is an <embedded variable specification>,

Case:

a) If the <select statement: single row> is contained in an <embedded SQL Java program>, then the
corresponding value in the row of Q is assigned to TSas described in the following Code Generation.

b) Otherwise, the General Rules of Subclause 9.1, “Retrieval assignment”, are applied with the corre-
sponding value in the row of Q as VALUE and TSas TARGET. The assignment of values to targets in
the <select target list> is in an implementation-dependent order.

Definitions and Rules

1) Ifthe <select statement: single row> results in the generation of no rows, then an SQLException condition
is thrown: no data.

2) If the <select statement: single row> results in the generation of more than one row, then an SQLEXxception
condition is thrown: cardinality violation.

<SQLJ specific clause> and contents 113

IWD 9075-10:201?(E)
11.14 <select statement: single row>

3)
4)
5)
6)
7)

Let k represent the cardinality of the <select target list>.

Let j represent the cardinality of the <select list>.

Let SLE denote an expression of <select list>.

If k # j, then an SQLException is thrown: OLB-specific error — invalid number of columns.
Let HE;, 1 (one) < i <k, represent an <embedded Java expression> in <select target list>.
a) HE; <expression> shall be either a <simple variable> or an <Lval expression>.

b) If HE; explicitly states a <parameter mode>, then the specified mode shall be OUT.

c) LetJT represent the corresponding <java datatype> of HE;.

d) If JT is aJava primitive datatype, and the value of the corresponding argument is an SQL null value,
then raise an exception of type sqlj.runtime.SQLNullException.

Profile Entrylnfo Properties

SQL String — The text of the <select statement: single row> with INTO <select target list> removed.
Role — SINGLE_ROW_QUERY
Execute Type — EXECUTE_QUERY

Parameter Java fields — Describe all <embedded Java expression>s appearing in the <select statement:
single row>, except those appearing in the <select target list>.

Result Set Column Java fields — Describes the <embedded Java expression>s appearing in the <select
target list> of the <select statement: single row>.

* Result Set Type — POSITIONED_RESULT
* Result Set Count — The cardinality of the <select target list>, k.

¢ Result Set Info — Returns a Typelnfo object describing a particular HE of the <into list>. The i-th
Typelnfo object describes HE;. The Typelnfo object returned has mode OUT, dynamic parameter

marker index —1, and Java type name corresponding to the name of the type of HE;. If HE; is a

<simple variable>, then the Typelnfo object returned has the same name as that of the <simple variable>.
Otherwise, if HE; is a <complex expression>, then the Typelnfo object returned has a null name.

¢ Result Set Name — null

Code Generation

1)

2)
3)

Let k represent the number of <embedded Java expression>s appearing in the <select statement: single
row>, not including those in the <select target list>.

Let i represent a variable ranging from 1 (one) to k.

For each <embedded Java expression> HE; appearing in the <select statement: single row> that does not
appear in the <select target list>:

114 Obiject Language Bindings (SQL/OLB)

4)

5)

6)

7)
8)

9

10)

11)

12)
13)

IWD 9075-10:201?(E)
11.14 <select statement: single row>

a) Let JT represent the <java datatype> of HE;.
b) Let SM represent the setter method corresponding to JT, as given in Table 2, “SQLJ type properties”.
c) HE; is bound to the statement using SM.

stmt.SM (i, Hg5) ;

If ECtx has a batch context object BC with a pending statement batch and one or more of the following
conditions are false:

a) ECtx has batching enabled, as defined by the isBatching() method.
b) The statement is batchable, as defined by the 1sBatchable() method.
¢) The statement is batch compatible, as defined by the isBatchCompatible() method.

then the pending statement batch is executed on the batch context object using the method execute-
Batch().

BC.executeBatch(Q);
An RTResultSet is created using executeQuery:
rs = stmt.executeQuery() ;

A call to executeComplete defines the end of the statement method invocations. It is called even if an
exception occurs in an earlier step:

stmt.executeComplete () ;

Let n represent the number of <embedded Java expression>s appearing in the <select target list>.
Let m represent the number of columns in the returned RTResultSet object:

m = rs.getColumnCount () ;

If m % n, then an SQLException is thrown by the generated code.

The RTResultSet object is advanced to its first and only row using next():

rs.next () ;

If the invocation of next () returns false, indicating that there were no rows in the RTResultSet object,
then an SQLException is thrown by the generated code.

Let j represent a variable ranging from 1 (one) to n.

For each <embedded Java expression> HE; in <select target list>:

a) LetJT represent the <java datatype> of HE;.

b) Let GM represent the getter method corresponding to JT, as given in Table 2, “SQLJ type properties”.

¢) IfGMisgetObject, then HE; is fetched from the RTResultSet object using getObject and the compile-
time class of JT.

<SQLJ specific clause> and contents 115

IWD 9075-10:201?(E)
11.14 <select statement: single row>

d)

f)

9)

HE; = rs.getObject (j, JT.class) ;

If GM is not getObject, then HE; is fetched from the RTResultSet object using GM.

HE =rs.aM (j) ;

A subsequent call to next() is made on the RTResultSet object to verify that there are no further
rows:

rs.next () ;

If the subsequent call to next() returns true, indicating that there were additional rows, then an
SQLException is thrown by the generated code.

The RTResultSet object is closed, even if an exception occurs in an earlier step:

rs.close () ;

NOTE 24 — If an implementation is able to detect that more than one row is returned, then an exception condition may be
raised prior to the second invocation of rs.next(). Applications should not rely upon the <select target list> containing
the first row's values if there is more than one result row.

Conformance Rules

No additional Conformance Rules.

116 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
11.15 <fetch statement>

11.15 <fetch statement>

This Subclause modifies Subclause 14.5, ““<fetch statement>", in | SO/IEC 9075-2.

Function

Position a cursor on a specified row of a table and retrieve values from that row.

Format

<fetch statement> ::=
11 All alternatives from I1SO/1EC 9075-2
| FETCH [[<fetch orientation>] FROM]
<iterator host expression> INTO <fetch target list>

Syntax Rules
1) |Insert this SR| Case:

a) If <fetch statement> is contained in an <embedded SQL Java program>, then <iterator host expression>
shall be specified.

b) Otherwise, <iterator host expression> shall not be specified.

2) |Replace SR 3)| Case:

a) If <fetch statement> is contained in an <embedded SQL Java program>, then let DC be the implicit
<declare cursor> of <iterator host expression>, let CR be the implicit cursor of <iterator host expres-
sion>, and let T be the table defined by the <cursor specification> of DC.

b) Otherwise, let CN be the <cursor name> in the <fetch statement>. CN shall be contained within the
scope of one or more <cursor name>s that are equivalent to CN. If there is more than one such <cursor
name>, then the one with the innermost scope is specified. Let CR be the cursor specified by CN. Let
T be the table defined by the <cursor specification> of CR. Let DC be the <declare cursor> denoted
by CN.

3)]Insert after SR 9)b)iv)| For each <target specification> TS3;, 1 (one) < i < NTS that is an <embedded
variable name>,

Case:

a) If <fetch statement> is contained in an <embedded SQL Java program>, then the value of the corre-
sponding column of table T shall be SQLJ output assignable to TS3;.

b) Otherwise, the Syntax Rules of Subclause 9.2, “Store assignment”, in ISO/IEC 9075-2, are applied
with TS3; as TARGET and CS as VALUE.
Access Rules

No additional Access Rules.

<SQLJ specific clause> and contents 117

IWD 9075-10:201?(E)
11.15 <fetch statement>

General Rules

1)

[Replace GR 5)b)| Otherwise, if the <fetch target list> contains more than one <target specification>, then
values from the current row are assigned to their corresponding targets identified by the <fetch target list>.
If <fetch statement> is not contained in an <embedded SQL Java program>, then the assignments are made
in an implementation-dependent order. Let TV be a target and let SV denote its corresponding value in the
current row of CR.

Case:

a) If TVisthe <SQL parameter name> of an SQL parameter of an SQL-invoked routine, then the General
Rules of Subclause 9.2, “Store assignment” are applied with TSas TARGET and SV as VALUE.

b) Otherwise,
Case:

i) If <fetch statement> is contained in an <embedded SQL Java program>, then SV is assigned
to TV as described in the following Code Generation.

i) Otherwise, the General Rules of Subclause 9.1, “Retrieval assignment”, in , are applied to TV
as TARGET and SV as VALUE.

Definitions and Rules

1)

2)

3)

4)

5)
6)
7)
8)
9)
10)

If the execution of a <fetch statement> results in a row not found, then the values of the <embedded Java
expression>s contained in the <fetch target list> are implementation-dependent.

If the execution of a <fetch statement> results in a row not found, then endFetch() becomes true.
NOTE 25 — No SQLException is thrown for this condition.

<iterator host expression> shall result in an instance of a generated positioned iterator class or a subclass
of such a class.

The SELECT privilege for the execution of <fetch statement> is based upon the authorization identifier
that was used to execute the <query clause> associated with <iterator host expression>.

Let k represent the cardinality of the <fetch target list>.

Let j represent the cardinality of the associated iterator's <java type list>.

If k # j, then an SQLException condition is thrown: OLB-specific error — invalid number of columns.
Let SLE denote a SELECT list expression of the associated iterator.

Let IT denote a <java datatype> in the associated iterator's <java type list>.

Let HE;, 1 (one) < i < K, represent an <embedded Java expression> in <fetch target list>:
a) HE; <expression> shall be either a <simple variable> or an <Lval expression>.
b) If HE; explicitly states a <parameter mode>, then the specified mode shall be OUT.

c) LetJT represent the corresponding <java datatype> of HE;.

118 Obiject Language Bindings (SQL/OLB)

d)
e)

IWD 9075-10:201?(E)
11.15 <fetch statement>

IT; shall be the same as JT.

If JT is a Java primitive datatype, and the value of the corresponding argument is an SQL null value,

then raise an exception of type sqlj.runtime.SQLNullException.

Profile Entrylnfo Properties

The <fetch statement> is implemented as a client-side translation that populates the <embedded Java expression>s
of the <fetch target list> using the contents of the current row of the iterator. Since the API defined by [JDBC]
uses method execution instead of supporting <fetch statement>, <fetch statement> does not appear in the profile.

Code Generation

The <fetch statement> represents a client-side translation that does not appear in the profile. Accordingly, it
does not access a connection context or its contained connected profile.

1) Let IE represent the <iterator host expression>. IE shall be an instance of a class or subclass of generated

iterator class.
2) Case:
a) If <fetch orientation> specifies NEXT, then let IEM be next().
b) If <fetch orientation> specifies PRIOR, then let IEM be previous().
c) If <fetch orientation> specifies FIRST, then let IEM be First().
d) If <fetch orientation> specifies LAST, then let IEM be last().
e) If <fetch orientation> specifies ABSOLUTE, then let IHE be the value of the <simple value specifi-
cation> and let IEM be absolute(l HE).
f) If <fetch orientation> specifies RELATIVE, then let IHE be the value of the <simple value specifica-

tion>and let IEM be relative(l HE).

3) The iterator is positioned on a row using IEM:

| E.I EM;

4) If the invocation of IEM returns true, then:

a)
b)
c)

Let n represent the number of <embedded Java expression>s appearing in the <fetch target list>.
Let j represent a variable ranging from 1 (one) to n.

For each <embedded Java expression> HE; in <fetch target list>, HE; is fetched from the iterator
using getCol:

HE = I E.getColj () ;

Conformance Rules

No additional Conformance Rules.

<SQLJ specific clause> and contents 119

IWD 9075-10:201?(E)
11.16 <assignment statement>

11.16 <assignment statement>

This Subclause modifies Subclause 14.5, “<assignment statement>"’, in 1SO/IEC 9075-4.

Function

Assign a value to an SQL variable, SQL parameter, host parameter, or host variable.

Format

No additional Format items.

Syntax Rules
1) |Replace SR 9)|Case:

a) If <assignment statement> is contained in an <embedded SQL Java program> and the <assignment
target> simply contains an <embedded variable name>, then let AT represent the <assignment target>,
let JT represent the <java datatype> of AT, and let ST represent the SQL type of <assignment source>.
ST shall be output assignable to JT.

b) Otherwise, if the <assignment target> simply contains an <embedded variable name> or a <host
parameter specification> and the <assignment source> is a <value expression>, then the Syntax Rules
of Subclause 9.1, “Retrieval assignment”, in [ISO9075-2], are applied to <assignment target> as
TARGET and <assignment source> as VALUE.

Access Rules

No additional Access Rules.

General Rules

1) |Replace GR 2)|If <assignment target> is a <target specification> that is the <embedded variable name>
of a host variable or embedded Java expression T or the <host parameter specification> of a host parameter
T, then

Case:

a) If <assignment statement> is not contained in an <embedded SQL Java program>, then the value of
<assignment source> is assigned to T according to the General Rules of Subclause 9.1, “Retrieval
assignment”, in [ISO9075-2], with the value of <assignment source> as VALUE and T as TARGET.

b) Otherwise, the value of <assignment source> is assigned to T as specified in Subclause 11.9, “<exe-
cutable clause>".
Definitions and Rules

1) Let AT represent the <assignment target>.

120 Obiject Language Bindings (SQL/OLB)

2)
3)
4)
5)
6)

IWD 9075-10:201?(E)
11.16 <assignment statement>

Let TT represent the <java datatype> of AT.

Let AS represent the SQL type of <assignment source>.

AT shall be either a <simple variable> or <Lval expression>.

If AT explicitly states a <parameter mode>, then <parameter mode> shall specify OUT.

If TT isaJava primitive datatype, and the runtime value of AS is an SQL null value, then raise an exception
of type sqlj.runtime.SQLNullException.

Profile Entrylnfo Properties

— SQL String — Uses the default as specified in Subclause 4.3.5.1, “EntryInfo overview”.

Role — STATEMENT

Conformance Rules

No additional Conformance Rules.

<SQLJ specific clause> and contents 121

IWD 9075-10:201?(E)
11.17 <savepoint statement>

11.17 <savepoint statement>
This Subclause modifies Subclause 17.5, “<savepoint statement>", in 1SO/IEC 9075-2.

Function

Establish a savepoint.

Format

No additional Format items.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Profile Entrylnfo Properties

— SQL String — Exact text of the matching production.
— Role — SAVEPOINT

— Parameter Java fields — No parameters allowed.

Conformance Rules

No additional Conformance Rules.

122 Obiject Language Bindings (SQL/OLB)

11.18 <release savepoint statement>

IWD 9075-10:201?(E)
11.18 <release savepoint statement>

This Subclause modifies Subclause 17.6, “<release savepoint statement>"", in |SO/IEC 9075-2.

Function

Destroy a savepoint.

Format

No additional Format items.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Profile Entrylnfo Properties

— SQL String — Exact text of the matching production.

— Role — RELEASE_SAVEPOINT

— Parameter Java fields — No parameters allowed.

Conformance Rules

No additional Conformance Rules.

<SQLJ specific clause> and contents 123

IWD 9075-10:201?(E)
11.19 <commit statement>

11.19 <commit statement>

This Subclause modifies Subclause 17.7, ““<commit statement>"’, in ISO/IEC 9075-2.

Function

Terminate the current SQL-transaction with commit.

Format

No additional Format items.

Syntax Rules

1) |Insert this SR| Neither AND CHAIN nor AND NO CHAIN shall be specified in a <commit statement>
contained in a <statement clause>.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Definitions and Rules
None.

NOTE 26 — Conformance to SQL/OLB requires support only of the COMMIT and optional WORK keywords.

Profile Entrylnfo Properties

— SQL String — Exact text of the matching production.
— Role — COMMIT

— Parameter Java fields — No parameters allowed.

Conformance Rules

No additional Conformance Rules.

124 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
11.20 <rollback statement>

11.20 <rollback statement>

This Subclause modifies Subclause 17.8, ““<rollback statement>"", in | SO/IEC 9075-2.

Function

Terminate the current SQL-transaction with rollback, or rollback all actions affecting SQL-data and/or schemas
since the establishment of a savepoint.

Format

No additional Format items.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Definitions and Rules

None.

NOTE 27 — Conformance to SQL/OLB requires support only of the ROLLBACK and optional WORK keywords. If support of
Feature T271, “Savepoints”, is claimed, then the <savepoint clause> is also supported.

Profile Entrylnfo Properties

— SQL String — Exact text of the matching production.
— Role — ROLLBACK

— Parameter Java fields — No parameters allowed.

Conformance Rules

No additional Conformance Rules.

<SQLJ specific clause> and contents 125

IWD 9075-10:201?(E)
11.21 <set transaction statement>

11.21 <set transaction statement>

This Subclause modifies Subclause 17.2, ““<set transaction statement>"’, in |SO/IEC 9075-2.

Function

Set the characteristics of the next SQL-transaction for the SQL-agent.

Format

No additional Format items.

Syntax Rules

1) |Insert this SR| If <set transaction statement> is contained in an <embedded SQL Java program>, then
LOCAL shall not be specified.

2) |Insertthis SR|If <set transaction statement> is contained in an <embedded SQL Java program>, then <set
transaction statement> shall not contain a <transaction mode> that immediately contains <diagnostics
size>.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Profile Entrylnfo Properties

— SQL String — Exact text of matching production
— Role — SET_TRANSACTION
— Parameter Java fields — No parameters allowed.

— Descriptor — An instance of class sqlj.runtime.profile.SetTransactionDescriptor that describes the
<transaction access mode> and <isolation level>.

Conformance Rules

No additional Conformance Rules.

126 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
11.22 <call statement>

11.22 <call statement>

This Subclause modifies Subclause 16.1, “<call statement>", in |SO/IEC 9075-2.

Function

Invoke an SQL-invoked routine.

Format

No additional Format items.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Definitions and Rules

1) If an <embedded Java expression> contained in an <SQL argument> does not explicitly state a <parameter
mode>, then its <parameter mode> is implicitly IN.

Profile Entrylnfo Properties

— SQL String — Rewritten in JDBC specified procedure call syntax:
{ <call statement> }

— Role — CALL
— Execute Type — EXECUTE

Code Generation

1) All <embedded Java expression>s with <parameter mode> of IN or INOUT are bound as specified in the
default rules for <executable clause>.

2) If ECtx has a batch context object BC with a pending statement batch and one or more of the following
conditions are false:

<SQLJ specific clause> and contents 127

IWD 9075-10:201?(E)
11.22 <call statement>

3)

4)

5)

6)

a) [ECtx has batching enabled, as defined by the 1sBatching() method.
b) The statement is batchable, as defined by the 1sBatchable() method.
c) The statement is batch compatible, as defined by the i sBatchCompatible () method.

then the pending statement batch is executed on the batch context object using the method execute-
Batch().

BC.executeBatch();

If batching is enabled on ECtX, as defined by isBatching(), and the statement is batchable, as defined
by isBatchable(), then the statement is placed into a batch context object which becomes the current
batch context object.

BC = stnt .getBatchContext();

Otherwise, if batching is not enabled on ECtx or the statement is not batchable, then the statement is exe-
cuted using execute:

stmt.execute () ;

All <embedded Java expression>s with <parameter mode> of OUT or INOUT are assigned as specified
in the default rules for <executable clause>.

A call to executeComplete defines the end of the statement method invocations. It is called only after all
side-channel results have been visited using the associated execution context's getNextResultSet method.
If no side-channel results are produced, executeComplete is called immediately. It is called even if an
exception occurs in an earlier step:

stmt.executeComplete () ;

Conformance Rules

No additional Conformance Rules.

128 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
11.23 <assignment clause>

11.23 <assignment clause>

Function

Assigns a value to a Java variable, Java field, or parameter.

Format

<assignment clause> ::=

<Lval expression> <equals operator>

<left brace> <assignment spec clause> <right brace>

<assignment spec clause> ::=

<query clause>

| <function clause>
| <iterator conversion clause>

Syntax Rules

None.

Access Rules

None.

General Rules

None.

Definitions and Rules

1)
2)

3)

4)

5)

An <assignment clause> shall not appear in the control list of a FOR loop.

An <assignment clause> is not permitted to appear where a Java assignment expression, but not an
assignment statement, is permitted to appear.

An <assignment clause> has the effect of evaluating <assignment spec clause> and assigning its value to
<Lval expression>.

If the <assignment spec clause> is a <query clause>, then:
a) LetJT represent the <java datatype> of <Lval expression>.

b) JT shall refer to an object the type of which is generated iterator class or interface sqglj.runtime.Result-
Setlterator.

¢) IfJTisagenerated positioned iterator class, then the number and types of columns of the query shall
match those of the iterator class declaration.

If the <assignment spec clause> is a <function clause>, then:

<SQLJ specific clause> and contents 129

IWD 9075-10:201?(E)
11.23 <assignment clause>
a) Let JT represent the <java datatype> of <Lval expression>.
b) Let FT represent the SQL datatype that is returned by the invocation of the function.

¢) IfJT isaJava primitive datatype and the runtime value of the FT is an SQL null value, then raise an
exception of type sqglj.runtime.SQLNullException.

d) FT shall be SQLJ output assignable to JT.
6) If the <assignment spec clause> is an <iterator conversion clause>, then:
a) LetJT be the <java datatype> of <Lval expression>.

b) JT shall refer to an object whose type is generated iterator class.

Conformance Rules

None.

130 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
11.24 <query clause>

11.24 <query clause>

Function

Specify a statement to retrieve multiple rows from a specified table.

Format

<query clause> ::=
<query expression>

Syntax Rules

1) Let QC be the <query clause> and let QE be the <query expression> immediately contained in QC.

2) Let AC be the <assignment clause> whose <assignment spec clause> immediately contains QC and let
ACI be the iterator object referenced by the <Lval expression> immediately contained in AC.

3) Let IDC be the implicit <declare cursor> of ACI that is the <declare cursor> effectively performed by an
SQL-server as a result of the execution of AC and let CSbe the cursor specified by IDC.

4) QE is the simply underlying table of CS

Access Rules

None.

General Rules

1) Let T be the result of the <query expression>.
2) If Tis empty, then a completion condition is raised: no data.

3) The result of <query clause> is T.

NOTE 28 — The result of <query clause> is effectively the sort table of the <query expression> with all extended sort key
columns (if any) removed. “sort table” and “extended sort key column” are defined in Subclause 7.13, “<query expression>",
in [1SO9075-2].

Definitions and Rules

1) Let Q be the table specified by the <query expression>.

2) Let j represent the degree of Q.

3) Let SLE denote a column of Q.

4) Let IT represent the iterator type of the associated iterator object.
5) Case:

<SQLJ specific clause> and contents 131

IWD 9075-10:201?(E)
11.24 <query clause>

a)
b)

If IT is interface sglj.runtime.ResultSetlterator, then no further type checking is performed on SLE.

If IT is of type <positioned iterator>, then:

Let k represent the cardinality of the <java type list> of the associated iterator object.

If k # J, then an SQLEXxception is thrown: OLB-specific error — invalid number of columns.
Let i represent a variable ranging from 1 (one) to k.

For each <java datatype> JD in <java type list>, let i be its associated range variable.

1) Let ST represent the SQL datatype of SLE;.

2) Let JT represent the Java datatype of JD;.

If IT is of type <named iterator>, then:

i)

vii)

If SLE is not named in the query by a legal Java identifier, then SLE shall be given a column
alias that is a legal Java identifier by means of the SQL phrase AS i denti fi er.

Let k represent the cardinality of the <java pair list>.

If k is greater than j, then an SQLEXxception condition is thrown: OLB-specific error — invalid
number of columns.

Let SLN represent the SQL name or alias of an associated SLE.

Let i represent a variable ranging from 1 (one) to k.

Let n represent a variable ranging from 1 (one) to j.

For each <java pair> JP in <java pair list> let i be its associated range variable.

1) If there exists an SLE, the SLN of which is a case-insensitive match of the <java id>
associated with JP;, then let n be the index of the first such SLN; otherwise, let n be 0

(zero).

2) Ifnis 0 (zero), then an SQLException condition is thrown: OLB-specific error — invalid
number of columns.

3) LetJT represent the Java datatype of JP;.
4) Let ST represent the SQL datatype of SLE,,.

d) ST shall be SQLJ output assignable to JT.

6) The constructor method of the corresponding <iterator declaration clause> shall be in scope.

Profile Entrylnfo Properties

132

SQL String — Default as described in Subclause 4.3.5.1, “EntryInfo overview”.

Role — If IT implements interface sqlj.runtime.ForUpdate, then role is QUERY_FOR_UPDATE. If
IT is (not merely implements) interface sglj.runtime.ResultSetlterator, then role is UNTYPED. Otherwise,
role is QUERY

Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
11.24 <query clause>

— Execute Type — If IT is interface sqglj.runtime.ResultSetlterator, then EXECUTE_UPDATE; otherwise,
EXECUTE_QUERY

— Parameter Java fields — Describes the <embedded Java expression>s appearing in the <executable
clause>, as described in Subclause 4.3.5.1, “EntryInfo overview”. Additionally, if IT is interface sqglj.run-
time.ResultSetlterator, then the <Lval expression> of the return result is described as an additional
parameter.

e Param Count — Gives the number of <embedded Java expression>s appearing in the <executable
clause>, as described in Subclause 4.3.5.1, “EntryInfo overview”. Additionally, if IT is interface
sglj.runtime.ResultSetlterator, then the count is incremented by one to reflect the parameter describing
the <Lval expression> of the return result.

e Param Info — Returns a Typelnfo object describing a particular <embedded Java expression>, as
described in Subclause 4.3.5.1, “EntryInfo overview”. If IT is interface sglj.runtime.ResultSetlterator,
then a Typelnfo object describing the <Lval expression> of the return result is returned as an additional
parameter, appearing after all other parameters.

— Result Set Column Java fields — Describes the result set columns, as expected by IT.

* Result Set Name — If IT is interface sglj.runtime.ResultSetlterator, then null; otherwise, the class
name of IT.

e Result Set Type — If IT is of type <positioned iterator>, then POSITIONED_RESULT. If IT is of
type <named iterator>, then NAMED_RESULT. If IT is interface sqglj.runtime.ResultSetlterator, then
NO_RESULT.

¢ Result Set Count — If IT is of type <positioned iterator>, then the cardinality of the <java type list>
of the associated iterator, k. If IT is of type <named iterator>, then the cardinality of the <java pair
list> of the associated iterator, k. If IT is interface sqlj.runtime.ResultSetlterator, then 0 (zero).

¢ Result Set Info — If IT is of type <positioned iterator>, then returns a Typelnfo object describing a
JD in <java type list>. The i-th Typelnfo object describes JD;. The Typelnfo object returned has name

= null, mode = OUT, dynamic parameter marker index = -1, and Java type name corresponding to
the name of the type of JD;. If I T is of type <named iterator>, then returns a Typelnfo object describing

a JP in <java type list>. Since a named iterator is used, the order of the Typelnfo objects returned is
implementation-dependent. For each JP, there exists exactly one Typelnfo object describing JP, which
has name=<java id> of JP, mode = OUT, dynamic parameter marker index = -1, and Java type name
corresponding to the name of the type of JP. If IT is interface sqlj.runtime.ResultSetlterator, then
there are no Typelnfo objects returned.

Code Generation

1) Let k represent the number of <embedded Java expression>s appearing in the <query clause>.
2) Letirepresent a variable ranging from 1 (one) to k.

3) For each <embedded Java expression> HE; appearing in the <query clause>:
a) Let JT represent the <java datatype> of HE;.

b) Let SM represent the setter method corresponding to JT, as given in Table 2, “SQLJ type properties”.
c) HE;is bound to the statement using SM:

<SQLJ specific clause> and contents 133

IWD 9075-10:201?(E)
11.24 <query clause>

4)
5)
6)

7)

8)

stmt.SM (i, Hg5) ;

Let IE represent the <Lval expression> on the left hand side of the <assignment clause>.
Let IT represent the <java datatype> of IE.

If ECtx has a batch context object BC with a pending statement batch and one or more of the following
conditions are false:

a) ECtx has batching enabled, as defined by the isBatching() method.
b) The statement is batchable, as defined by the isBatchable () method.
c) The statement is batch compatible, as defined by the isBatchCompatible() method.

then the pending statement batch is executed on the batch context object using the method execute-
Batch().

BC.executeBatch();

Case:
a) If IT is interface sqlj.runtime.ResultSetlterator, then:

i) If batching is enabled on ECtx, as defined by isBatching(), and the statement is batchable,
as defined by isBatchable (), then the statement is placed into a batch context object which
becomes the current batch context object.

BC = stnt .getBatchContext();

i) The statement is executed using executeUpdate.

iii) IE is fetched from the statement using getObject, the compile-time class of IT, and an index
one greater than the number of <embedded Java expression>s in the <query clause>:

|E = stmt.getObject(k + 1, I T.class);
b) Otherwise:
i) An RTResultSet is created using executeQuery.

i) IE is assigned to the result of creating a new iterator object.

A call to executeComplete defines the end of the statement method invocations. It is called even if an
exception occurs in an earlier step:

stmt.executeComplete () ;

Conformance Rules

None.

134 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
11.25 <function clause>

11.25 <function clause>

Function

Invoke an SQL-invoked function.

Format

<function clause> ::=
VALUES <left paren> <routine invocation> <right paren>

Syntax Rules

1) Let Rl be the <routine invocation> immediately contained in the <function clause>.

2) The Syntax Rules of Subclause 7.1, “<routine invocation>" are applied with Rl as ROUTINE INVOCATION,
the SQL-path (if any) as SQLPATH, and the user-defined type of the static SQL-invoked method (if any)
as UDT, yielding subject routine SR and static SQL argument list SAL.

3) SRshall be an SQL-invoked function.

Access Rules

No additional Access Rules.

General Rules

1) The General Rules of Subclause 7.1, “<routine invocation>", are applied with SRas SUBJECT ROUTINE
and SAL as STATIC SQL ARG LIST, yielding value V that is the result of the <routine invocation>.

2) The value of <function clause> is V.

Profile Entrylnfo Properties

— SQL String — Rewritten in JDBC-specified function call syntax with all <embedded Java expression>s
replaced by <dynamic parameter specification>.

{ ? = CALL <routine invocation> }

— Role — VALUES

— Parameter Java fields — Describes both the <Lval expression> of the return result and all <embedded
Java expression>s appearing in the <function clause>.

e Param Count — Gives the number of <embedded Java expression>s appearing in the <function
clause>, plus one for the return result.

» Param Info — Returns a Typelnfo object describing a particular <embedded Java expression>. The
<Lval expression> of the containing <assignment clause> is the first Typelnfo object returned, at

<SQLJ specific clause> and contents 135

IWD 9075-10:201?(E)
11.25 <function clause>

index 1 (one). The i-th Typelnfo object describes the i-th <embedded Java expression> appearing in
the original <assignment clause> (or, equivalently, the i-th <dynamic parameter specification> in the
SQL String Java field), where i is a one-based index.

Code Generation

1)

2)

3)

4)

5)
6)
7)
8)

9)

All <embedded Java expression>s are bound according to the rules specified for <executable clause> with
the exception that the parameter index is increased by 1 (one).

If ECtx has a batch context object BC with a pending statement batch and one or more of the following
conditions are false:

a) ECtx has batching enabled, as defined by the isBatching() method.
b) The statement is batchable, as defined by the 1sBatchable() method.
c) The statement is batch compatible, as defined by the isBatchCompatible() method.

then the pending statement batch is executed on the batch context object using the method execute-
Batch().

BC.executeBatch();

If batching is enabled on ECtx, as defined by 1sBatching(), and the statement is batchable, as defined
by isBatchable(), then the statement is placed into a batch context object which becomes the current
batch context object.

BC = stnt .getBatchContext();

The statement is executed using executeUpdate:

stmt.executeUpdate () ;

Let RE represent the <Lval expression> on the left hand side of the <assignment clause>.

Let RT represent the <java datatype> of RE.

Let GM represent the getter method corresponding to JT, as given in Table 2, “SQLJ type properties”.
Case:

a) If GM is getObject, then RE is fetched from the statement using getObject and the compile-time class
of RT:

RE = stmt.getObject (1, RT.class) ;
b) Otherwise, RE is fetched from the statement using GM:
RE = stmt.GM (1) ;

A call to executeComplete defines the end of the statement method invocations. It is called even if an
exception occurs in an earlier step:

stmt.executeComplete () ;

136 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
11.25 <function clause>

Conformance Rules

1) Without Feature JO06, “Assignment Function statement”, conforming SQL language shall not contain a
<function clause>.

<SQLJ specific clause> and contents 137

IWD 9075-10:201?(E)
11.26 <iterator conversion clause>

11.26 <iterator conversion clause>

Function

Specify the conversion of a Java.sql .ResultSet object into a strongly-typed iterator object.

Format

<iterator conversion clause> ::=
CAST <result set expression>

<result set expression> :I:=
<embedded Java expression>

Syntax Rules

None.

Access Rules

None.

General Rules

None.

Definitions and Rules

1) The <java datatype> of <result set expression> shall implement the interface java.sgl.ResultSet.

2) After an iterator conversion, the result of further calls to the ResultSet object given by the <result set
expression> are implementation-defined.

3) Closing the iterator assigned by the <Lval expression> will also close the ResultSet of the <result set
expression>.

4) Let RE represent the runtime value of <result set expression>.
5) Let j represent the number of columns contained in RE.
6) Let IT represent the iterator type of the <Lval expression>.
7) Case:
a) If IT is of type <positioned iterator>, then:
i) Let k represent the cardinality of the <java type list> of the associated iterator.

i) If k # j, then an SQLEXxception condition is thrown: OLB-specific error — invalid number of
columns.

138 Obiject Language Bindings (SQL/OLB)

b)

i)

IWD 9075-10:201?(E)
11.26 <iterator conversion clause>
Let i represent a variable ranging from 1 (one) to k.
For each <java datatype> JD in <java type list>, let i be its associated range variable.
1) Let ST represent the SQL datatype of the i-th column of RE.
2) Let JT represent the Java datatype of JD;.

If IT is of type <named iterator>, then:

Let k represent the cardinality of the <java pair list>.

If k is greater than j, then an SQLException condition is thrown: OLB-specific error — invalid
number of columns.

Let SLN represent the name of an associated column of RE.

Let i represent a variable ranging from 1 (one) to k.

Let n represent a variable ranging from 1 (one) to j.

For each <java pair> JP in <java pair list>, let i be its associated range variable.

1) Letn be the index of the first column whose SLN is a case-insensitive match of the <java
id> associated with JP;, or O (zero) if no such SLN exists.

2) Ifnis 0 (zero), then an SQLException condition is thrown: OLB-specific error — invalid
number of columns.

3) LetJT represent the Java datatype of JP;.

4) Let ST represent the SQL datatype of the n-th column of RE.

¢) ST shall be SQLJ output assignable to JT.

8) The constructor method of the corresponding <iterator declaration clause> shall be in scope.

Profile Entrylnfo Properties

SQL String — Default as described in Subclause 4.3.5.1, “EntryInfo overview”
Role — ITERATOR_CONVERSION

Execute Type — EXECUTE_UPDATE

Statement Type — CALLABLE_STATEMENT

Parameter Java fields — Describes both the <Lval expression> of the return result and the <result set
expression> appearing in the <iterator conversion clause>

Param Count — 2

Param Info — Returns a Typelnfo object describing a particular <embedded Java expression>. The
<Lval expression> is the first Typelnfo object returned, at index 1 (one). The <result set expression>
is the second Typelnfo object returned, at index 2.

<SQLJ specific clause> and contents 139

IWD 9075-10:201?(E)
11.26 <iterator conversion clause>

Code Generation

1)
2)
3)
4)

5)

6)

7)

8)

9)

Let RE represent the <Lval expression> on the left hand side of the <assignment clause>.
Let RT represent the <java datatype> of RE.

Let HE represent the <result set expression> of the <iterator conversion clause>.

HE is bound to the statement using setObject:

stmt.setObject(2, HE);

If ECtx has a batch context object BC with a pending statement batch and one or more of the following
conditions are false:

a) ECtx has batching enabled, as defined by the isBatching() method.
b) The statement is batchable, as defined by the isBatchable() method.
c) The statement is batch compatible, as defined by the isBatchCompatible() method.

then the pending statement batch is executed on the batch context object using the method execute-
Batch().

BC.executeBatch();

If batching is enabled on ECtx, as defined by i sBatching(), and the statement is batchable, as defined
by isBatchable(), then the statement is placed into a batch context object which becomes the current
batch context object.

BC = stnt .getBatchContext();

The statement is executed using executeUpdate:

stmt.executeUpdate();

RE is fetched from the statement using getObject and the compile-time class of RT:
RE = stmt.getObject(l, RT.class);

A call to executeComplete defines the end of the statement method invocations. It is called even if an
exception occurs in an earlier step.

stmt.executeComplete();

Conformance Rules

None.

140 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
11.27 <compound statement>

11.27 <compound statement>

This Subclause modifies Subclause 14.1, “<compound statement>"’, in | SO/IEC 9075-4.

Function

Specify a statement that groups other statements together.

Format

<compound statement> ::=
BEGIN { <SQL procedure statement> <semicolon> }... END

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Definitions and Rules

1) <compound statement> is permitted to appear in a <statement clause>. It consists of one or more <SQL
procedure statement>s (i.e., any of the SQL Constructs that are permitted to appear in a <statement clause>,
except for a <compound statement>), terminated by semicolons, sandwiched between BEGIN and END:

#sql { BEGIN
INSERT INTO RAIN (MONTH, RAINFALL) VALUES (:x, :Y);
SELECT MAX(RAINFALL) INTO :z FROM RAIN WHERE MONTH - :x;
END };

2) SQLJ follows the SQL/PSM rules for the semantics of blocks in which a contained statement raises an
exception and in which a host variable is referenced in multiple statements.

3) If an <embedded Java expression> containing an <Lval expression> has either an implicit or explicit
<parameter mode> of OUT or INOUT in a given <SQL procedure statement> then let LV denote the
location of the <Lval expression>. If another <embedded Java expression> containing an <Lval expression>
has either an implicit or explicit <parameter mode> of IN or INOUT in a subsequent <SQL procedure
statement> and the location of the <Lval expression> is LV, then the value of the <Lval expression> is
implementation-defined.

<SQLJ specific clause> and contents 141

IWD 9075-10:201?(E)
11.27 <compound statement>

Profile Entrylnfo Properties

— SQL String — Default as defined in Subclause 4.3.5.1, “EntryInfo overview”.
— Role — BLOCK

Conformance Rules

1) Without Feature JOO7, “Compound statement”, conforming SQL language shall not contain a <compound
statement>.

142 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
12.1 Overview

12 Package sqlj.runtime

12.1 Overview

The sqlj.runtime package defines the runtime classes and interfaces that are available to an SQLJ program. It
includes utility classes such as AsciiStream that are used directly, and interfaces such as ResultSetlterator that
appear as part of a generated class declaration.

12.2 SQLJ runtime interfaces

12.2.1 sqlj.runtime.ConnectionContext

12.2.1.1 Interface Overview

public interface Connecti onCont ext

The ConnectionContext interface provides a set of methods that manage a set of SQL-statements performed
during an SQL-session. A connection context object maintains a java.sqgl .Connection object on which
dynamic SQL-statements are permitted to be performed. It also contains a default ExecutionContext object by
which SQL-statement execution semantics are permitted to be queried and modified.

In addition to those methods defined by this interface, each concrete implementation User Ctx of a connection
context object shall provide the following methods:

— Returns a profile key for a particular profile.Loader object and profile name:

public static Object getProfileKey
(sqlj.runtime.profile.Loader 1,
String profileName) throws SQLException ;

— Returns a top level profile object for a particular profile key:

public static sqlj.runtime.profile.Profile getProfile (Object key) ;
— Returns the default connection context object for the UserCtx class:

public static UserCtx getDefaultContext () ;

— Sets the default connection context object for the UserCtx class:

Package sqglj.runtime 143

IWD 9075-10:201?(E)
12.2 SQLJ runtime interfaces

public static void setDefaultContext (UserCtx dflt) ;
— Constructs a connection context object:

public UserCtx (ConnectionContext other)
throws SQLException;

public UserCtx (java.sql.Connection conn)
throws SQLException;

If the connection context is specified to support <url constructors>, then:

public UserCtx (String url, String user, String pwd, boolean autoCommit)
throws SQLException ;

public UserCtx (String url, Properties info, boolean autoCommit)
throws SQLException ;

public UserCtx (String url, boolean autoCommit)
throws SQLException ;

If the connection context is specified to support <data source constructors>, then:

public UserCtx ()
throws SQLException ;

public UserCtx (String user, String password)
throws SQLException ;

Note that an invocation of UserCtx causes either a new java.sql . Connection object to be created or an
existing Connection (or ConnectionContext) object to be reused. If the invocation causes an exception to be
thrown, then the Connection object is closed only if the invocation caused it to be created.

Note that, for any UserCtx constructor that creates a java.sql . Connection object during construction,
that Connection object will be automatically closed if the constructor call throws an exception. For any UserCtx
constructor that uses an already opened java.sql .Connection object (or connection context object)
passed from the client, that Connection object (or connection context object) will remain open even if the
constructor call throws an exception.

12.2.1.2 Variables

12.2.1.2.1 CLOSE_CONNECTION

public static final boolean CLOSE_CONNECTION = true;

The underlying Java.sqgl . Connection object should be closed.

See Also

— Subclause 12.2.1.3.1, “close ()”

— Subclause 12.2.1.3.2, “close (boolean)”

144 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
12.2 SQLJ runtime interfaces

12.2.1.2.2 KEEP_CONNECTION

public static final boolean KEEP_CONNECTION = false;

The underlying Java.sqgl . Connection object should not be closed.

See Also

— Subclause 12.2.1.3.1, “close ()”

— Subclause 12.2.1.3.2, “close (boolean)”

12.2.1.3 Methods

12.2.1.3.1 close ()

public abstract void close () throws SQLException

Releases all resources used in maintaining SQL-session state on this connection context object, closes any open
ConnectedProfile objects, and closes the underlying Java.sql - Connection object. This method is
equivalent to close (CLOSE_CONNECTION).

Throws

— SQLException — if unable to close the connection context object

See Also

— Subclause 12.2.1.3.2, “close (boolean)”

12.2.1.3.2 close (boolean)

public abstract void close (boolean closeConnection)
throws SQLException

Releases all resources used in maintaining SQL-session state on this connection context object and closes any
open ConnectedProfile objects managed by this connection context object. Since the underlying

Java.sgl .Connection object managed by this connection context object is permitted to be shared between
multiple connection context objects, it is not always desirable to close the underlying java.sql .Connection
object when close() is called. If the constant KEEP_CONNECTION is passed, the underlying
Java.sql .Connection objectis not closed. Otherwise, if the constant CLOSE_CONNECTION is passed,
the underlying Connection object is closed.

Package sqlj.runtime 145

IWD 9075-10:201?(E)
12.2 SQLJ runtime interfaces

NOTE 29 — A connection context object is automatically closed at the time it is garbage-collected. A connection context object
closed in such a way does not close the underlying java.sql . Connection object since it will also be automatically closed
at the time it is garbage-collected

Parameters

— closeConnection — is CLOSE_CONNECTION if the underlying Connection object should also be closed

Throws

— SQLException — if unable to close the connection context object

See Also

— Subclause 12.2.1.2.1, “CLOSE_CONNECTION”
— Subclause 12.2.1.2.2, “KEEP_CONNECTION”

12.2.1.3.3 getConnectedProfile (Object)

public abstract ConnectedProfile getConnectedProfile (Object profileKey)
throws SQLException

Each connection context object maintains a set of ConnectedProfile objects on which SQL-statements are pre-
pared. Collectively, the set of ConnectedProfile objects contained in a connection context object represent the
set of all possible SQL-statements that are permitted to be performed between the time that this connection
context object is created and the time that it is destroyed.

The profileKey object shall be an object that was returned via a prior call to getProfileKey (). An
exception is thrown if a ConnectedProfile object could not be created for this connection context object.

Parameters

— profileKey — the key associated with the desired profile object

Returns

— The ConnectedProfile object associated with a profileKey for this connection context object.

Throws

— SQLException — if the ConnectedProfile object could not be created

— IllegalArgumentException — if the profileKey is null or invalid

146 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
12.2 SQLJ runtime interfaces

12.2.1.3.4 getConnection ()

public abstract Connection getConnection ()

Note that, depending on construction, the returned Connection object might be shared between many connection
context objects.

Returns

— The underlying java.sql . Connection object associated with this connection context object.

12.2.1.3.5 getExecutionContext ()

public abstract ExecutionContext getExecutionContect ()

The default execution context object is the execution context object used if no explicit context object is supplied
during the execution of a particular SQL-statement.

The returned default ExecutionContext object refers to the default ExecutionContext object in this connection
context object and, as such, any changes made to the returned object are visible in the connection context object.

Returns

— The default execution context object used by this connection context object.

12.2.1.3.6 getTypeMap ()

public abstract Map getTypeMap ()

If the <connection declaration clause> contains a <declaration with clause> that specifies the <predefined
connection with keyword> typeMap, then let TM be the corresponding <with value>. The invocation of the
method getTypeMap () returns an instance of a class that implements java.uti I .Map that contains the
user-defined type mapping information provided by the properties files listed in TM in the form specified in
[JDBC]. If the <connection declaration clause> does not contain a <declaration with clause> that specifies
typeMAP, then this method returns Java null.

Returns

— The user-defined tyep map associated with the ConnectionContext in the format specified in [JDBC], or
Java null if there is no associated type map.

Package sqglj.runtime 147

IWD 9075-10:201?(E)
12.2 SQLJ runtime interfaces

12.2.1.3.7 isClosed ()

public abstract boolean isClosed ()

Returns true if this execution context object has been closed; otherwise, returns false.

Returns

— If this execution context object has been closed, then true; otherwise, false.

12.2.2 sqlj.runtime.ForUpdate

12.2.2.1 Interface Overview

public interface For Update

An interface implemented by iterator classes whose instances will be used in a positioned update or delete
statement (as parameter to a WHERE CURRENT OF clause). The class of every iterator object that is to be
passed as a parameter to a WHERE CURRENT OF clause shall implement this interface.

12.2.2.2 Methods

12.2.2.2.1 getCursorName ()

public abstract String getCursorName () throws SQLException
Get the name of the implicit SQL cursor used by this iterator.

In SQL, a result table is retrieved through a named cursor. The current row of a result can be updated or deleted
using a positioned update or delete statement that references the cursor name.

SQLJ supports this SQL feature by providing the name of the implicit cursor used by an iterator. The current
row of an iterator is also the current row of this implicit cursor.

NOTE 30 — If positioned update is not supported, then an SQLException is thrown.

Returns

— The iterator's SQL cursor name.

148 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
12.2 SQLJ runtime interfaces

Throws

— SQLException — if the SQL-implementation raises an exception condition.

12.2.3 sqglj.runtime.Namedlterator

public interface Nanedlterator
extends ResultSetlterator

An interface implemented by all iterators that employ a strategy of binding by name. All such iterators depend
on the name of the columns of the data to which they are bound, as opposed to the order of the columns to
which they are bound.

In addition to implementing this interface, classes that implement the NamedIterator interface shall provide:

— A public constructor that, when invoked, takes an RTResultSet object as an argument. If the construction
of a named iterator results in an exception being thrown, it is assumed that the iterator automatically closes
the underlying RTResultSet object. This only applies to exceptions thrown during construction.

— A named accessor method for each <java id> appearing in the <java pair list> of the <iterator declaration
clause> that declared the current iterator. Each named accessor method uses as its name an exact case-
matching copy of its <java id>. Using case-insensitive comparison, the name of the accessor method is
equal to the name of its associated result column.

— Once next() has returned false, the behaviour of any named accessor method is implementation-
dependent.

12.2.4 sqlj.runtime.Positionedlterator

12.2.4.1 Interface Overview

public interface Positionedlterator
extends ResultSetlterator

An interface implemented by all iterators that employ a by position binding strategy. All such iterators depend
on the position of the columns of the data to which they are bound, as opposed to the names of the columns to
which they are bound.

In addition to implementing this interface, classes that implement the Positionedlterator interface shall provide:

— A public constructor that, when invoked, takes an RTResultSet object as an argument. If the construction
of a positioned iterator results in an exception being thrown, it is assumed that the iterator automatically
closes the underlying RTResultSet object. This only applies to exceptions thrown during construction.

— A positioned accessor method for each column in the expected result. The name of the positioned accessor
method for the N-th column will be getColN.

Package sqglj.runtime 149

IWD 9075-10:201?(E)
12.2 SQLJ runtime interfaces

12.2.4.2 Methods

12.2.4.2.1 endFetch ()

public abstract boolean endFetch () throws SQLException

This method is used to determine the success of a FETCH. . . INTO statement; it returns true if the last attempt
to fetch a row failed, and returns false if the last attempt was successful. Rows are attempted to be fetched when
the next () method is called (which is called implicitly during the execution of a FETCH. . . INTO statement).

NOTE 31 — If next() has not yet been called, this method returns true.

Returns

— If the iterator is not positioned on a row, then true; otherwise, false.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 12.2.5.3.9, “next ()”

12.2.5 sqlj.runtime.ResultSetlterator

12.2.5.1 Interface Overview

public interface ResultSetlterator

An interface that defines the shared functionality of those objects used to iterate over the contents of an iterator.

12.2.5.2 Variables

12.25.2.1 ASENSITIVE

public static final int ASENSITIVE = 1;

Constant used by the “sensitivity” Java field, indicating that the iterator is defined to have an asensitive cursor.

150 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
12.2 SQLJ runtime interfaces

12.25.2.2 FETCH_FORWARD

public static final int FETCH_FORWARD = java.sql.ResultSet.FETCH_FORWARD;

Constant used by sqlj.runtime.Scrollable.setFetchDirection, sglj.runtime.ExecutionContext.getFetchDi-
rection, and sqlj.runtime.ExecutionContext.setFetchDirection to indicate that the rows in an iterator object
will be processed in a forward direction, first-to-last.

12.25.2.3 FETCH_REVERSE

public static final int FETCH_REVERSE = java.sql.ResultSet.FETCH_REVERSE;

Constant used by sqlj.runtime.Scrollable.setFetchDirection, sglj.runtime.ExecutionContext.getFetchDi-
rection, and sqlj.runtime.ExecutionContext.setFetchDirection to indicate that the rows in an iterator object
will be processed in a reverse direction, last-to-first.

12.25.2.4 FETCH_UNKNOWN

public static final int FETCH_UNKNOWN = java.sql.ResultSet.FETCH_UNKNOWN;

Constant used by sqglj.runtime.Scrollable.setFetchDirection, sqlj.runtime.ExecutionContext.getFetchDi-
rection, and sqlj.runtime.ExecutionContext.setFetchDirection to indicate that the order in which rows in
an iterator object will be processed is unknown.

12.2.5.2.5 INSENSITIVE

public static final int INSENSITIVE = 2;

Constant used by the “sensitivity” Java field, indicating that the iterator is defined to have an insensitive cursor.

12.25.2.6 SENSITIVE

public static final int SENSITIVE = 3;

Constant used by the “sensitivity” Java field, indicating that the iterator is defined to have a sensitive cursor.

12.2.5.3 Methods

NOTE 32 — Once method isClosed () has returned true, the behaviour of any other method on that iterator is implementation-
dependent.

Package sqlj.runtime 151

IWD 9075-10:201?(E)
12.2 SQLJ runtime interfaces

12.2.5.3.1 clearWarnings ()

public abstract void clearWarnings () throws SQLException

After this call, getWarnings returns null until a new warning is reported for this iterator.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

12.2.5.3.2 close ()

public abstract void close () throws SQLException

Closes the iterator object, releasing any underlying resources. It is recommended that iterators be explicitly
closed as soon as they are no longer needed, to allow for the immediate release of resources that are no longer
needed.

NOTE 33 — If it is not already closed, an iterator is automatically closed when it is destroyed.

Throws

— SQLException — if there is a problem closing the iterator

See Also

— Subclause 12.2.5.3.8, “isClosed ()”

12.2.5.3.3 getFetchSize ()

synchronized public int getFetchSize () throws SQLException

Retrieves the number of rows that is the current fetch size for this iterator object. If this iterator object has not
set a fetch size by calling the method setFetchSize, or has set a fetch size of 0 (zero), then the value returned
is implementation-dependent.

Returns

— The current fetch size for the iterator object.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

152 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
12.2 SQLJ runtime interfaces

12.2.5.3.4 getResultSet ()

public abstract ResultSet getResultSet () throws SQLException

Returns the Java.sqgl .ResultSet object associated with this iterator. The produced

Java.sql .ResultSet object shall have normal JDBC functionality, as defined in [JDBC] (in particular,
SQL null values fetched with JDBC positional column access methods will not raise an SQLNullException).
This method is provided to facilitate interoperability with JDBC.

If support for Feature J002, “ResultSetlterator access to JDBC ResultSet” is provided, then any synchronization
between the iterator and the produced java.sql -.ResultSet object is implementation-defined.

NOTE 34 — For maximum portability, this method should be invoked before the first next() method invocation on the iterator.
Once the Java.sql -ResultSet object has been produced, all operations to fetch data should be through the
Jjava.sql .ResultSet object.

Returns

— A java.sql .ResultSet object for this iterator.

Throws

— SQLException: OLB-specific error — unsupported feature — if support for Feature J002, “ResultSetlter-
ator access to JDBC ResultSet”, is not provided.

12.2.5.3.5 getRow ()

synchronized public int getRow () throws SQLException

Retrieves the current row number. The first row is number 1, the second is number 2, and so on.

Returns

— If there is no current row, then 0 (zero); otherwise, the number of the current row.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

12.2.5.3.6 getSensitivity ()

synchronized public int getSensitivity () throws SQLException

Retrieves the sensitivity of this iterator object. The sensitivity is determined by the <iterator declaration clause>
and by the SQLJ runtime implementation that created the iterator object.

Package sqlj.runtime 153

IWD 9075-10:201?(E)
12.2 SQLJ runtime interfaces

Returns

— Case:

e Ifthis iterator object was declared with the <predefined iterator with keyword> sensitivity and a cor-
responding <with value> SENSITIVE, and the SQLJ runtime that created this iterator object supports
sensitive iterators, then ResultSetlterator . SENSITIVE.

e If this iterator object was declared with the <predefined iterator with keyword> sensitivity and a cor-
responding <with value> INSENSITIVE, and the SQLJ runtime that created this iterator object supports
insensitive iterators, then ResultSetlterator. INSENSITIVE.

« Ifthis iterator object was declared with the <predefined iterator with keyword> sensitivity and a cor-
responding <with value> ASENSITIVE, then ResultSetlterator .ASENSITIVE.

e Otherwise, an implementation-dependent value.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

12.2.5.3.7 getWarnings ()

public abstract SQLWarning getWarnings () throws SQLException

The first warning reported by calls on this iterator is returned. Subsequent iterator warnings will be chained to
this SQLWarning.

The warning chain is automatically cleared each time the iterator object is advanced to the next row.

NOTE 35 — This warning chain only covers warnings caused by iterator methods. Any warning caused by statement execution
(such as fetching OUT parameters) will be chained on the ExecutionContext object.

Returns

— If there are no errors, then null; otherwise, the first SQLWarning.

Throws

— SQLEXxception — if the SQL-implementation raises an exception condition.

154 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
12.2 SQLJ runtime interfaces

12.2.5.3.8 isClosed ()
public abstract boolean isClosed () throws SQLException

Returns

— If this iterator has been closed, then true; otherwise, false

Throws

— SQLException — if an error occurs determining the close status of the iterator.

See Also

— Subclause 12.2.5.3.2, “close ()”

12.25.3.9 next()

public abstract boolean next () throws SQLException

Advances the iterator to the next row. At the beginning, the iterator is positioned before the first row.
NOTE 36 — A FETCH. . . | NTOstatement performs an implicit invocation of next() on the iterator passed.

Returns

— If there was a next row in the iterator, then true; otherwise, false.

Throws

— SQLException — if an exception occurs while changing the position of the iterator

12.2.5.3.10 setFetchSize (int)

synchronized public void setFetchSize (int rows) throws SQLException

Gives the SQLJ runtime a hint as to the number of rows that should be fetched when more rows are needed
from this iterator object. If the value specified is zero, then the runtime is free to choose an implementation-
dependent fetch size.

Package sqlj.runtime 155

IWD 9075-10:201?(E)
12.2 SQLJ runtime interfaces

Parameters

— rows — the default fetch size for result sets generated from this iterator object.

Throws

— SQLException — if the SQL-implementation raises an exception condition, or the condition 0 (zero) <
rows < ECtxt.getMaxRows () is not satisfied, where ECtxt is the ExecutionContext object that was
used to create this iterator object.

Conformance Rules

None.

156 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
12.2 SQLJ runtime interfaces

12.2.6 sqlj.runtime.Scrollable

12.2.6.1 Interface Overview

public interface Scroll abl e

This interface provides a set of methods that all scrollable iterator objects support. The effect of an update on
a Scrollable iterator object is implementation-defined.

12.2.6.2 Variables

None.

12.2.6.3 Methods

12.2.6.3.1 absolute (int)

public abstract boolean absolute (int row) throws SQLException
Moves the iterator object to the row with the given row number.

I the row number is positive, the iterator object moves to the row with the given row number with respect to
its beginning. The first row is row 1, the second is row 2, and so on.

If the given row number is negative, the iterator object moves to an absolute row position with respect to its
end. For example, calling absolute(-1) positions the iterator object on the last row, absolute(-2)
indicates the next-to-last row, and so on.

An attempt to position the iterator object beyond its first or last row leaves the iterator object before or after its
first or last row, respectively.

NOTE 37 — Calling absolute (1) is the same as calling First(). Calling absolute(-1) is the same as calling last().

Returns

— If the iterator object is on a row, then true; otherwise, false

Throws

— SQLException — if the SQL-implementation raises an exception condition, or row is 0 (zero).

Package sqlj.runtime 157

IWD 9075-10:201?(E)
12.2 SQLJ runtime interfaces

12.2.6.3.2 afterLast ()

public abstract void afterLast () throws SQLException

Moves the iterator object to immediately after its last row. Has no effect if the iterator object contains no rows.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

12.2.6.3.3 beforeFirst ()

public abstract void beforeFirst () throws SQLException

Moves the iterator object to immediately before its first row. Has no effect if the iterator object contains no
rows.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

12.2.6.3.4 first ()

public abstract boolean first () throws SQLException

Moves the iterator object to its first row.

Returns

— If the iterator object is on a row, then true; If there are no rows, then false.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

158 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
12.2 SQLJ runtime interfaces

12.2.6.3.5 getFetchDirection ()

public abstract int getFetchDirection () throws SQLException

Retrieves the direction for fetching rows for this iterator object. If this iterator object has not set a fetch direction
by calling the method setFetchDirection(), then the value returned is the default specified in
Subclause 12.2.6.3.13, “setFetchDirection (int)”.

Returns

— The fetch direction for this iterator object.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

12.2.6.3.6 isAfterLast ()

public abstract boolean isAfterLast () throws SQLException

Indicates whether the iterator object is after its last row.

Returns

— If the iterator object is positioned after its last row, then true; otherwise false. Returns false when the
iterator object contains no rows.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

12.2.6.3.7 isBeforeFirst ()

public abstract boolean isBeforeFirst () throws SQLException

Indicates whether the iterator object is before its first row.

Returns

— If the iterator object is positioned before its first row, then true; otherwise false. Returns false when the
iterator object contains no rows.

Package sqlj.runtime 159

IWD 9075-10:201?(E)
12.2 SQLJ runtime interfaces

Throws

— SQLException — if the SQL-implementation raises an exception condition.

12.2.6.3.8 isFirst ()

public abstract boolean isFirst () throws SQLException

Indicates whether the iterator object is on its first row.

Returns

— Ifthe iterator object is positioned on its first row, then true; otherwise false. Returns false when the iterator
object contains no rows.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

12.2.6.3.9 isLast ()

public abstract boolean isLast () throws SQLException

Indicates whether the iterator object is on its last row.

NOTE 38 — Invocation of the method isLast() may be expensive, because the SQLJ driver might need to fetch ahead one
row in order to determine whether the current row is the last row.

Returns

— If the iterator object is positioned on its last row, then true; otherwise false. Returns false when the iterator
object contains no rows.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

12.2.6.3.10 last ()

public abstract boolean last () throws SQLException

Moves the iterator object to its last row.

160 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
12.2 SQLJ runtime interfaces

Returns

— If the iterator object is positioned on a row, then true; otherwise false. Returns false when the iterator
object contains no rows.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

12.2.6.3.11 previous ()

public abstract boolean previous () throws SQLException

Moves the iterator object to its previous row.

Returns

— If the iterator object is positioned on a row, then true; if it is positioned before its first row or after its last
row, then false. Returns false when the iterator object contains no rows.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

12.2.6.3.12 relative (int)

public abstract boolean relative (int rows) throws SQLException

Moves the iterator object the given number of rows, either positive or negative, from its current position.
Attempting to move beyond its first or last row positions the iterator object before or after its first or last row,
respectively. Invoking relative(0) is valid, but does not change the iterator object position.

Returns

— If the iterator object is positioned on a row, then true; false otherwise. Returns false when the iterator
object contains no rows.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

Package sqlj.runtime 161

IWD 9075-10:201?(E)
12.2 SQLJ runtime interfaces

12.2.6.3.13 setFetchDirection (int)

public abstract void setFetchDirection (int direction) throws SQLException

Gives the SQLJ runtime a hint as to the direction in which rows of this iterator object are processed. The default
value is sgqlj . runtime.ResultSetlterator.FETCH FORWARD.

Parameters

— direction — the initial direction for processing rows.

Throws

— SQLException — if the SQL-implementation raises an exception condition, or the given direction is not
one of ResultSetlterator.FETCH_FORWARD, ResultSetlterator.FETCH_REVERSE, or
ResultSetlterator.FETCH_UNKNOWN.

Conformance Rules

None.

162 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

12.3 SQLJ Runtime Classes

12.3.1 sqlj.runtime.AsciiStream

12.3.1.1 Class Overview

jJava.lang.Object
|

+——java.io. InputStream

+——java.io.FilterlIlnputStream

+—-sqlj . runtime.StreamWrapper

+—-sqlj.runtime.AsciiStream

public class Ascii Stream
extends StreamWrapper

AsciiStream (sglj.runtime.AsciiStream) is a class derived from java.io.InputStream. The octets comprising an
AsciiStream object are interpreted as ASCII characters. In order to process an InputStream object as an input
argument to an SQLJ executable clause, an SQLJ implementation has to know both its length and the way to

interpret its octets. Therefore, an InputStream object cannot be passed directly, but rather shall be an instance
of AsciiStream, BinaryStream, or UnicodeStream.

See Also

— Subclause 12.3.2, “sqlj.runtime.BinaryStream”

— Subclause 12.3.7, “sglj.runtime.UnicodeStream”

12.3.1.2 Constructors

12.3.1.2.1 AsciiStream (InputStream)

public AsciiStream (InputStream in)

Creates an ASCII-valued InputStream object with an uninitialized length.

NOTE 39 — The length Java field shall be set via a call to setLength() before an AsciiStream object is substituted for an input
(or inout) parameter in an invocation of an SQL-statement.

Package sqlj.runtime 163

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

Parameters

— IN — the InputStream object to interpret as an AsciiStream object.

12.3.1.2.2 AsciiStream (InputStream, int)

public AsciiStream (InputStream in, int length)

Creates an ASClIl-valued InputStream object of given length.

Parameters

— IN — the InputStream object to interpret as an AsciiStream object.

— length — the length in octets of the AcsiiStream object.

12.3.2 sqlj.runtime.BinaryStream

12.3.2.1 Class Overview

java.lang.Object

+——java.io. InputStream

+——java.io.FilterInputStream

+—-sqlj.runtime.StreamWrapper

+—-sqlj.runtime.BinaryStream

public class BinaryStream
extends StreamWrapper

BinaryStream (sqlj.runtime.BinaryStream) is a class derived from java.io.InputStream. The octets comprising
a BinaryStream object are not interpreted as characters. In order to process an InputStream object as an input
argument to an SQLJ executable clause, an SQLJ implementation has to know both its length and the way to

interpret its octets. Therefore, an InputStream object cannot be passed directly, but rather shall be an instance
of AsciiStream, BinaryStream, or UnicodeStream.

See Also

— Subclause 12.3.1, “sqlj.runtime.AsciiStream”

— Subclause 12.3.7, “sqlj.runtime.UnicodeStream”

164 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

12.3.2.2 Constructors

12.3.2.2.1 BinaryStream (InputStream)

public BinaryStream (InputStream in)

Creates a Binary-valued InputStream object with an uninitialized length.

NOTE 40 — The length Java field shall be set via a call to setLength() before a BinaryStream object is substituted for an
input (or inout) parameter in an invocation of an SQL-statement.

Parameters

— IN — the InputStream object to interpret as a BinaryStream object.

12.3.2.2.2 BinaryStream (InputStream, int)

public BinaryStream (InputStream in, int length)

Creates a binary valued InputStream object of given length.

Parameters

— IN — the InputStream object to interpret as a BinaryStream object.

— length — the length in octets of the BinaryStream object.

12.3.3 sqlj.runtime.DefaultRuntime

12.3.3.1 Class Overview

java.lang.Object

+—-sqlj - runtime.RuntimeContext

+—-sqlj - runtime._DefaultRuntime

public class Defaul t Runti nme
extends RuntimeContext

The DefaultRuntime class implements the expected runtime behavior defined by the abstract RuntimeContext
class for most Java Virtual Machine environments.

Package sqlj.runtime 165

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

12.3.3.2 Constructors

12.3.3.2.1 DefaultRuntime ()

public DefaultRuntime ()

12.3.3.3 Methods

12.3.3.3.1 getDefaultConnection ()

public Connection getDefaultConnection ()

The default data source defined in JNDI is used to establish the default connection. If no such data source is
defined or the connection cannot be established, then null is returned.

Returns

— If the default data source does not exist or cannot establish a connection, then null; otherwise, a default
Connection object, as defined by the default data source.

Overrides

— getDefaultConnection() in class RuntimeContext

See Also

— Subclause 12.3.5.2.1, “DEFAULT_DATA_SOURCE”

12.3.3.3.2 getLoaderForClass (Class)

public Loader getLoaderForClass (Class forClass)

Creates and returns a default Loader object that uses the class loader of the given class.

Parameters

— forClass — the class with which the resulting Loader object is to be associated.

166 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

Returns

— A default Loader object for the given class.

Overrides

— getLoaderForClass() in class RuntimeContext

See Also

— Subclause 13.3.1, “sqlj.runtime.profile.DefaultLoader”

12.3.4 sqlj.runtime.ExecutionContext

12.3.4.1 Class Overview

jJava.lang.Object
|

+—-sqlj . runtime.ExecutionContext

public class Executi onCont ext
extends Object

An ExecutionContext object provides the execution context in which SQLJ executable clauses are performed.
An execution context object contains a number of operations for execution control, execution status, and exe-
cution cancellation. Execution control operations modify the semantics of subsequent SQL-statements executed
on this execution context object. Execution status operations describe the results of the last SQL-statement
executed on this execution context object. Execution cancellation methods terminate the currently executing
SQL-statement on this execution context object.
NOTE 41 — Concurrently executing SQL-statements are expected to use distinct execution context objects. The execution context
class implementing the ExecutionContext interface is not expected to support multiple SQL-statements executing with the same
execution context object. The client is responsible for ensuring the proper creation of distinct execution context objects where
needed, or synchronizing the execution of operations on a particular execution context object. It is also assumed that generated

calls to methods on this class appear within a synchronized block to avoid concurrent calls. Recursive SQL execution calls on the
same connection context object are supported.

Without Feature J003, “Execution control”, if an ExecutionContext's Java fields have been set to anything other
than their respective default values, with the following routines, and an attempt is made to register a statement
with such an ExecutionContext, then an SQLEXxception condition is thrown: OLB-specific error — unsupported
feature.

— getMaxFieldSize
— setMaxFieldSize
— getMaxRows

— setMaxRows;

Package sqlj.runtime 167

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

— getQueryTimeout

— setQueryTimeout

See Also

— Subclause 12.2.1.3.5, “getExecutionContext ()”

12.3.4.2 Variables

12.34.21 ADD_BATCH_COUNT

public static final int ADD_BATCH_COUNT = -3;

Constant possibly returned by getUpdateCount indicating that the last statement encountered was added
to the existing statement batch rather than being executed.

See Also

— Subclause 12.3.4.4.15, “getUpdateCount ()”

12.34.22 AUTO_BATCH

public static final int AUTO_BATCH = 100;

Constant passed to setBatchLimit to indicate that implicit batch execution should be performed, and that
the actual batch size is at the discretion of the SQLJ runtime implementation.

See Also

— Subclause 12.3.4.4.21, “setBatchLimit (int)”

12.3.4.2.3 EXEC_BATCH_COUNT

public static final int EXEC_BATCH_COUNT = -5;

Constant possibly returned by getUpdateCount indicating that the last execution was a statement batch
execution.

168 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

See Also

— Subclause 12.3.4.4.3, “executeBatch ()”
— Subclause 12.3.4.4.15, “getUpdateCount ()”

12.3.4.2.4 EXCEPTION_COUNT

public static final int EXCEPTION_COUNT = -2;

Constant possibly returned by getUpdateCount indicating that an exception was thrown before the last execution
was successfully completed, or that no operation has yet been attempted on this execution context object.

See Also

— Subclause 12.3.4.4.15, “getUpdateCount ()”

12.3.4.25 NEW_BATCH_COUNT

public static final int NEW_BATCH_COUNT = -6;

Constant possibly returned by getUpdateCount indicating that the last statement encountered was added
to a new statement batch rather than being executed.

See Also

— Subclause 12.3.4.4.15, “getUpdateCount ()”

12.3.4.2.6 QUERY_COUNT

public static final int QUERY_COUNT = -1;

Constant possibly returned by getUpdateCount indicating that the last execution produced a RTResultSet object
or iterator.

See Also
— Subclause 12.3.4.4.15, “getUpdateCount ()”

Package sqlj.runtime 169

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

12.3.4.2.7 UNLIMITED_BATCH

public static final int UNLIMITED_BATCH = -7;

Constant passed to setBatchLimit to indicate that no implicit batch execution should be performed upon
reaching a certain batch size.

See Also

— Subclause 12.3.4.4.21, “setBatchLimit (int)”

12.3.4.3 Constructors

12.3.4.3.1 ExecutionContext ()

public ExecutionContext ()

The default constructor for the ExecutionContext class.

12.3.4.4 Methods

12.3.4.4.1 cancel ()

public void cancel () throws SQLException

The cancel () method can be used by one thread to cancel an SQL-statement that is currently being executed
by another thread using this execution context object. Note that this method has no effect if there is no
RTStatement object currently being executed for this execution context object. If there is a pending statement
batch on this execution context object, the statement batch is canceled and emptied.

Throws

— SQLException — if unable to cancel

See Also

— Subclause 12.3.4.4.5, “executeUpdate ()”
— Subclause 12.3.4.4.4, “executeQuery ()”

170 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

12.3.4.4.2 execute ()

public boolean execute () throws SQLException

Prior to statement execution, if there is a pending statement batch on this execution context object and one or
more of the following conditions is true:

— Batching is currently disabled on this execution context object.

— The currently registered RTStatement object is not batchable.

— The currently registered RTStatement object is not batch compatible with the pending statement batch.
then the statement batch is implicitly executed using BatchContext.executeBatch().

If batching is currently enabled on this execution context object and the currently registered RTStatement object
is batchable, then the statement is batched rather than executed. The pending statement batch is replaced by a
statement batch that includes the currently registered RT Statement object, as returned by RTStatement.get-
BatchContext(). Note that in this case, the statement may not return side channel Java.sqgl -ResultSet
objects. If the statement was added to the existing statement batch, then the update count is set to

ADD_ BATCH_COUNT. Otherwise, if the statement was added to a new statement batch, then the update count
is set to NEW_BATCH_COUNT.

Otherwise, a generic execute is performed on the currently registered RTStatement object. If a new statement
batch is created as a result of executing the current RTStatement object, the current statement batch (if any) is
implicitly executed. Under some situations, a single SQL CALL statement might return multiple

Java.sql .ResultSet objects. The execute(), getNextResultSet(), and getNextResul t-

Set(int) methods allow navigation through multiple java.sql .Resul tSet objects.

The execute () method executes the currently registered RT Statement object and returns true if it produced
any side-channel result sets, and otherwise returns false. The getNextResultSet() method or getNex-
tResultSet(int) method is used to obtain the next java.sqgl .ResultSet object. When the
RTStatement object is released, the update count is set to QUERY_COUNT.

NOTE 42 — This method is called by generated code. Most programs do not need to call it directly. Instead, they will use only
getNextResultSet() or getNextResultSet(int) to navigate multiple java.sql .ResultSet objects.

If the current operation produces multiple java.sql .ResultSet objects, itis not released until all java.sql .ResultSet
objects have been processed and getNextResul tSet() or getNextResultSet(int) returns null. If this execution context
object is used to execute an SQL-statement while java.sql .ResultSet objects are still pending from the previous SQL-
statement, or if an RTStatement object execution completes while java.sql .ResultSet objects from a recursive call are still
pending, the Java.sql .ResultSet objects are closed and discarded, and resources are released.

If this operation also produces side-channel update counts, they are discarded.

If an error occurs during execution of the SQL-statement, the current RT Statement object is released and an SQLEXception is
thrown. Subsequent calls to getNextResultSet() or getNextResultSet(int) will return null.

It is assumed that this method is called within a block that is synchronized on this execution context object. Furthermore, it is also
assumed that the previous call to register and the subsequent call to release the current RTStatement object both appear within the
same synchronized block.

Returns

— If the statement produced a side-channel result set, then true; otherwise false.

Package sqglj.runtime 171

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

Throws

— SQLException — if an error occurs during the execution of the currently registered RTStatement object
(for example, the expiration of the query timeout previously set by invoking setQueryTimeout() on
this execution context object).

See Also

— Subclause 12.3.4.4.2, “execute ()”

— Subclause 12.3.4.4.18, “registerStatement (ConnectionContext, Object, int)”
— Subclause 12.3.4.4.12, “getNextResultSet ()”

— Subclause 12.3.4.4.13, “getNextResultSet (int)”

12.3.4.4.3 executeBatch ()

public synchronized int[] executeBatch () throws SQLException

Executes the pending statement batch contained in this execution context object and returns the result as an
array of update counts. If no pending statement batch exists for this execution context object, null is returned.

Upon direct or exceptional return from this method, update count is set to EXEC_BATCH_COUNT. If this
method returns successfully, the batch update counts of this execution context object are updated to reflect the
return result.

Once this method is called, the statement batch is emptied even if the call results in an exception. If a new
statement batch is created as a result of executing the current batch, the new batch is implicitly executed. Sub-
sequent calls to this method return null until another batchable statement is added.

Note that exceptions returned by this method will generally be instances of java.sql .BatchUpdateEx-
ception.

Returns

— If no statement batch exists, then null; otherwise, an array of update counts containing one element for
each command in the batch.

The array is ordered according to the order in which commands were inserted into the batch. Each element
either contains a non-negative update count, or the value —2 as a generic success indicator, or the value -3
as a generic failure indicator. Failure may also be indicated by an array that has fewer elements than the
number of commands in the batch. In this case, each element shall contain either a non-negative update
count or the value —2 as a generic success indicator.

Throws

— SQLException — if the SQL-implementation raises an exception condition while executing the statement
batch.

172 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

12.3.4.4.4 executeQuery ()

public RTResultSet executeQuery () throws SQLException

Invokes the executeQuery () method on the currently registered RTStatement object. Prior to statement
execution, if there is a pending statement batch on this execution context object then the statement batch is
implicitly executed using BatchContext.executeBatch(). If a new statement batch is created as a
result of executing the current statement, the new batch is implicitly executed. When the RTStatement object
is released, the update count is set to QUERY_COUNT.

NOTE 43 — This method is called by generated code. Most programs do not need to call it directly.

It is assumed that this method is called within a block that is synchronized on this execution context object. Furthermore, it is also
assumed that the previous call to register and the subsequent call to release the current RTStatement object both appear within the
same synchronized block.

Returns

— The result of calling executeQuery on the currently registered RTStatement object.

Throws

— SQLException — if an error occurs during the execution of the given RTStatement object

See Also

— Subclause 13.2.6.2.5, “executeRTQuery ()”
— Subclause 12.3.4.4.18, “registerStatement (ConnectionContext, Object, int)”

12.3.4.45 executeUpdate ()

public int executeUpdate () throws SQLException

Prior to statement execution, if there is a pending statement batch on this execution context object and any of
the following conditions are true:

— Batching currently disabled on this execution context object.

— The currently registered statement is not batchable.

— The currently registered RTStatement object is not batch compatible with the pending statement batch.
then the statement batch is implicitly executed using BatchContext.executeBatch().

If batching is currently enabled on this execution context object and the currently registered RTStatement object
is batchable, then the statement is batched rather than executed. The pending statement batch is replaced by a
statement batch which includes the currently registered RTStatement object, as returned by RTStatement.get-
BatchContext(). If the statement was added to the existing statement batch, update count is set to

Package sqlj.runtime 173

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

ADD_BATCH_COUNT. Otherwise, if the statement was added to a new statement batch, update count is set to
NEW_BATCH_COUNT.

Otherwise, this invokes the executeUpdate () method on the currently registered RTStatement object. If
a new statement batch is created as a result of executing the current statement, the new batch is implicitly exe-
cuted. When the RTStatement object is released, the update count will be updated accordingly.

NOTE 44 — This method is called by generated code. Most programs do not need to call it directly.

It is assumed that this method is called within a block that is synchronized on this execution context object. Furthermore, it is also
assumed that the previous call to register and the subsequent call to release the current RTStatement object both appear within the
same synchronized block.

Returns

— The update count resulting from the execution of the currently registered RT Statement object.

Throws

— SQLException — if an error occurs during the execution of the given RTStatement object.

See Also

— Subclause 12.3.4.4.5, “executeUpdate ()"
— Subclause 12.3.4.4.18, “registerStatement (ConnectionContext, Object, int)”

12.3.4.4.6 getBatchLimit ()

synchronized public int getBatchLimit ()

Returns the current batch limit that was set for this execution context object.

Returns

— Case:
e If the maximum batch size is unlimited, then UNLIMITED_BATCH.
e If the maximum batch size is finite and implementation-dependent, then AUTO_BATCH;

¢ Otherwise, a maximum batch size n>0.

174 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

12.3.4.4.7 getBatchUpdateCounts ()

public synchronized int[] getBatchUpdateCounts ()

Returns an array of update counts containing one element for each command in the last statement batch to
successfully complete execution. Returns null if no statement batch has completed execution.

Returns

— If no statement batch has completed execution, then null; otherwise, an array of update counts resulting
from the last statement batch executed.

The array is ordered according to the order in which commands were inserted into the batch. Each element
either contains a non-negative update count, or the value —2 as a generic success indicator, or the value -3
as a generic failure indicator. Failure may also be indicated by an array that has fewer elements than the
number of commands in the batch. In this case, each element shall contain either a non-negative update
count or the value —2 as a generic success indicator.

12.3.4.4.8 getFetchDirection ()

synchronized public int getFetchDirection () throws SQLException

Retrieves the current fetch direction for scrollable iterator objects generated from this ExecutionContext object.
If this ExecutionContext object has not set a fetch direction by calling setFetchDirection(), then the
value returned is the default specified in Subclause 12.3.4.4.22, “setFetchDirection (int)”.

Returns

— The current fetch direction for scrollable iterator objects generated from this ExecutionContext object.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

12.3.4.4.9 getFetchSize ()

synchronized public int getFetchSize () throws SQLException

Retrieves the number of rows that is the current fetch size for iterator objects generated from this Execution-
Context object. If this ExecutionContext object has not set a fetch size by calling setFetchSize, then the value
returned is 0 (zero). If this ExecutionContext object has set a non-negative fetch size by calling the method
setFetchSize, then the return value is the fetch size specified on setFetchSize.

Package sqlj.runtime 175

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

Returns

— The current fetch size for iterator objects generated from this ExecutionContext object.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

12.3.4.4.10 getMaxFieldSize ()

public synchronized int getMaxFieldSize ()

The maximum Java field size limit (in bytes) is the maximum amount of data returned for any column value
for SQL-statements subsequently executed using this execute context object; it only applies to BINARY,
VARBINARY, LONGVARBINARY, CHAR, VARCHAR, and LONGVARCHAR columns. These columns
can be fetched into Java String, Byte array, or Stream objects. The limit affects both OUT parameters and | NOUT
parameters passed, and the result returned from any SQLJ executable clause. If the limit is exceeded, the excess
data is discarded.

By default, the maximum Java field size limit is zero (unlimited).

Returns

— The current maximum Java field size limit; 0 (zero) means unlimited.

12.3.4.4.11 getMaxRows ()

public synchronized int getMaxRows ()

The maximum rows limit is the maximum number of rows that any iterator or java.sqgl .ResultSet object
returned by SQL-statements subsequently executed using this execution context object can contain. If the limit
is exceeded, the excess rows are dropped.

By default, the max rows limit is zero (unlimited).

Returns

— The current maximum rows limit; O (zero) means unlimited.

176 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

12.3.4.4.12 getNextResultSet ()

public synchronized ResultSet getNextResultSet () throws SQLException

This method effectively invokes this.getNextResultSet (Java.sql.Statement.CLOSE_CUR-
RENT_RESULT) to return the currently registered RTStatement's next java.sql .ResultSet object (if

any).

Returns

— Ifthere are no further Jjava.sql .ResultSet objects, then null; otherwise, the next side-channel result
set.

Throws

— SQLException — if an error occurs obtaining the next Java.sql .ResultSet object

— SQLException: OLB-specific error — unsupported feature — if closeType is set to other than
Java.sql .Statement.CLOSE_CURRENT_RESULT and support for Feature J0O09, “Multiple Open
ResultSets”, is not provided

See Also

— Subclause 12.3.4.4.2, “execute ()”

— Subclause 12.3.4.4.13, “getNextResultSet (int)”
— Subclause 13.2.6.2.29, “getMaxRows ()”

— Subclause 13.2.6.2.34, “getResultSet ()”

12.3.4.4.13 getNextResultSet (int)

public synchronized ResultSet getNextResultSet (int closeType) throws SQLException

Moves to the currently registered RTStatement object's next Java.sql .ResultSet object. The first time
this method is called after an SQL-statement is executed, the first side-channel result set is returned (if any).
Further calls to getNextResultSet(int) advance to and return subsequent java.sql .ResultSet
objects of the currently registered RTStatement. getNextResultSet(int) returns null if there are no
further Java.sql .ResultSet objects; null is also returned if an SQL-statement has not yet been executed
on this execution context object.

If the constant java.sqgl . Statement.CLOSE_CURRENT_RESULT is passed, then the

Java.sqgl .ResultSet object returned by the last call to getResu l tSet () against the currently registered
RTStatement is closed. If the constant Java.sql .Statement.CLOSE_ALL_RESULTS is passed, then
all open java.sql .ResultSet objects previously obtained from the currently registered RTStatement are
closed. If the constant Java.sqgl .Statement_.KEEP_CURRENT_RESULT is passed, then the last
Java.sql .ResultSet object obtained from the currently registered RTStatement is left open.

Package sqlj.runtime 177

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

NOTE 45 — If the last SQL-statement executed on this execution context object produced multiple java.sql .ResultSet
objects, its resources are not released until all java.sql .ResultSet objects have been processed and getNextResultSet()
returns null. If this execution context object is used to execute an SQL-statement while java.sql .ResultSet objects are still
pending from the previous operation, or if a statement execution completes while java.sql .ResultSet objects from a
recursive call are still pending, the java.sql .ResultSet objects are closed and discarded, and resources are released.

If this operation also produces side-channel update counts, they are discarded.

If an error occurs during a call to getNextResultSet(int), the current java.sql .ResultSet object is released and an
SQLException is thrown. Subsequent calls to getNextResultSet(int) return null.

Parameters

— closeType — one of the values java.sql .Statement.CLOSE_CURRENT_RESULT,
jJava.sql.Statement.CLOSE_ALL_RESULTS, and java.sql .Statement.KEEP_CUR-
RENT_RESULT

Returns

— Ifthere are no further Java.sql . ResultSet objects, then null; otherwise, the next side-channel result
set.

Throws

— SQLException — if an error occurs obtaining the next Java.sql .Resul tSet object

See Also

— Subclause 12.3.4.4.2, “execute ()”

— Subclause 12.3.4.4.12, “getNextResultSet ()”
— Subclause 12.2.5.3.4, “getResultSet ()”

— Subclause 13.2.6.2.29, “getMaxRows ()”

— Subclause 13.2.6.2.34, “getResultSet ()”

12.3.4.4.14 getQueryTimeout ()

public synchronized int getQueryTimeout ()

The query timeout limit is the maxiumum number of seconds SQL-statements subsequently executed using
this execution context object are permitted to take to complete. If execution of the SQL-statement exceeds the
limit, an SQLException is thrown.

By default, the query timeout limit is zero (unlimited).

178 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

Returns

— The current query timeout limit in seconds; 0 (zero) means unlimited.

12.3.4.4.15 getUpdateCount ()

public synchronized int getUpdateCount ()

Returns the update count, defined as the number of rows updated by the last SQL-statement to complete execution
using this execution context object. O (zero) is returned if the last SQL-statement was not a DML statement.

QUERY_COUNT is returned if the last SQL-statement created an iterator object or java.sql .ResultSet
object.

EXCEPTION_COUNT is returned if an exception occurred before the last SQL-statement completed execution,
or no operation has yet been attempted.

Returns

— Case:

e Ifthe last SQL-statement was batchable and was added as the first member of a new statement batch,
then NEW_BATCH_COUNT.

» If the last SQL-statement was batchable and was added to the current statement batch, then
ADD_BATCH_COUNT.

e If a statement batch has completed execution more recently than any unbatched statement, then
EXEC_BATCH_COUNT.

e Otherwise, the number of rows updated by the last operation.

12.3.4.4.16 getWarnings ()

public synchronized SQLWarning getWarnings ()

Returns the first warning reported by the last SQL-statement to complete execution using this execution context
object. Subsequent warnings resulting from the same SQL-statement are chained to this SQLWarning. The
SQLWarning chain returned represents those warnings that occured during the execution of the last SQL-
statement and the subsequent binding of any output host variables.

NOTE 46 — If an iterator is being processed, then all warnings associated with iterator column reads are chained on the iterator
object.

Returns

— If no warnings occurred, then null; otherwise, the first SQLWarning.

Package sqlj.runtime 179

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

12.3.4.4.17 isBatching ()

public synchronized boolean isBatching ()

Returns true if batching is currently enabled for this execution context object, false if batching is disabled.
Note that the value returned reflects only whether it is possible to batch statements, but not whether a pending
statement batch exists.

Returns

— If batching enabled, then true; otherwise, false.

12.3.4.4.18 registerStatement (ConnectionContext, Object, int)

public RTStatement registerStatement
(ConnectionContext connCtx, Object profileKey, int stmtNdx)
throws SQLException

Creates, registers and returns an RTStatement object. This method is called by generated code. Most programs
do not need to call it directly.

The RTStatement object is created by accessing the ConnectedProfile object within connection context object
“connCtx” that has the key “profileKey”. The RTStatement object at index “stmtNdx” in the ConnectedProfile
object is created using the getStatement() method. If batching is currently enabled, then the current
statement batch is passed as an additional argument to the getStatement() method. If there is no pending
statement batch, then the current statement batch passed to getStatement() isnull.

The RTStatement object created is registered and becomes the current RTStatement object of this execution
context object.

For each of the maximum rows, maximum Java field size, and query timeout limits of this execution context
object, if the limit has a non-default value, then the corresponding methods for setting these limits on the regis-
tered RT Statement object are invoked. An SQLEXxception is thrown if the runtime class implementing
RTStatement does not support changing the limit to a non-default value.

The given connection context object's execution context object is not used by this method.

Note that if this method throws an exception, no RTStatement object will be registered.

NOTE 47 — It is assumed that this method is called within a block that is synchronized on this execution context object. Subsequent
calls to execute and release the RTStatement object returned should also appear within the same synchronized block. If there is
another RTStatement object currently registered on this execution context object, it is assumed that this method is a recursive call
initiated by the currently registered RTStatement object. In such cases, state involving the currently registered RTStatement object
is saved, and the RTStatement object returned by this method becomes the currently registered RTStatement object. Once the
execution of this new RTStatement object has completed execution and and the object is released, the previous RTStatement object
is restored as the currently registered RTStatement object.

Parameters

— connCtx — the connection context object that contains the profile object that contains the RT Statement
object to register

180 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes
— profileKey — the key of the ConnectedProfile object within the connection context object

— stmtNdx — the zero-based index of the RTStatement object within the profile object to be registered

Returns

— The newly-created and -registered RTStatement object.

Throws

— SQLException — if there is another RTStatement object currently executing or if the maximum Java field
size, maximum rows, or query timeout cannot be set on the registered RT Statement object

See Also

— Subclause 12.3.4.4.19, “releaseStatement ()”

— Subclause 13.2.2.2.4, “getStatement (int, Map)”

— Subclause 12.2.1.3.3, “getConnectedProfile (Object)”

— Subclause 13.2.2.2.5, “getStatement (int, BatchContext, Map)”

12.3.4.4.19 releaseStatement ()

public void releaseStatement () throws SQLException

Releases the currently registered RTStatement object, signaling that all execution related operations have
completed. Once this method has been executed, registerStatement can be called again. The SQL
warnings and update count are updated as reflected by the registered RTStatement object and the execution
RTResultSet objects.

If the execution of the currently registered RTStatement object produced multiple java.sql .ResultSet
objects and not all Java.sql .ResultSet objects have been implicitly or explicitly closed, then this oper-
ation is a no-op. In such cases, this method is automatically called to release the RTStatement object once all

Java.sgl .ResultSet objects have been processed and getNextResultSet() or getNextResult-
Set(int) returns null.

This method calls the executeComplete () method of the registered RTStatement object.
NOTE 48 — This method is called by generated code. Most programs do not need to call it directly.

It is assumed that this method is called within a block that is synchronized on this execution context object. Furthermore, it is also
assumed that the previous call to register and the subsequent call to release the current RTStatement object both appear within the
same synchronized block.

Throws

— SQLException — if an error occurs retrieving the warnings

Package sqlj.runtime 181

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

12.3.4.4.20 setBatching (boolean)

public synchronized void setBatching (boolean doBatch)

Enables or disables batching for statements executed on this execution context object. When batching is enabled,
batchable statements that are registered with this execution context object will be added to a statement batch
for deferred execution instead of being executed immediately. A statement batch can be executed explicitly
using the executeBatch() command. Statement batches are also executed implicitly when a statement that
cannot be added to the current statement batch is executed. If a statement being executed is batchable and
compatible with the current statement batch, it is added to the batch.

When batching is disabled, statements are executed as usual. Subsequent statements are not considered for
addition to the pending statement batch.

This method only affects statements encountered after it is called. It does not affect statements that have previ-
ously been or are currently being executed, nor does it affect the pending statement batch.

Parameters

— doBatch — true if batching should be enabled, false if batching should be disabled

12.3.4.4.21 setBatchLimit (int)

public synchronized void setBatchLimit (int batchLimit)

Sets the maximum batch size. When batching is enabled and the maximum batch size is exceeded, implicit
batch execution is performed.

The following remarks assume that batching is enabled.

— When the constant UNLIMITED_BATCH is specified, the maximum batch size is unlimited, and can not
be exceeded. New ExecutionContext objects are always created with UNLIMITED_BATCH.

— When a positive batchLimit is specified, an implict batch execution will be performed whenever the
number of batched statements reaches batchLimit.

— When the constant AUTO_BATCH is specified, the maximum batch size is finite but unspecified. Whenever
a batch-compatible statement is added to a batch, the SQLJ runtime implementation may decide to do one
of the following:

* Add the statement to the batch.
» Execute the current non-empty batch and create a new singleton batch that contains the statement.

e Add the statement to the current batch and execute the batch. As a special case of this situation, given
an empty batch, the implementation may also simply go ahead and execute the statement.

— The implementation should reasonably avoid creating out-of-memory conditions due to implicit batching
with AUTO_BATCH.

182 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

This method only affects statements encountered after it is called. It does not affect statements that have previ-
ously been or are currently being executed, nor does it affect the pending statement batch.

Parameters

— batchLimit— UNL IMITED_BATCH if the maximum batch size is unlimited, AUTO_BATCH if the maximum
batch size is finite and implementation dependent, or n>0 for a maximum batch size of n.

12.3.4.4.22 setFetchDirection (int)

public synchronized void setFetchDirection (int direction) throws SQLException

Gives the SQLJ runtime a hint as to the direction in which rows of scrollable iterator objects are processed.
The hint applies only to scrollable iterator objects created using this ExecutionContext object. The default value
is sglj.runtime.ResultSetlterator FETCH_FORWARD.

Parameters

— direction — the initial fetch direction for scrollable iterator objects generated from this ExecutionContext
object.

Throws
— SQLException — if the SQL-implementation raises an exception condition, or the given direction is not

one of ResultSetlterator.FETCH_FORWARD, ResultSetlterator.FETCH_REVERSE, or
ResultSetlterator . FETCH_UNKNOWN.

12.3.4.4.23 setFetchSize (int)

synchronized public void setFetchSize (int rows) throws SQLException

Gives the SQLJ runtime a hint as to the number of rows that should be fetched when more rows are needed.
The number of rows specified affects only iterator objects created using this ExecutionContext object.

Parameters

— rows — the fetch size for result sets associated with iterator objects whose initialization involves use of
this ExecutionContext object.

Throws

— SQLException — if the SQL-implementation raises an exception condition, or the condition 0 (zero) <
rows < this.getMaxRows() is not satisfied.

Package sqlj.runtime 183

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

12.3.4.4.24 setMaxFieldSize (int)

public synchronized void SetMaxFieldSize (int max)

The maximum Java field size limit (in bytes) is the maximum amount of data returned for any column value
for SQL-statements subsequently executed using this execution context object; it only applies to BINARY,
VARBINARY, LONGVARBINARY, CHAR, VARCHAR, and LONGVARCHAR columns. These columns
can be fetched into Java String, Byte array, or Stream objects. The limit affects both OQUT parameters and | NOUT
parameters passed, and the result returned from any SQLJ executable clause. If the limit is exceeded, the excess
data is discarded. For maximum portability, use values greater than 256.

By default, the maximum Java field size limit is zero (unlimited).

NOTE 49 — Without Feature J003, “Execution control”, if MaxFieldSize is set to other than its default value and a subsequent
attempt is made to register an RTStatement object with such an ExecutionContext object, then an SQLEXxception condition is
thrown: OLB-specific error — unsupported feature.

Parameters

— max — the new maximum Java field size limit; zero means unlimited

12.3.4.4.25 setMaxRows (int)

public synchronized void setMaxRows (int max)

The maximum rows limit is the maximum number of rows that any iterator or java.sqgl .ResultSet object
returned by SQL-statements subsequently executed using this execution context object can contain. If the limit
is exceeded, the excess rows are dropped.

By default, the maximum rows limit is zero (unlimited).

NOTE 50 — Without Feature J003, “Execution control”, if MaxRows is set to other than its default value and a subsequent attempt
is made to register an RT Statement object with such an ExecutionContext object, then an SQLException condition is thrown: OLB-
specific error — unsupported feature.

Parameters

— max — the new maximum rows limit; zero means unlimited

12.3.4.4.26 setQueryTimeout (int)

public synchronized void setQueryTimeout (int seconds)

The query timeout limit is the maxiumum number of seconds SQL-statements subsequently executed using
this execution context object are permitted to take to complete. If execution of the SQL-statement exceeds the
limit, an SQLEXxception is thrown.

By default, the query timeout limit is zero (unlimited).

184 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

NOTE 51 — Without Feature J003, “Execution control”, if QueryTimeout is set to other than its default value and a subsequent
attempt is made to register an RTStatement object with such an ExecutionContext object, then an SQLEXxception condition is
thrown: OLB-specific error — unsupported feature.

Parameters

— seconds — the new query timeout limit in seconds; zero means unlimited.

12.3.5 sqlj.runtime.RuntimeContext

12.3.5.1 Class Overview

java.lang.Object
|

+—-sqlj . runtime.RuntimeContext

public abstract class Runti meCont ext
extends Object

The RuntimeContext class defines system specific services to be provided by the runtime environment. The
RuntimeContext class is an abstract class the implementation of which might vary according to the Java Virtual
Machine environment.

12.3.5.2 Variables

12.3.5.2.1 DEFAULT_DATA_SOURCE

public static final String DEFAULT_DATA_SOURCE = "jdbc/defaultDataSource";

The JNDI name of the data source used to create the default Connection object, jdbc/defaul tDataSource.

See Also

— Subclause 12.3.5.4.1, “getDefaultConnection ()”

Package sqlj.runtime 185

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

12.3.5.2.2 DEFAULT_RUNTIME

public static final String DEFAULT_RUNTIME = "sqlj.runtime.DefaultRuntime";

The fully-qualified class name of the default runtime implementation used if no other implementation has been
defined for a Java Virtual Machine environment.

See Also

— Subclause 12.3.3.2.1, “DefaultRuntime ()”

12.3.5.2.3 PROPERTY_KEY

public static final String PROPERTY_KEY = "sqlj.runtime";

The key under which the RuntimeContext implementation class name is stored in the system properties.

12.3.5.3 Constructors

12.3.5.3.1 RuntimeContext ()

public RuntimeContext ()

The default constructor for the RuntimeContext class

12.3.5.4 Methods

12.3.5.4.1 getDefaultConnection ()

public abstract Connection getDefaultConnection ()

Returns the default Connection object, if one exists, or null otherwise.

NOTE 52 — Some environments might have an implicit Connection object available. For example, a Java Virtual Machine running
in an SQL-environment might have an implicit Connection object associated with the current SQL-session.

If the default data source is defined in JNDI, then it is used to establish the default Connection object.

186 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

Returns

— If no default Connection object exists, then null; otherwise, the default Connection object.

See Also
— Subclause 12.3.5.2.1, “DEFAULT_DATA_SOURCE”

12.3.5.4.2 getLoaderForClass (Class)

public abstract Loader getLoaderForClass (Class forClass)

Resources and classes loaded from this Loader object are found in the same location that the given class was
found in.

NOTE 53 — The definition of location might vary depending on class loading and resolution semantics of the runtime implemen-
tation.

It is assumed that the argument substituted for forClass contains enough information for a Java Virtual Machine implementation
to be able to determine the location in which to find related resources. Most Java Virtual Machine implementations will be able
to use the given class's class loader (or the system class loader, if the class has no loader). However, some Java Virtual Machine
implementations might need additional information to resolve resources. For example, a Java Virtual Machine running in an SQL-
environment might use the schema in which the given class is located to search for related resources.

Parameters

— forClass — the class with which the resulting Loader object is to be associated

Returns

— A Loader object associated with a class.

12.3.5.4.3 getRuntime ()

public static RuntimeContext getRuntime ()

Returns a RuntimeContext object resembling the runtime context object associated with the current Java Virtual
Machine instance. Each Java Virtual Machine instance has a single unique runtime context object. Subsequent
invocations of this method within the same Java Virtual Machine instance will return the same object. The
appropriate RuntimeContext implementation is discovered by examining the value of the RuntimeCon-
text.PROPERTY_KEY system property. If this property is set, it indicates the full name of a class that is
able to be instantiated to create a runtime context object. If no such property is defined, or if access to this
system property is not allowed, then the class given by RuntimeContext.DEFAULT_RUNT IME is used.

NOTE 54 — All runtime implementations shall be able to be constructed via the Class.newlnstance() method. That is,
they shall have a public niladic constructor.

Package sqlj.runtime 187

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

Returns

— The RuntimeContext object associated with the current Java Virtual Machine

See Also

— Subclause 12.3.5.2.3, “PROPERTY_KEY”
— Subclause 12.3.5.2.2, “DEFAULT_RUNTIME”

12.3.6 sqlj.runtime.Stream\Wrapper

12.3.6.1 Class Overview

java.lang.Object

+——java.io. InputStream

+——java.io.FilterInputStream

+—-sqlj.runtime.StreamWrapper

public class Streamh apper
extends FilterlnputStream

This class wraps a particular InputStream object. It also extends the InputStream class, delegating method
invocations directly to the wrapped InputStream object for all methods. Additionally, it supports methods for
specifying the length of the wrapper InputStream object, which allows it to be passed as an argument to the
invocation of an SQL-statement.

See Also

— java.io.InputStream — a standard Java class

12.3.6.2 Constructors

12.3.6.2.1 StreamWrapper (InputStream)

protected StreamWrapper (InputStream in)

Creates a new StreamWrapper object using the octets in the given InputStream object. The length of the
InputStream object is uninitialized.

188 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

Parameters

— in— the InputStream object to wrap.

12.3.6.2.2 StreamWrapper (InputStream, int)

protected StreamWrapper (InputStream in, int length)

Creates a new StreamWrapper object using the octets in the given InputStream object. The length of the
InputStream object is initialized to the given length value.

Parameters

— in — the InputStream object to wrap.

— length — the length of the InputStream object in octets.

12.3.6.3 Methods

12.3.6.3.1 getlnputStream ()

public InputStream getlnputStream ()

Returns the InputStream object that is being wrapped by this StreamWrapper object.

Returns

— The underlying InputStream object that is being wrapped.

12.3.6.3.2 getLength ()

public int getLength()

Returns the length in octets of the wrapped InputStream object, as specified during construction or in the last
call to setLength().

Returns

— The length in octets of the InputStream object.

Package sqlj.runtime 189

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

12.3.6.3.3 setLength (int)

public void setLength (int length)

Sets the length Java field of the wrapped stream to be the given value. This does not affect the wrapped Input-
Stream object, but will affect the number of octets read from it when it is passed as an argument to an invocation
of an SQL-statement.

Parameters

— length — the new length of the InputStream object in octets.

12.3.7 sqlj.runtime.UnicodeStream

12.3.7.1 Class Overview

jJava.lang.Object
|

+——java.io. InputStream

+——java.io.FilterlnputStream

+—-sqlj . runtime.StreamWrapper

+—-sqlj.runtime.UnicodeStream

public class Uni codeStream
extends StreamWrapper

UnicodeStream (sqlj.runtime.UnicodeStream) is a class derived from java.io.InputStream. The octets comprising
a UnicodeStream object are interpreted as Unicode characters. When an InputStream is passed as an argument
to an invocation of an SQL-statement, both the length of the InputStream object and the way to interpret its
octets shall be specified. Therefore, an InputStream object cannot be passed directly, but rather shall be an
instance of AsciiStream, BinaryStream or UnicodeStream.

See Also

— Subclause 12.3.1, “sqlj.runtime.AsciiStream”

— Subclause 12.3.2, “sqlj.runtime.BinaryStream”

190 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

12.3.7.2 Constructors

12.3.7.2.1 UnicodeStream (InputStream)

public UnicodeStream (InputStream in)

Creates a Unicode-valued InputStream object with an uninitialized length.

NOTE 55 — The length Java field shall be set by a call to setLength() before a UnicodeStream object is substituted for an
input (or inout) parameter in an invocation of an SQL-statement.

Parameters

— in—the InputStream object to interpret as a UnicodeStream object.

12.3.7.2.2 UnicodeStream (InputStream, int)

public UnicodeStream (InputStream in, int length)

Creates a Unicode-valued InputStream object of given length.

Parameters

— in— the InputStream object to interpret as a UnicodeStream object.

— length — the length in octets of the UnicodeStream object.

12.3.8 sqlj.runtime.CharacterStream

12.3.8.1 Class Overview

java.lang.Object
+—-java.io.Reader

+——java.io.FilterReader

Package sqglj.runtime 191

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

+—-sqlj.runtime.CharacterStream

public class CharacterStream
extends FilterReader

A class derived from java.io.Reader whose instances contain Unicode data. When an instance of this class is
passed as an input argument to an invocation of an SQL-statement, the length of the Reader object shall be
specified. Therefore, an instance of the Reader class cannot be passed directly, but rather shall be an instance
of CharacterStream.

12.3.8.2 Constructors

12.3.8.2.1 CharacterStream (Reader)

public CharacterStream (Reader in)

Creates an instance of CharacterStream with an uninitialized length.

NOTE 56 — The length Java field shall be set by a call to setLength() before use of a CharacterStream object as an input (or
inout) parameter in an invocation of an SQL-statement.

Parameters

— in—the Reader to interpret as a CharacterStream object.

12.3.8.2.2 CharacterStream (Reader, int)

public CharacterStream (Reader in, int length)

Creates an instance of CharacterStream of given length.

Parameters

— in—the Reader object to interpret as a CharacterStream object.

— length — the length in characters of the CharacterStream object.

192 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

12.3.8.3 Methods

12.3.8.3.1 getReader ()

public Reader getReader ()

Returns the underlying Reader object wrapped by the CharacterStream object.

Returns

— The underlying Reader object that is being wrapped

12.3.8.3.2 getLength ()

public int getLength()

Returns the length in characters of the wrapped Reader object, as specified during construction or in the last
call to setLength().

Returns

— The length in characters of the Reader object

12.3.8.3.3 setLength (int)

public void setLength (int length)

Sets the length Java field of the wrapped Reader object to be the passed value. This does not affect the wrapped
Reader object, but will affect the number of characters read from it when it is passed as an input argument to
an invocation of an SQL-statement.

Parameters

— length — the length of the Reader object in characters.

Package sqlj.runtime 193

IWD 9075-10:201?(E)
12.3 SQLJ Runtime Classes

12.3.9 sqlj.runtime.SQLNullException

12.3.9.1 Class Overview

jJava.lang.Object
|

+—java.lang.Throwable

+—-java.lang.Exception

+——java.sql . SQLException

|
+—-sqlj.runtime.SQLNul IException

public class SQ.Nul | Exception
extends SQLException

The SQLNullException class is a subclass of SQLException that is used in the case that the SQL null value
was attempted to be fetched into a Java host variable whose type is a Java primitive datatype. This exception
is thrown when such a condition occurs.

The SQLSTATE value for every instance of SQLNullException is '22002' (data exception — null value, no
indicator parameter).

12.3.9.2 Constructors

12.3.9.2.1 SQLNullException ()

public SQLNullException ()

Create an SQLNullException object. The SQL State Java field is initialized to '22002', and the vendorCode Java
field is set to the SQLEXxception default.

Conformance Rules

None.

194 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.1 Overview

13 Package sqlj.runtime.profile

13.1 Overview

The sqlj.runtime.profile package defines the classes and interfaces that enable binary portable SQLJ programs.
It is distinguished from the package sqlj.runtime because it defines classes that are used by SQLJ runtime
implementations, but are not otherwise visible to an SQLJ program.

13.2 SQLJ sqlj.runtime.profile Interfaces

13.2.1 sqlj.runtime.profile.BatchContext

13.2.1.1 Interface Overview

public interface Bat chCont ext

A batch context object is used to group statements that are to be submitted to the SQL-implementation for
execution as a batch using a single round trip.

13.2.1.2 Methods

13.2.1.2.1 clearBatch ()

public abstract void clearBatch() throws SQLException

Removes all statements contained in this batch context object and releases all associated resources.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

Package sqlj.runtime.profile 195

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

13.2.1.2.2 executeBatch ()

public abstract int[] executeBatch () throws SQLException

Executes the statements contained in this batch context object and returns the result as an array of update counts.
The array is ordered according to the order in which commands were inserted into the batch. Note that exceptions
returned by this method will generally be instances of Java.sql .BatchUpdateException.

Returns

— An array of update counts containing one element for each command in the batch. The array is ordered
according to the order in which commands were inserted into the batch. Each element either contains a
non-negative update count, or the value —2 as a generic success indicator, or the value —3 as a generic
failure indicator. Failure may also be indicated by an array that has fewer elements than the number of
commands in the batch. In this case, each element shall contain either a non-negative update count or the
value -2 as a generic success indicator.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

13.2.1.2.3 setBatchLimit (int)

public abstract void setBatchLimit (int batchSize) throws SQLException

Sets the maximum batch size on this batch context object. When batching is enabled and the maximum batch
size is exceeded, implicit batch execution is performed. The following remarks assume that batching is enabled.

— When the constant ExecutionContext.UNLIMITED_ BATCH is specified, the maximum batch size
is unlimited, and can not be exceeded. New BatchContext objects are always created with UNL IM-
ITED_BATCH.

— When a positive batchLimit is specified, an implict batch execution will be performed, whenever the
number of batched statements reaches batchLimit.

— When the constant ExecutionContext_.AUTO_BATCH is specified, the maximum batch size is finite
but unspecified.

Parameters
— batchLimit—ExecutionContext.UNLIMITED_ BATCH if the maximum batch size is unlimited,

ExecutionContext.AUTO_BATCH if the maximum batch size is finite and implementation dependent,
or n > 0 (zero) for a maximum batch size of n.

Throws

— SQLException — if an invalid or unsupported batch size is specified

196 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

13.2.2 sqlj.runtime.profile.ConnectedProfile

13.2.2.1 Interface Overview

public interface ConnectedProfile

A ConnectedProfile object represents a profile object that has been attached to a particular java.sql .Con-
nection object. Since it is attached to a Connection object, it is able to convert its contents into an executable
statement object on the associated Connection object. The implementation of this object might be customized
for the given data source, which allows it to use optimizations that circumvent the JDBC dynamic SQL model.
Profile customization will typically involve implementation-dependent profile object transformations that allow
more efficient SQL execution such a precompilation of SQL text or use of SQL-invoked procedures.

A ConnectedProfile object contains statements that correspond to entries at a particular index in the profile
object. The profile's EntryInfo object at a particular index can be used to determine how the corresponding
statement returned by a ConnectedProfile object will be executed at runtime. The statement returned need only
respond to the execute () method indicated in the EntryInfo object.

A customization may also provide means for specifying the user identifier used for privilege checking. By
default, the connection context user identifier of the Connection object associated with a ConnectedProfile
object is used as the current user identifier for execution of all SQL-statements created by a connected profile.
As an alternative, a customized user identifier can be provided during the customization of an SQL/OLB
application as additional input to a customizer and included in a customized profile in an implementation-
defined manner. At runtime, a registered Customization object can make the customized profile user identifier
available to the customization-specific ConnectedProfile (and RTStatement) objects in an implementation-
dependent manner, so that statements created by the ConnectedProfile use the customized profile user identifier
as the current user identifier, instead of the connection context user identifier.

The profile's EntryInfo object at a particular index also characterizes the statement type. A statement can be
either PREPARED or CALLABLE, the difference between the two being that CALLABLE statements are
permitted to have OUT parameters whereas PREPARED statements will have only | N parameters.

All statements returned by a ConnectedProfile object conform to the following requirements:

— The operation performed shall be equivalent to the operation that would have been performed if using
regular JDBC and the text of the SQL-statement directly.

— Any OUT parameters of the operation shall have been already registered for the statement returned
(CALLABLE statements only). The profile object describes each parameter to the operation in terms of
its Java class description, and provides additional SQL type information (i.e., STRUCT, DISTINCT,
JAVA OBJECT) for Java classes that map to user-defined data types. It is up to the implementation to
properly register the SQL type for this class description as needed for the particular JDBC (or implemen-
tation-dependent) driver used.

If the ConnectedProfile object is unable to create the desired statement, an exception is thrown. Note that a
particular profile customization object might employ an “eager” verification algorithm in which all entries in
the profile object are verified against the Connection object when a ConnectedProfile object is created, or a
“lazy” verification algorithm in which statements are not verified until they are indexed via this method. It is
up to the implementations of the Customization and ConnectedProfile interfaces to decide upon an appropriate
verification strategy.

Package sglj.runtime.profile 197

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

See Also

— Subclause 13.3.2.4.13, “getStatementType ()”

— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”
— Subclause 13.3.2.2.14, “PREPARED_STATEMENT”
— Subclause 13.3.2.4.3, “getExecuteType ()"

13.2.2.2 Methods

13.2.2.2.1 close ()

public abstract void close () throws SQLException

Closes this ConnectedProfile object, releasing any resources associated with it. close () is called when the
connection context object associated with the profile object is closed.

Throws

— SQLException — if an error occurs while closing

13.2.2.2.2 getConnection ()

public abstract Connection getConnection ()

Returns

— The Connection object with which this ConnectedProfile object was created

See Also

— Subclause 12.2.1.3.3, “getConnectedProfile (Object)”

13.2.2.2.3 getProfileData ()

public abstract ProfileData getProfileData ()

The top level profile object that created this connected profile object can be retrieved by calling the getPro-
T1le() method on the resulting ProfileData object.

198 Obiject Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

Returns

— The ProfileData object associated with this ConnectedProfile object.

See Also

— Subclause 12.2.1.3.3, “getConnectedProfile (Object)”
— Subclause 13.2.3.2.2, “getProfile (Connection, Profile)”

13.2.2.2.4 getStatement (int, Map)

public abstract RTStatement getStatement (int ndx, java.util_Map typeMap)
throws SQLException

If the profile EntryInfo object contains invalid information, then an SQLEXxception condition is thrown: OLB-
specific error — invalid profile state. The Map object provided in the typeMap parameter is passed to the
returned RTStatement object in an implementation-defined manner.

Parameters

— ndx — the index of the statement to return, zero-based

— typeMap — a java.util.Map object containing user-defined type mapping information of the connection
context class that is associated with the statement to be executed.
Returns

— A statement object representing the EntryInfo object at index ndx in the profile object, where ndx is zero-
based.

Throws

— SQLException — if an error occurs preparing the statement

13.2.2.2.5 getStatement (int, BatchContext, Map)

public abstract RTStatement getStatement (int ndx, BatchContext batch,
Java.util_Map typeMap)
throws SQLException

Returns a statement object representing the Entrylnfo object at index ndx in the profile object, where ndx is
zero-based. The Map object provided in the typeMap parameter is passed to the returned RTStatement object
in an implementation-defined manner.

Package sqlj.runtime.profile 199

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

The passed batch context object is used by the statement to determine batch compatibility. If possible, the
statement will be added to the passed batch for deferred execution via a call to RTStatement.getBatch-
Context(). If the passed batch is null I, then the statement will create and return a new one-element batch
containing itself when getBatchContext() is subsequently called on it.

If the profile Entrylnfo object contains invalid information, then an SQLException is thrown: OLB-specific
error — invalid profile state.

Parameters

— ndx — the index of the statement to return, zero-based
— batch — a pending statement batch with which to merge, if possible. This batch may be null.

— typeMap — a java.util.Map object containing user-defined type mapping information of the connection
context class that is associated with the statement to be executed.

Returns

— A statement object representing the entry at index ndx in the profile object.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.2.6.2.45, “isBatchCompatible ()”
— Subclause 13.2.6.2.8, “getBatchContext ()”

13.2.3 sqglj.runtime.profile.Customization

13.2.3.1 Interface Overview

public interface Custom zation
extends java.io.Serializable

A profile Customization object is a serializable object that maps a particular java.sqgl . Connection object
and basic profile object into a customized ConnectedProfile object. Because both profile objects and Customiza-
tion objects are serializable, new Customization objects can be added to profiles as needed anytime after the
profile object has been created. This will most often happen during an “installation” phase after the application
has been translated, but before the application is actually run.

Profiles might be customized in any number of ways. Some typical examples are:

200 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

— Transformation of SQL text into a format that allows more efficient execution on a particular data source.
Precompilation and use of SQL-invoked procedures are examples of this.

— Batch verification and/or preparation of profile EntryInfo objects to avoid multiple data source round trips.

— Distributed and/or remote loading of custom EntrylInfo objects.

— Custom type registration of data source-specific EntryInfo object parameters.

— Behavioral unification of multiple JDBC drivers with which an application is to be deployed.

— Specification of a user identifier to be used for privilege checking of embedded statements at runtime.

See Also

— Subclause 13.3.3, “sqglj.runtime.profile.Profile”

13.2.3.2 Methods

13.2.3.2.1 acceptsConnection (Connection)

public abstract boolean acceptsConnection (Connection conn)

Parameters

— conn —the java.sqgl .Connection object used in testing the ability to create a ConnectedProfile
object.

Returns

— Ifthis Customization object can create a ConnectedProfile object for the given java.sql .Connection
object, then true; otherwise, false.

13.2.3.2.2 getProfile (Connection, Profile)

public abstract ConnectedProfile getProfile
(Connection conn, Profile baseProfile)
throws SQLException

If the Profile object identified by baseProfile cannot be connected, then an exception is thrown. The exception
might be the result of the Profile object identified by baseProfile containing entries that cannot be prepared and
executed on the Connection object identified by conn. Depending on the implementation of the Customization
object, verification of Profile object entries might occur when the Profile object identified by baseProfile is
connected, or be deferred until an entry is directly accessed by the client.

Package sqlj.runtime.profile 201

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

Parameters

— conn —input Java.sql .Connection object

— baseProfile — input base Profile

Returns

— A ConnectedProfile object for baseProfile on the given java.sgl . Connection object.

Throws

— SQLException — if the Profile object identified by baseProfile cannot be connected.

13.2.4 sqlj.runtime.profile.Loader

13.2.4.1 Interface Overview

public interface Loader

A profile.Loader object is used as the context for profile object instantiation rather than a Java class loader
object. This allows flexibility to runtime environments in which class Loader objects cannot be properly defined
for all classes, and resource names would not otherwise be able to be resolved.

See Also

— Subclause 13.3.1, “sqlj.runtime.profile.DefaultLoader”

13.2.4.2 Methods

13.2.4.2.1 getResourceAsStream (String)

public abstract InputStream getResourceAsStream (String name)

Get an InputStream object on a given resource. Returns null if no resource with this name is found. This method
is called when SerializedProfile objects are instantiated.

The way in which resources are located is determined solely by the Loader implementation.

202 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

Parameters

— name — the name of the resource

Returns

— Ifan InputStream object on the resource identified by the name parameter can be found, then the InputStream
on that resource; otherwise null.

13.2.4.2.2 loadClass (String)

public abstract Class loadClass (String className)
throws ClassNotFoundException

Requests the Loader object to load a class with the specified name. The loadClass () method is called when
a profile object is instantiated and when a profile object is instantiated and the Java class of a Typelnfo object
needs to be loaded for the first time as part of the instantiation process.

Loaders should use a hashtable or other cache to avoid defining classes with the same name multiple times.

Parameters

— name — the fully qualified name of the desired Class.

Returns

— The resulting Class.

Throws

— ClassNotFoundException — if the Loader object cannot find a definition for the class

See Also

— Subclause 13.3.3.3.11, “instantiate (Loader, InputStream)”
— Subclause 13.3.3.3.12, “instantiate (Loader, String)”

— Subclause 13.3.3.3.5, “getJavaType (String)”

— Subclause 13.3.3.3.6, “getJavaType (Typelnfo)”

Package sqlj.runtime.profile 203

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

13.2.5 sqlj.runtime.profile. RTResultSet

13.2.5.1 Interface Overview

public interface RTResul t Set

This interface defines the operations used for accessing an RTResultSet's data resulting from the execution of
an SQL query described by a profile EntryInfo object. It is based strongly on the Java.sql .ResultSet
interface, and can be implemented using a java.sql .ResultSet object. In general, any method with the
same name as one of those in the Java.sql .ResultSet interface is intended to have the same behavior.
Methods with new names are intended to have new behavior. Note, however, that all new methods can be
implemented in terms of calls to other methods in the java.sql . Resul tSet interface. The primary difference
between this interface and the java.sql .ResultSet interface is the addition of getter methods that throw
exceptions on fetch of null primitives, and the omission of named getters and result set metadata.

In an actual implementation of the SQLJ runtime, a class implementing the RTResultSet interface also maintains
a runtime type map object. This type map is a java.util.Map object that contains type mapping information as
specified in [JDBC]. It is provided to the RTResultSet object at the time of its creation in an implementation-
defined manner, and is used for subsequent invocations of getObject().

By partitioning new methods into a different namespace, it is possible for a JDBC driver to implement both
the Java.sql .Resul tSet interface and the RTResultSet interface, allowing more efficient runtime perfor-
mance in both the dynamic and static case.

The following tables describe the correspondence between some of the methods of the Java.sql .ResultSet
interface and methods of the RTResultSet interface.

Table 11 — Methods retained from java.sql.ResultSet

Method Retained

next()

close()

getArray(int)

getBlob(int)

getClob(int)

getWarnings()

clearWarnings()

getBytes(int)

getCursorName()

204 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

Method Retained

getDate(int)

getTime(int)

getTimestamp(int)

getString(int)

getRef(int)

getURL(int)

getSQLXML(int)

findColumn(String)

isClosed()
Table 12 — Methods not retained from java.sgl.ResultSet
Method Removed Replacement Method
getMetaData()
getArray(String)

getBlob(String)

getBoolean(int) get- getBooleanNoNull(int)
Boolean(String)

getByte(int) getByte(String) getByteNoNull(int)

getCharacterStream(int) getCharacterStreamWrapper(int)

getCharacterStream(String)

getClob(String)

getShort(int) getShort(String) | getShortNoNull(int)

getInt(int) getint(String) getIntNoNull(int)

getLong(int) getLong(String) | getLongNoNull(int)

getFloat(int) getFloat(String) | getFloatNoNull(int)

getDouble(int) getDou- getDoubleNoNull(int)
ble(String)

Package sqlj.runtime.profile 205

IWD 9075-10:201?(E)

13.2 SQLJ sqlj.runtime.profile Interfaces

Method Removed

Replacement Method

getObject(int) getOb-
ject(String)

getObject(int, Class)

wasNull(int)

getBooleanWrapper(int) getByteWrapper(int) getShortWrapper(int)
getIntWrapper(int) getLongWrapper(int) getFloatWrapper(int) getDou-
bleWrapper(int)

getBigDecimal(int,int) get-
BigDecimal(String,int)

getBigDecimal(int)

getAsciiStream(int) getAsci-
iStream(String)

getAsciiStreamWrapper(int)

getBinaryStream(int) getBina-
ryStream(String)

getBinaryStreamWrapper(int)

getUnicodeStream(int) getUni-
codeStream(String)

getUnicodeStreamWrapper(int)

getString(String)

getBytes(String)

getDate(String)

getTime(String)

getTimestamp(String)

getRef(String)

getURL(String)

getSQLXML(String)

Table 13 — Additional methods unique to RTResultSet

Additional Method

getJDBCResultSet()

isValidRow()

getColumnCount()

NOTE 57 — The getXXX(String) methods were omitted because int-based column lookup is generally more efficient. Moreover,
when columns are looked up by name, the FindColumn() method is used to find and cache the appropriate index before any

getXXX calls are made.

206 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

13.2.5.2 Methods

13.2.5.2.1 clearWarnings ()

public abstract void clearWarnings () throws SQLException

After this call, getWarnings returns null until a new warning is reported for this iterator object.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

13.2.5.2.2 close ()

public abstract void close () throws SQLException

The close () method provides an immediate release of the runtime resources in the SQL-environment and
the Java Virtual Machine associated with an RTResultSet object instead of waiting for this to happen when it
is automatically destroyed by garbage collection.

NOTE 58 — An RTResultSet object is also automatically closed when it is destroyed by garbage collection.

13.2.5.2.3 findColumn (String)

public abstract int findColumn (String columnName) throws SQLException

Map an RTResultSet object column name to an RTResultSet object column index. The index of the first column
the name of which is a case-insensitive match of the given columnName is returned. If no such column is found,
then an SQLEXxception is thrown: OLB-specific error — invalid column name.

NOTE 59 — This method is called if and only if the profile EntryInfo object for the statement object that produced this RTResultSet
object has a result set type with value NAMED_RESULT.

Parameters

— columnName — the name of the column

Returns

— The column index of the specified column

Package sqlj.runtime.profile 207

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.2.9, “NAMED_RESULT”

13.2.5.2.4 getArray (int)

public abstract java.sql.Array getArray (int columnindex) throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
Java.sql .Array object.

NOTE 60 — The implementation of the java.sqgl . Array interface is based on array locators. The accessibility of the ARRAY
value through the methods of java.sql - Array is only guaranteed in the scope of the transaction in which the getArray ()
method was executed.

NOTE 61 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile EntryInfo object for the statement that produced this RTResultSet object has javaTypeName =
Java.sql .Array. Note that if the EntryInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used
directly to find the result Typelnfo object. Otherwise, if the Entryinfo object's resultSetType is NAMED_RESULT, then the name
of the current column shall be used to find the result Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex is an SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

208 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

13.2.5.2.5 getAsciiStreamWTrapper (int)

public abstract AsciiStream getAsciiStreamWrapper (int columnindex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as an
sglj.runtime.AsciiStream object.

NOTE 62 — A column value can be retrieved as a stream of ASCII characters and then read in chunks from the stream. This
method is particularly suitable for retrieving large LONGVARCHAR values. The driver will do any necessary conversion from
the SQL-data's character set into ASCII.

NOTE 63 — All the data in the returned stream shall be read prior to getting the value of any other column. The next call to a get
method implicitly closes the stream. Also, a stream might return O (zero) for avai lable () whether there is data available or
not.

NOTE 64 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile EntryInfo object for the statement that produced this RTResultSet object has javaTypeName = sqlj.run-
time.AsciiStream. Note that if the EntryInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used
directly to find the result Typelnfo object. Otherwise, if the Entryinfo object's resultSetType is NAMED_RESULT, then the name
of the current column shall be used to find the result Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— If the value is an SQL null value, then Java null; otherwise, a Java AsciiStream object that delivers the
value of the column identified by columnindex as a stream of one-octet ASCII characters.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

Package sqlj.runtime.profile 209

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

13.2.5.2.6 getBigDecimal (int)

public abstract BigDecimal getBigDecimal (int columnlndex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
java.math.BigDecimal object. Unlike the corresponding JDBC method, this method does not have a scale
parameter. The value returned uses the default scale for the given column.

NOTE 65 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile Entrylnfo object for the statement that produced this RTResultSet object has javaTypeName =
java.math.BigDecimal. Note that if the EntryInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be
used directly to find the result Typelnfo object. Otherwise, if the EntrylInfo object's resultSetType is NAMED_RESULT, then the
name of the current column shall be used to find the result Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex is an SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

13.2.5.2.7 getBinaryStreamWTrapper (int)

public abstract BinaryStream getBinaryStreamWrapper (int columnindex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as an
sglj.runtime.BinaryStream object. A column value can be retrieved as a stream of uninterpreted octets and then
read in chunks from the stream. This method is particularly suitable for retrieving large binary strings.

210 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

NOTE 66 — All the data in the returned stream shall be read prior to getting the value of any other column. The next call to a get
method implicitly closes the stream. Also, a stream might return 0 (zero) for avai lable () whether there is data available or
not.

NOTE 67 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile Entrylnfo object for the statement that produced this RTResultSet object has javaTypeName = sqlj.run-
time.BinaryStream. Note that if the EntryInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used
directly to find the result Typelnfo object. Otherwise, if the Entryinfo object's resultSetType is NAMED_RESULT, then the name
of the current column shall be used to find the result Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— If the value is an SQL null value, then the Java null; otherwise, a BinaryStream object that delivers the
column value as a stream of uninterpreted octets.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetinfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()"

13.2.5.2.8 getBlob (int)

public abstract Blob getBlob (int columnindex) throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
java.sqgl.Blob object.

NOTE 68 — The implementation of the java.sgl.Blob interface is based on large object locators. The accessibility of the BLOB
value through the methods of java.sql.Blob is only guaranteed in the scope of the transaction in which the getBlob method was
executed.

NOTE 69 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile Entrylnfo object for the statement that produced this RTResultSet object has javaTypeName = java.sql.Blob.
Note that if the EntryInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the
result Typelnfo object. Otherwise, if the EntryInfo object's resultSetType is NAMED_RESULT, then the name of the current
column shall be used to find the result Typelnfo object with the same name.

Package sqlj.runtime.profile 211

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex is an SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

13.2.5.2.9 getBooleanNoNull (int)

public abstract boolean getBooleanNoNull (int columnindex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a Java
boolean.

NOTE 70 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile EntryInfo object for the statement that produced this RTResultSet object has javaTypeName = boolean. Note
that if the entry's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the result Typelnfo
object. Otherwise, if the EntryInfo object's resultSetType is NAMED_RESULT, then the name of the current column shall be used
to find the result Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— The value of the column identified by columnindex.

212 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

Throws

— SQLNullException — if the value of the column indicated by columnindex is the SQL null value

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()"

13.2.5.2.10 getBooleanWrapper (int)

public abstract Boolean getBooleanWrapper (int columnlndex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
java.lang.Boolean object.

NOTE 71 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile Entrylnfo object for the statement that produced this RTResultSet object has javaTypeName =
java.lang.Boolean. Note that if the EntryInfo object's resultSetType is POSITIONED_RESULT, then the columnindex can be used
directly to find the result Typelnfo object. Otherwise, if the EntryInfo object's resultSetType is NAMED_RESULT, then the name
of the current column shall be used to find the result Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex is an SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”

Package sqlj.runtime.profile 213

IWD 9075-10:201?(E)

13.2 SQLJ sqlj.runtime.profile Interfaces

— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()"

13.2.5.2.11 getByteNoNull (int)

public abstract byte getByteNoNull (int columnlndex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a Java
byte.

NOTE 72 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile Entrylnfo object for the statement that produced this RTResultSet object has javaTypeName = byte. Note
that if the EntryInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the result
Typelnfo object. Otherwise, if the EntryInfo object's resultSetType is NAMED_RESULT, then the name of the current column
shall be used to find the result Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— The value of the column identified by columnindex.

Throws

— SQLNullException — if the value of the column indicated by columnindex is the SQL null value

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()"

214 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

13.2.5.2.12 getBytes (int)

public abstract byte[] getBytes (int columnlndex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a Java
byte[].

NOTE 73 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile EntryInfo object for the statement that produced this RTResultSet object has javaTypeName=[byte. Note

that if the EntryInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the result
Typelnfo object. Otherwise, if the EntryInfo object's resultSetType is NAMED_RESULT, then the name of the current column

shall be used to find the result Typelnfo object with the same name.

Parameters

— columnlindex — the first column is 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex is an SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

13.2.5.2.13 getByteWrapper (int)

public abstract Byte getByteWrapper (int columnlndex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
java.lang.Byte object.

NOTE 74 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile EntryInfo object for the statement that produced this RTResultSet object has javaTypeName = java.lang.Byte.
Note that if the EntryInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the
result Typelnfo object. Otherwise, if the EntryInfo object's resultSetType is NAMED_RESULT, then the name of the current
column shall be used to find the result Typelnfo object with the same name.

Package sglj.runtime.profile 215

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex is an SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

13.2.5.2.14 getCharacterStreamWrapper (int)

public CharacterStream getCharacterStreamWrapper (int columnindex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as an
sglj.runtime.CharacterStream object. A column value can be retrieved as a stream of Unicode characters and
then read in chunks from the stream. This method is particularly suitable for retrieving large character strings.
The driver will do any necessary conversion from the SQL character set into Unicode.

NOTE 75 — All the data in the returned CharacterStream object shall be read prior to getting the value of any other column. The

next call to a get method implicitly closes the CharacterStream object. An invocation of CharacterStream.available()
might return O (zero) whether there is data available or not.

NOTE 76 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile EntryInfo object for the statement that produced this RTResultSet object has javaTypeName = sqlj.run-
time.CharacterStream. Note that if the EntryInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be
used directly to find the result Typelnfo object. Otherwise, if the EntryInfo object's resultSetType is NAMED_RESULT, then the
name of the current column shall be used to find the result Typelnfo object with the same name.

Parameters

— columnlindex — the first column is 1 (one), the second is 2, etc.

216 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

Returns

— If the value of the column identified by columnindex is the SQL null value, then the Java null; otherwise,
a CharacterStream object that delivers the value of the column identified by columnindex as a stream of
Unicode characters.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()"

13.2.5.2.15 getClob (int)

public abstract Clob getClob (int columnlndex) throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
java.sgl.Clob object.

NOTE 77 — The implementation of the java.sgl.Clob interface is based on large object locators. The accessibility of the CLOB
value through the methods of java.sql.Clob is only guaranteed in the scope of the transaction in which the getClob method was
executed.

NOTE 78 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile Entrylnfo object for the statement that produced this RTResultSet object has javaTypeName = java.sql.Clob.
Note that if the EntryInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the
result Typelnfo object. Otherwise, if the EntryInfo object's resultSetType is NAMED_RESULT, then the name of the current
column shall be used to find the result Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex is an SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

Package sqlj.runtime.profile 217

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()"

13.2.5.2.16 getColumnCount ()

public abstract int getColumnCount () throws SQLException

Determine the number of columns in this RTResultSet object. This is used to verify that the number of columns
in the RTResultSet object match the number expected by a strongly typed iterator object.

NOTE 79 — This method can be implemented in JDBC using the getColumnCount() method of a Java.sql .ResultSet
object's MetaData object.

Returns

— The number of columns in this RTResultSet object.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

13.2.5.2.17 getCursorName ()

public abstract String getCursorName () throws SQLException
Get the name of the implicit cursor used by this RTResultSet object.

In SQL, aresult table is retrieved through a cursor that is named. The current row of a result can be updated or
deleted using a positioned update/delete statement that references the cursor name.

JDBC drivers support this SQL feature by providing the name of the implicit cursor used by a
Java.sql .ResultSet object. The current row of a java.sql .ResultSet object is also the current
row of this implicit cursor. This method is provided for interoperability with JDBC-based implementations.

NOTE 80 — If positioned update is not supported an SQLException is thrown.

NOTE 81 — This method is called only if the profile EntryInfo object for the statement that produced this RTResultSet object has
a role with value POSITIONED.

Returns

— The RTResultSet object's SQL cursor name.

218 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.11, “getRole ()"
— Subclause 13.3.2.2.12, “POSITIONED”

13.2.5.2.18 getDate (int)

public abstract Date getDate (int columnindex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
java.sql.Date object.

NOTE 82 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile EntryInfo object for the statement that produced this RTResultSet object has javaTypeName = java.sql.Date.
Note that if the EntryInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the
result Typelnfo object. Otherwise, if the EntryInfo object's resultSetType is NAMED_RESULT, then the name of the current
column shall be used to find the result Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex is an SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetinfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

Package sqlj.runtime.profile 219

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

13.2.5.2.19 getDoubleNoNull (int)

public abstract double getDoubleNoNull (int columnlndex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a Java
double.

NOTE 83 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile EntrylInfo object for the statement that produced this RTResultSet object has javaTypeName = double. Note
that if the EntryInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the result
Typelnfo object. Otherwise, if the EntryInfo object's resultSetType is NAMED_RESULT, then the name of the current column
shall be used to find the result Typelnfo object with the same name.

Parameters

— columnlindex — the first column is 1 (one), the second is 2, etc.

Returns

— The value of the column identified by columnindex.

Throws

— SQLNullException — if the value of the column indicated by columnindex is the SQL null value

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

13.2.5.2.20 getDoubleWrapper (int)

public abstract Double getDoubleWrapper (int columnindex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
java.lang.Double object.

NOTE 84 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile EntryInfo object for the statement that produced this RTResultSet object has javaTypeName =
java.lang.Double. Note that if the EntryInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used

220 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

directly to find the result Typelnfo object. Otherwise, if the Entrylnfo object's resultSetType is NAMED_RESULT, then the name
of the current column shall be used to find the result Typelnfo object with the same name.

Parameters

— columnlindex — the first column is 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex is an SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

13.2.5.2.21 getFloatNoNull (int)

public abstract float getFloatNoNull (int columnindex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a Java
float.

NOTE 85 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile Entrylnfo object for the statement that produced this RTResultSet object has javaTypeName = float. Note
that if the EntryInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the result
Typelnfo object. Otherwise, if the EntryInfo object's resultSetType is NAMED_RESULT, then the name of the current column
shall be used to find the result Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— The value of the column identified by columnindex.

Package sqlj.runtime.profile 221

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

Throws

— SQLNullException — if the value of the column indicated by columnindex is the SQL null value

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()"

13.2.5.2.22 getFloatWrapper (int)

public abstract Float getFloatWrapper (int columnlndex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
java.lang.Float object.

NOTE 86 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile EntryInfo object for the statement that produced this RTResultSet object has javaTypeName = java.lang.Float.
Note that if the EntryInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the
result Typelnfo object. Otherwise, if the EntryInfo object's resultSetType is NAMED_RESULT, then the name of the current
column shall be used to find the result Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex is an SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”

222 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces
— Subclause 13.3.6.4.5, “getSQLType ()”
— Subclause 13.3.6.4.1, “getJavaTypeName ()"

13.2.5.2.23 getIntNoNull (int)

public abstract int getIntNoNull (int columnindex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a Java
int.

NOTE 87 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile EntryInfo object for the statement that produced this RTResultSet object has javaTypeName = int. Note that
if the EntryInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the result
Typelnfo object. Otherwise, if the EntryInfo object's resultSetType is NAMED_RESULT, then the name of the current column
shall be used to find the result Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— The value of the column identified by columnindex.

Throws

— SQLNullException — if the value of the column indicated by columnindex is the SQL null value

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()"

Package sqlj.runtime.profile 223

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

13.2.5.2.24 getIntWrapper (int)

public abstract Integer getintWrapper (int columnindex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
java.lang.Integer object.

NOTE 88 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile EntryInfo object for the statement that produced this RTResultSet object has javaTypeName =
java.lang.Integer. Note that if the Entrylnfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used
directly to find the result Typelnfo object. Otherwise, if the EntryInfo object's resultSetType is NAMED_RESULT, then the name
of the current column shall be used to find the result Typelnfo object with the same name.

Parameters

— columnlindex — the first column is 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex is an SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

13.2.5.2.25 getJDBCResultSet ()

public abstract ResultSet getJDBCResultSet ()
throws SQLException

Returns the Java.sql . ResultSet object associated with this RTResultSet object. The returned ResultSet
object shall have normal JDBC functionality, as defined by [JDBC] (in particular, primitive accessor methods
will not raise an SQLNullException when SQL null values are fetched). This method is provided to facilitate
interoperability with JDBC.

If support for Feature J0O02, “ResultSetlterator access to JDBC ResultSet”, is provided, then any synchronization
between the RTResultSet object and the returned java.sqgl .ResultSet object is implementation-defined.

224 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

NOTE 89 — For maximum portability, this method should be invoked before the first next () method invocation on the RTRe-
sultSet object. Once the Java.sqgl -.ResultSet object has been produced, all operations to fetch data should be through that
jJava.sqgl .ResultSet object.

Returns

— A java.sqgl .ResultSet object representing this RTResultSet object.

Throws

— SQLException: OLB-specific error — unsupported feature — if support for Feature J002, “ResultSetlter-
ator access to JDBC ResultSet”, is not provided

13.2.5.2.26 getLongNoNull (int)

public abstract long getLongNoNull (int columnindex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a Java
long.

NOTE 90 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile EntryInfo object for the statement that produced this RTResultSet object has javaTypeName = long. Note
that if the EntryInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the result
Typelnfo object. Otherwise, if the EntryInfo object's resultSetType is NAMED_RESULT, then the name of the current column
shall be used to find the result Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— The value of the column identified by columnindex.

Throws

— SQLNullException — if the value of the column indicated by columnindex is the SQL null value

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetinfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

Package sqlj.runtime.profile 225

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

13.2.5.2.27 getLongWrapper (int)

public abstract Long getLongWrapper (int columnlndex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
java.lang.Long object.

NOTE 91 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile EntryInfo object for the statement that produced this RTResultSet object has javaTypeName = java.lang.Long.
Note that if the EntryInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the
result Typelnfo object. Otherwise, if the EntryInfo object's resultSetType is NAMED_RESULT, then the name of the current
column shall be used to find the result Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex is an SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()"

13.2.5.2.28 getObject (int, Class)

public abstract Object getObject

226 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

(int columnindex, Class objectType)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
java.lang.Object. This method is used to read implementation-defined, user-defined data types with type SQL
STRUCT, DISTINCT, JAVA_OBJECT, or OTHER.

The static type of the Java Ivalue into which the object returned by the invocation of this method is assigned
is passed as objectType. If the result Typelnfo object for the current column in the profile Entrylnfo object for
the statement that produced this RTResultSet object has SQL Type STRUCT, DISTINCT, or JAVA_OBJECT,
then the runtime type map TM of the RTResultSet object is non-null and has a map entry mapping the actual
SQL type name to the Java class specified in the Class argument or to a subclass of that Java class. In this case,
the result of getOb ject() is equivalent to the invocation of ResultSet.getObject(columnindex,
TM), as defined in [JDBC]. If the result Typelnfo object for the current column in the profile EntryInfo object
for the statement that produced this RTResultSet object has SQL Type OTHER, then the runtime type map is
null. An exception is thrown if the object returned is not assignable to an object with class objectType.

If the object type cannot be constructed or otherwise has invalid structure (such as an iterator whose named
accessor methods cannot be determined), then an SQLEXxception condition is thrown: OLB-specific error —
invalid class declaration.

NOTE 92 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile EntryInfo object for the statement that produced this RTResultSet object has SQL Type STRUCT, DISTINCT,
JAVA_OBJECT, or OTHER. In such cases, the javaTypeName indicates the expected Java Class of the object; the class cannot
be handled by any other getXXX method defined by this statement. Note that if the EntryInfo object's resultSetType is POSI-
TIONED_RESULT, then columnindex can be used directly to find the result Typelnfo object. Otherwise, if the EntryInfo object's
resultSetType is NAMED_RESULT, then the name of the current column shall be used to find the result Typelnfo object with the
same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

— objectType — the class of the Java Ivalue into which the returned value will be assigned

Returns

— If the value of the column identified by columnindex is an SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLEXxception — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

Package sqlj.runtime.profile 227

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

13.2.5.2.29 getRef (int)

public abstract Ref getRef (int columnindex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
java.sgl.Ref object.

NOTE 93 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile EntryInfo object for the statement that produced this RTResultSet object has javaTypeName = java.sql.Ref.
Note that if the EntryInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the
result Typelnfo object. Otherwise, if the EntryInfo object's resultSetType is NAMED_RESULT, then the name of the current
column shall be used to find the result Typelnfo object with the same name.

Parameters

— columnlindex — the first column is 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex is an SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

13.2.5.2.30 getShortNoNull (int)

public abstract short getShortNoNull (int columnindex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a Java
short.

NOTE 94 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile Entrylnfo object for the statement that produced this RTResultSet object has javaTypeName = short. Note
that if the EntryInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the result
Typelnfo object. Otherwise, if the EntryInfo object's resultSetType is NAMED_RESULT, then the name of the current column
shall be used to find the result Typelnfo object with the same name.

228 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— The value of the column identified by columnindex.

Throws

— SQLNullException — if the value of the column indicated by columnindex is the SQL null value

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()"

13.2.5.2.31 getShortWrapper (int)

public abstract Short getShortWrapper (int columnlndex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
java.lang.Short object.

NOTE 95 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile EntryInfo object for the statement that produced this RTResultSet object has javaTypeName = java.lang.Short.
Note that if the EntrylInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the
result Typelnfo object. Otherwise, if the EntryInfo object's resultSetType is NAMED_RESULT, then the name of the current
column shall be used to find the result Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex is an SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Package sglj.runtime.profile 229

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

13.2.5.2.32 getString (int)

public abstract String getString (int columnindex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a Java
String.

NOTE 96 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile Entrylnfo object for the statement that produced this RTResultSet object has javaTypeName = java.lang.String.
Note that if the EntryInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the
result Typelnfo object. Otherwise, if the EntryInfo object's resultSetType is NAMED_RESULT, then the name of the current
column shall be used to find the result Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex is an SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

230 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

13.2.5.2.33 getSQLXML (int)

public abstract java.sql .SQLXML getSQLXML (int columnlndex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
Java.sql . SQLXML object.

NOTE 97 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile Entrylnfo object for the statement that produced this RTResultSet object has javaTypeName =

Java.sqgl - SQLXML. Note that if the EntrylInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be
used directly to find the result Typelnfo object. Otherwise, if the EntryInfo object's resultSetType is NAMED_RESULT, then the
name of the current column shall be used to find the result Typelnfo object with the same name.

Parameters

— columnlindex — the first column is 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex is an SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

13.2.5.2.34 getTime (int)

public abstract Time getTime (int columnindex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
java.sgl.Time object.

Package sqlj.runtime.profile 231

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

NOTE 98 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile EntryInfo object for the statement that produced this RTResultSet object has javaTypeName = java.sql.Time.
Note that if the EntryInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the
result Typelnfo object. Otherwise, if the EntryInfo object's resultSetType is NAMED_RESULT, then the name of the current
column shall be used to find the result Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex is an SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()"

13.2.5.2.35 getTimestamp (int)

public abstract Timestamp getTimestamp (int columnlndex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
java.sgl. Timestamp object.

NOTE 99 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile Entrylnfo object for the statement that produced this RTResultSet object has javaTypeName =

java.sgl. Timestamp. Note that if the entry's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to
find the result Typelnfo object. Otherwise, is the Entrylnfo object's resultSetType is NAMED_RESULT, then the name of the
current column shall be used to find the result Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

232 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

Returns

— If the value of the column identified by columnindex is an SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

13.2.5.2.36 getUnicodeStreamWrapper (int)

public abstract UnicodeStream getUnicodeStreamWrapper (int columnindex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as an
sglj.runtime.UnicodeStream object. A column value can be retrieved as a stream of Unicode characters and
then read in chunks from the stream. This method is particularly suitable for retrieving large character strings.
The driver will do any necessary conversion from the SQL character set into Unicode.

NOTE 100 — Al the data in the returned UnicodeStream object shall be read prior to getting the value of any other column. The

next call to a get method implicitly closes the UnicodeStream object. An invocation of UnicodeStream.avai lable() might
return 0 (zero) whether there is data available or not.

NOTE 101 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile EntryInfo object for the statement that produced this RTResultSet object has javaTypeName = sqlj.runtime.Uni-
codeStream. Note that if the EntrylInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly
to find the result Typelnfo object. Otherwise, if the EntryInfo object's resultSetType is NAMED_RESULT, then the name of the
current column shall be used to find the result Typelnfo object with the same name.

Parameters

— columnlindex — the first column is 1 (one), the second is 2, etc.

Returns

— Ifthe value is the SQL null value, then the Java null; otherwise, a Java UnicodeStream object that delivers
the value of the column identified by columnindex as a stream of two-octet Unicode characters.

Package sqlj.runtime.profile 233

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

13.2.5.2.37 getURL (int)

public abstract java.net_URL getURL (int columnlndex)
throws SQLException, java.net.MalformedURLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as an
Java.net._URL object.

NOTE 102 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current
column in the profile EntryInfo object for the statement that produced this RTResultSet object has javaTypeName = java.net.URL.
Note that if the EntryInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the
result Typelnfo object. Otherwise, if the EntryInfo object's resultSetType is NAMED_RESULT, then the name of the current
column shall be used to find the result Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— If the value of the result column identified by columnindex is not the SQL null value, then the value of
the result column identified by columnindex; otherwise, the Java null.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

— java.net.MalformedURLException — if the DATALINK URL value cannot be used to construct a
java.net. URL object.

234 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

13.2.5.2.38 getWarnings ()

public abstract SQLWarning getWarnings () throws SQLException

The first warning reported by calls on this iterator is returned. Subsequent iterator warnings will be chained to
this SQLWarning.

The warning chain is automatically cleared each time a new row is read.

NOTE 103 — This warning chain only covers warnings caused by iterator methods. Any warning caused by statement execution
(such as fetching OUT parameters) will be chained on the ExecutionContext object.

Returns

— If there are no errors, then null; otherwise, the first SQLWarning.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

13.2.5.2.39 isClosed ()

public abstract boolean isClosed () throws SQLException

Test to see if this RTResultSet object is closed.

Returns

— If the RTResultSet object is closed, then true; otherwise, false.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

13.2.5.2.40 isValidRow ()

public abstract boolean isvValidRow ()
throws SQLException

Returns true if the RTResultSet object is currently positioned on a row, false otherwise. In particular, false is
returned if the RTResultSet object is currently positioned before its first row, or after its last row.

Package sqlj.runtime.profile 235

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

Returns

— If the RTResultSet object is positioned on a row, then true; otherwise, false.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

13.2.5.2.41 next ()

public abstract boolean next () throws SQLexception

An RTResultSet object is initially positioned before its first row; the first call to next() makes the first row
the current row, the second call makes the second row the current row, etc.

If an InputStream object from the previous row is open, it is implicitly closed.

Returns

— If the new current row is valid, then true; otherwise, false. If there are no more rows, then false.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

13.2.6 sqlj.runtime.profile. RT Statement

13.2.6.1 Interface Overview

public interface RTSt at enent

This interface defines the operations used to execute an SQL-statement described by a profile Entrylnfo object.
Itis based strongly onthe java.sql . Statement, PreparedStatement, and Cal lableStatement
interfaces, and can be implemented using one of these interfaces. In general, any method with the same name
as one of those in the Java.sql . Statement interfaces (i.e., Statement, PreparedStatement, and
CallableStatement) is intended to have the same semantic behavior. Methods with new names are intended to
have new behavior. Note, however, that all new methods can be implemented in terms of calls to other methods
in the Java.sql . Statement interfaces. The primary difference between this interface and the
Java.sql .Statement interfaces is the addition of getter methods that throw exceptions on fetch of null
primitives, and a redefinition of statement close semantics.

In an actual implementation of the SQLJ runtime, a class implementing the RT Statement interface also maintains
a runtime type map object. This type map is a java.util.Map object that contains type mapping information as

236 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

specified in [JDBC]. It is provided to the RTStatement object at the time of its creation in an implementation-
defined manner, and is used for subsequent invocations of getObject() and setObject(). Itis also
passed in an implementation-defined manner to any RTResultSet object created as a result of the execution of
the RT Statement object.

By partitioning new methods into a different namespace, it is possible for a JDBC driver to implement both
the Java.sql . Statement interfaces and this interface, allowing more efficient runtime performance in
both the dynamic and static case.

By default, the connection context user identifier of the connection context object associated with the Connect-
edProfile object that created the RTStatement object is used for privilege checking during execution of an
RTStatement object. If a customized profile user identifier has been provided during profile customization,
then that identifier is used as the current user identifier during execution of an RTStatement object instead of
the connection context user identifier.

The following tables describe the correspondence between some of the methods of the Java.sql . Statement
interfaces and methods of the RTStatement interface. Table 14, “Methods retained from java.sgl.Statement”,
identifies methods that are retained from java.sqgl . Statement. Table 15, “Methods not retained from
java.sgl.Statement”, identifies methods not retained from java.sqgl.Statement; most are simply removed, while
one is replaced by a new method defined herein. Table 16, “Methods retained from java.sql.PreparedStatement”,
identifies methods that are retained from java.sqgl . PreparedStatement. Table 17, “Methods not
retained from java.sql.PreparedStatement”, identifies methods not retained from java.sql .Prepared-
Statement; some are simply removed, while several are replaced by new methods defined herein. Table 18,
“Methods retained from java.sql.CallableStatement”, identifies methods that are retained from

Java.sql .CallableStatement. Table 19, “Methods not retained from java.sgl.CallableStatement”,
identifies methods not retained from java.sql .Cal lableStatement; some are simply removed, while
several are replaced by new methods defined herein. Table 20, “Additional methods unique to RTStatement”,
identifies methods that are unique to RTStatement.

Table 14 — Methods retained from java.sql.Statement

Method Retained

cancel()

getMaxFieldSize()

setMaxFieldSize(int)

getMaxRows()

setMaxRows(int)

getMoreResults(int)

getQueryTimeout()

setQueryTimeout(int)

getUpdateCount()

Package sqlj.runtime.profile 237

IWD 9075-10:201?(E)

13.2 SQLJ sqlj.runtime.profile Interfaces

Method Retained

getWarnings()

clearWarnings()

getResultSet()

clearBatch()

BatchContext.clearBatch()

executeBatch()

BatchContext.executeBatch()

addBatch(String)

Table 15 — Methods not retained from java.sql.Statement

Method Removed

Replacement Method

setEscapeProcessing(boolean)

close()

executeComplete()

execute(String)

executeQuery(String)

executeUpdate(String)

getMoreResults()

setCursorName(String)

Table 16 — Methods retained from java.sql.PreparedStatement

Method Retained

addBatch()

getBatchContext()

execute()

executeUpdate()

setArray(int, Array)

setBigDecimal(int, BigDeci-
mal)

setBlob(int, Blob)

238 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)

13.2 SQLJ sqglj.runtime.profile Interfaces

Method Retained

setBoolean(int, boolean)

setByte(int, byte)

setBytes(int, byte[])

setClob(int, Clob)

setDate(int, java.sql.Date)

setDouble(int, double)

setFloat(int, float)

setInt(int, int)

setLong(int, long)

setObject(int, Object)

setRef(int, Ref)

setShort(int, short)

setString(int, String)

setTime(int, java.sql.Time)

setTimestamp(int,
java.sgl.Timestamp)

setURL(int, java.net.URL)

setSQLXML(int,
java.sql.SQLXML)

Table 17 — Methods not retained from java.sql.PreparedStatement

Method Removed

Replacement Method

setNull(int, int)

setBooleanWrapper(int, Boolean) setByteWrapper(int, Byte) setDou-
bleWrapper(int, Double) setFloatWrapper(int, Float) setintWrapper(int,
Int) setLongWrapper(int, Long) setShortWrapper(int, Short)

setAsciiStream(int, Input-
Stream)

setASCIIStreamWrapper(int, AsciiStream)

Package sqlj.runtime.profile 239

IWD 9075-10:201?(E)

13.2 SQLJ sqlj.runtime.profile Interfaces

Method Removed

Replacement Method

setBinaryStream(int, Input-
Stream)

setBinaryStreamWrapper(int, BinaryStream)

setCharacterStream(int,
Reader)

setCharacterStreamWrapper(int, CharacterStream)

setUnicodeStream(int, Input-
Stream)

setUnicodeStreamWrapper(int, UnicodeStream)

clearParameters()

setObject(int, Object, int, int)

setObject(int, Object, int)

executeQuery()

executeRTQuery()

Table 18 — Methods retained from java.sql.CallableStatement

Method Retained

getBlob(int)

getByte(int)

getArray(int)

getClob(int)

getDate(int)

getRef(int)

getString(int)

getTime(int)

getTimestamp(int)

getURL(int)

getSQLXML(int)

240 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

Table 19 — Methods not retained from java.sgl.CallableStatement

Method Removed Replacement Method

registerOutParameter(int, int)

registerOutParameter(int, int,

int)

getBoolean(int) getBooleanNoNull(int)

getByte(int) getByteNoNull(int)

getDouble(int) getDoubleNoNull(int)

getFloat(int) getFloatNoNull(int)

getint(int) getIntNoNull(int)

getLong(int) getLongNoNull(int)

getShort(int) getShortNoNull(int)

getObject(int) getObject(int, Class)

wasNull() getBooleanWrapper(int) getByteWrapper(int) getDoubleWrapper(int)
getFloatWrapper(int) getIntWrapper(int) getLongWrapper(int) getShort-
Wrapper(int)

Table 20 — Additional methods unique to RTStatement

Additional Method

getJDBCPreparedStatement()

getJDBCCallableStatement()

isBatchable()

isBatchCompatible()

NOTE 104 — Escape processing is handled by the implementation-dependent customization. By default, it is on, since the SQL
strings stored in the profile Entrylnfo object are in escaped syntax. However, a driver might remove the escape clauses before
application runtime, in which case escape processing could be shut off by the statement implementation.

Execute methods that have an SQL String parameter are omitted, since the SQL string is known from the profile EntryInfo object.
The cursor name does not need to be set explicitly, since POSITIONED statements are handled by passing the iterator object itself.

The registerOutParameter methods are omitted, since the types of the OUT parameters are stored in the profile object and can be
implicitly registered by the statement object implementation.

Package sqlj.runtime.profile 241

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

13.2.6.2 Methods

13.2.6.2.1 cancel ()

public abstract void cancel () throws SQLException

Cancel can be used by one thread to cancel an RTStatement object that is being executed by another thread.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

13.2.6.2.2 clearWarnings ()

public abstract void clearWarnings ()
throws SQLException

After this call, getWarnings returns null until a new warning is reported for this RTStatement object.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

13.2.6.2.3 execute ()

public abstract boolean execute ()
throws SQLException

Some CALL statements return multiple results; the execute method handles these complex statements.

NOTE 105 — An invocation of this method is generated by the translator if and only if the execute type of the profile Entrylnfo
object for this RTStatement object has value EXECUTE and the role has a value of CALL.

Returns

— If the statement was executed without raising an exception, then true; otherwise, false.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

242 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

See Also

— Subclause 13.3.2.4.3, “getExecuteType ()"
— Subclause 13.3.2.2.5, “EXECUTE”

13.2.6.2.4 executeComplete ()

public abstract void executeComplete ()
throws SQLException

Called once the execution of this RTStatement object (and all the required gets) have been made. This is a
guarantee that no further calls will be made to this RTStatement object by the codegen or runtime environment.
Once executeComplete() has been called, further calls to any other method are implementation-dependent
and might result in an SQLEXxception being thrown. Additionally, if this RTStatement object has previously
been added to a RTStatement object batch via getBatchContext(), then it should remain open and exe-
cutable until either BatchContext.executeBatch() or BatchContext.clearBatch() has been
called.

This method is distinguished from the JDBC close () method because, unlike the JDBC close () method,
this method will not close any ResultSet objects that have been opened by this RTStatement object. If this
RTStatement object is implemented using JDBC, then the underlying java.sql . Statement object should
not be closed until all open RTResultSet objects have been explicitly closed, and the executionComplete()
method has been called.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

13.2.6.2.5 executeRTQuery ()

public abstract RTResultSet executeRTQuery ()
throws SQLException

The prepared SQL query described by the profile EntryInfo object for this RT Statement object is executed and
its RTResultSet object is returned. The runtime type map of the RTStatement object is passed to the newly-
created RTResultSet object in an implementation-defined manner.

NOTE 106 — An invocation of this method is generated by the translator if and only if the execute type of the profile EntryInfo
object for this RTStatement object has value EXECUTE_QUERY.

Returns

— An RTResultSet object that contains the data produced by the query (never null)

Package sqlj.runtime.profile 243

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.3, “getExecute Type ()"
— Subclause 13.3.2.2.5, “EXECUTE”

13.2.6.2.6 executeUpdate ()

public abstract int executeUpdate ()
throws SQLException

Execute the SQL-statement described by the profile EntryInfo object for this RTStatement object.

NOTE 107 — An invocation of this method is generated by the translator if and only if the execute type of the profile EntryInfo
object for this RTStatement object has value EXECUTE_UPDATE.

Returns

— If the SQL-statement is INSERT, UPDATE or DELETE, then the number of rows affected by the SQL-
statement; otherwise, O (zero).

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.3, “getExecute Type ()"
— Subclause 13.3.2.2.5, “EXECUTE”

13.2.6.2.7 getArray (int)

public abstract java.sql.Array getArray (int parameterlndex) throws SQLException

Get the value of the SQL ARRAY identified by parameterindex as a Java.sql . Array object.

NOTE 108 — The implementation of the Java.sql - Array interface is based on array locators. The accessibility of the ARRAY
value through the methods of Java.sql . Array is only guaranteed in the scope of the transaction in which the getArray ()
method was executed.

244 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

NOTE 109 — An invocation of this method is generated by the translator if and only if the statement type of the profile EntryInfo
object for this RTStatement statement has the value CALLABLE_STATEMENT and the parameter Typelnfo object at parame-
terindex in the EntryInfo object has mode OUT or INOUT, and javaTypeName = java.sqgl.Array.

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()"

— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”
— Subclause 13.3.2.4.13, “getStatementType ()”

— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.8 getBatchContext ()

public abstract BatchContext getBatchContext () throws SQLException

Returns a batch context object that can be used to execute this RTStatement object as part of a batch of
RTStatement objects. If this RTStatement object is compatible with the underlying batch context object as
defined by isBatchCompatible(), it is added to the underlying batch context object. Otherwise a new
batch context object is created which initially contains only this RTStatement object. Such a new batch context
object is also created when the batch context object passed in the getStatement(int,BatchContext)
method was nul I.

The result is undefined if this method is called on an RT Statement object that was not obtained by getState-
ment(int,BatchContext), or if the RTStatement object is not batchable.

This method is called after all I N parameters and execution control attributes have been set, but before
RTStatement object execution.

Package sglj.runtime.profile 245

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

Returns

— A batch context object that can be used to execute this RTStatement object as part of a batch of RT Statement
objects.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.2.6.2.44, “isBatchable ()”
— Subclause 13.2.6.2.45, “isBatchCompatible ()”
— Subclause 13.2.2.2.5, “getStatement (int, BatchContext, Map)”

13.2.6.2.9 getBigDecimal (int)

public abstract BigDecimal getBigDecimal (int parameterindex)
throws SQLException

Get the value of the SQL NUMERIC parameter identified by parameterindex as a java.math.BigDecimal.
Unlike the corresponding JDBC method, this method does not have a scale parameter. The value returned uses
the scale of the SQL data type of the given parameter.

NOTE 110 — An invocation of this method is generated by the translator if and only if the statement type of the profile EntryInfo
object for this RTStatement object has value CALLABLE_STATEMENT and the parameter Typelnfo object at parameterindex
in the EntryInfo object has mode=OUT or INOUT, and javaTypeName=java.math.BigDecimal.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also
— Subclause 13.3.6.4.5, “getSQLType ()”

246 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces
— Subclause 13.3.6.4.1, “getJavaTypeName ()”
— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”
— Subclause 13.3.2.4.13, “getStatementType ()”
— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.10 getBlob (int)

public abstract Blob getBlob (int parameterlndex) throws SQLException

Get the value of SQL BLOB parameter identified by parameterindex as a java.sql.Blob object.

NOTE 111 — The implementation of the java.sql.Blob interface is based on large object locators. The accessibility of the BLOB
value through the methods of java.sql.Blob is only guaranteed in the scope of the transaction in which the getBlob () method
was executed.

NOTE 112 — An invocation of this method is generated by the translator if and only if the statement type of the profile Entrylnfo
object for this RT Statement object has the value CALLABLE_STATEMENT and the parameter Typelnfo object at parameterindex
in the EntryInfo object has mode OUT or INOUT, and javaTypeName = java.sql.Blob.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”
— Subclause 13.3.2.4.13, “getStatementType ()”

— Subclause 13.3.6.4.3, “getMode ()”

Package sqlj.runtime.profile 247

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

13.2.6.2.11 getBooleanNoNull (int)

public abstract boolean getBooleanNoNull (int parameterindex)
throws SQLException

Get the value of the SQL BOOLEAN parameter identified by parameterindex as a Java boolean.

NOTE 113 — An invocation of this method is generated by the translator if and only if the statement type of the profile Entrylnfo
object for this RTStatement object has value CALLABLE_STATEMENT and the parameter Typelnfo object at parameterindex
in the EntryInfo object has mode=OUT or INOUT, and javaTypeName=boolean.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

Returns

— The value of the parameter identified by parameterindex.

Throws

— SQLNullException — if the value of the parameter indicated by parameterindex is the SQL null value

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()"

— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”
— Subclause 13.3.2.4.13, “getStatementType ()”

— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.12 getBooleanWrapper (int)

public abstract Boolean getBooleanWrapper (int parameterindex)
throws SQLException

Get the value of the SQL BOOLEAN parameter identified by parameterindex as a java.lang.Boolean.

NOTE 114 — An invocation of this method is generated by the translator if and only if the statement type of the profile Entrylnfo
object for this RTStatement object has value CALLABLE_STATEMENT and the parameter Typelnfo object at parameterindex
in the EntryInfo object has mode=OUT or INOUT, and javaTypeName=java.lang.Boolean.

248 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLNullException — if the parameter identified by parameterindex has the SQL null value

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()"

— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”
— Subclause 13.3.2.4.13, “getStatementType ()”

— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.13 getByteNoNull (int)

public abstract byte getByteNoNull (int parameterlndex)
throws SQLException

Get the value of the SQL TINYINT parameter identified by parameterindex as a Java byte.

NOTE 115 — An invocation of this method is generated by the translator if and only if the statement type of the profile Entrylnfo
object for this RTStatement object has value CALLABLE_STATEMENT and the parameter Typelnfo object at parameterindex
in the EntryInfo object has mode=OUT or INOUT, and javaTypeName=byte.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

Returns

— The value of the parameter identified by parameterindex.

Package sglj.runtime.profile 249

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

Throws

— SQLNullException — if the value of the parameter indicated by parameterindex is the SQL null value

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”
— Subclause 13.3.2.4.13, “getStatementType ()”

— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.14 getBytes (int)

public abstract byte[] getBytes (int parameterlndex)
throws SQLException

Get the value of the SQL VARBINARY parameter identified by parameterindex as an array of Java bytes.

NOTE 116 — An invocation of this method is generated by the translator if and only if the statement type of the profile EntryInfo
object for this RTStatement object has value CALLABLE_STATEMENT and the parameter Typelnfo object at parameterindex
in the EntryInfo object has mode=OUT or INOUT, and javaTypeName=[byte.

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.6.4.5, “getSQLType ()”
— Subclause 13.3.6.4.1, “getJavaTypeName ()"
— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”

250 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

— Subclause 13.3.2.4.13, “getStatementType ()”
— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.15 getByteWrapper (int)

public abstract Byte getByteWrapper (int parameterlndex)
throws SQLException

Get the value of the SQL TINYINT parameter identified by parameterindex as a java.lang.Byte.

NOTE 117 — An invocation of this method is generated by the translator if and only if the statement type of the profile EntryInfo
object for this RTStatement object has value CALLABLE_STATEMENT and the parameter Typelnfo object at parameterindex
in the EntryInfo object has mode=OUT or INOUT, and javaTypeName=java.lang.Byte.

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”
— Subclause 13.3.2.4.13, “getStatementType ()”

— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.16 getClob (int)

public abstract Clob getClob (int parameterlndex) throws SQLException

Get the value of the SQL CLOB parameter identified by parameterindex as a java.sql.Clob object.

Package sqlj.runtime.profile 251

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

NOTE 118 — The implementation of the java.sql.Clob interface is based on large object locators. The accessibility of the CLOB
value through the methods of java.sql.Clob is only guaranteed in the scope of the transaction in which the getClob () method
was executed.

NOTE 119 — An invocation of this method is generated by the translator if and only if the statement type of the profile EntryInfo
object for this RT Statement object has the value CALLABLE_STATEMENT and the parameter Typelnfo object at parameterindex
in the EntryInfo object has mode OUT or INOUT, and javaTypeName = java.sgl.Clob.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()"

— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”
— Subclause 13.3.2.4.13, “getStatementType ()”

— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.17 getDate (int)

public abstract Date getDate (int parameterlndex)
throws SQLException

Get the value of the SQL DATE parameter identified by parameterIindex as a java.sqgl.Date.

NOTE 120 — An invocation of this method is generated by the translator if and only if the statement type of the profile EntryInfo
object for this RTStatement object has value CALLABLE_STATEMENT and the parameter Typelnfo object at parameterindex
in the EntryInfo object has mode=OUT or INOUT, and javaTypeName=java.sql.Date.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

252 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”
— Subclause 13.3.2.4.13, “getStatementType ()”

— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.18 getDoubleNoNull (int)

public abstract double getDoubleNoNull (int parameterindex)
throws SQLException

Get the value of the SQL DOUBLE PRECISION parameter identified by parameterindex as a Java double.

NOTE 121 — An invocation of this method is generated by the translator if and only if the statement type of the profile Entrylnfo
object for this RTStatement object has value CALLABLE_STATEMENT and the parameter Typelnfo object at parameterindex
in the EntryInfo object has mode=OUT or INOUT, and javaTypeName=double.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

Returns

— The value of the parameter identified by parameterindex.

Throws

— SQLNullException — if the value of the parameter indicated by parameterindex is the SQL null value

— SQLException — if the SQL-implementation raises an exception condition.

Package sqlj.runtime.profile 253

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

See Also

— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”
— Subclause 13.3.2.4.13, “getStatementType ()”

— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.19 getDoubleWrapper (int)

public abstract Double getDoubleWrapper (int parameterindex)
throws SQLException

Get the value of the SQL DOUBLE PRECISION parameter identified by parameterindex as a java.lang.Double.

NOTE 122 — An invocation of this method is generated by the translator if and only if the statement type of the profile EntryInfo
object for this RTStatement object has value CALLABLE_STATEMENT and the parameter Typelnfo object at parameterindex
in the EntryInfo object has mode=OUT or INOUT, and javaTypeName=java.lang.Double.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”
— Subclause 13.3.2.4.13, “getStatementType ()”

— Subclause 13.3.6.4.3, “getMode ()”

254 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

13.2.6.2.20 getFloatNoNull (int)

public abstract float getFloatNoNull (int parameterindex)
throws SQLException

Get the value of the SQL FLOAT parameter identified by parameterindex as a Java float.

NOTE 123 — An invocation of this method is generated by the translator if and only if the statement type of the profile Entrylnfo
object for this RTStatement object has value CALLABLE_STATEMENT and the parameter Typelnfo object at parameterindex
in the EntryInfo object has mode=OUT or INOUT, and javaTypeName=float.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

Returns

— The value of the parameter identified by parameterindex.

Throws

— SQLNullException — if the value of the parameter indicated by parameterindex is the SQL null value

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()"

— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”
— Subclause 13.3.2.4.13, “getStatementType ()”

— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.21 getFloatWrapper (int)

public abstract Float getFloatWrapper (int parameterlindex)
throws SQLException

Get the value of the SQL FLOAT parameter identified by parameterindex as a java.lang.Float.

NOTE 124 — An invocation of this method is generated by the translator if and only if the statement type of the profile Entrylnfo
object for this RTStatement object has value CALLABLE_STATEMENT and the parameter Typelnfo object at parameterindex
in the EntryInfo object has mode=OUT or INOUT, and javaTypeName=java.lang.Float.

Package sqlj.runtime.profile 255

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”
— Subclause 13.3.2.4.13, “getStatementType ()”

— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.22 getIntNoNull (int)

public abstract int getintNoNull (int parameterindex)
throws SQLException

Get the value of the SQL INTEGER parameter identified by parameterindex as a Java int.

NOTE 125 — An invocation of this method is generated by the translator if and only if the statement type of the profile Entrylnfo
object for this RTStatement object has value CALLABLE_STATEMENT and the parameter Typelnfo object at parameterindex
in the EntryInfo object has mode=OUT or INOUT, and javaTypeName=int.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

Returns

— The value of the parameter identified by parameterindex.

Throws

— SQLNullException — if the value of the parameter indicated by parameterindex is the SQL null value

256 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()"

— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”
— Subclause 13.3.2.4.13, “getStatementType ()”

— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.23 getIntWrapper (int)

public abstract Integer getintWrapper (int parameterindex)
throws SQLException

Get the value of the SQL INTEGER parameter identified by parameterindex as a java.lang.Integer.

NOTE 126 — An invocation of this method is generated by the translator if and only if the statement type of the profile Entrylnfo
object for this RTStatement object has value CALLABLE_STATEMENT and the parameter Typelnfo object at parameterindex
in the EntryInfo object has mode=OUT or INOUT, and javaTypeName=java.lang.Integer.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”
— Subclause 13.3.2.4.13, “getStatementType ()”

— Subclause 13.3.6.4.3, “getMode ()”

Package sglj.runtime.profile 257

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

13.2.6.2.24 getJDBCCallableStatement ()

public abstract CallableStatement getJDBCCallableStatement ()
throws SQLException

Returns a representation of this RTStatement objectasa Java.sql . Cal lableStatement object. Operations
performed on the returned Cal lableStatement object affect the state of this RTStatement object as well.

Returns

— A java.sql .CallableStatement object representing this RTStatement object.

Throws

— SQLException — if this RTStatement object cannot be represented as a
Java.sql.CallableStatement object.

13.2.6.2.25 getJDBCPreparedStatement ()

public abstract PreparedStatement getJDBCPreparedStatement ()
throws SQLException

Returns a representation of this RTStatement objectasa java.sql . PreparedStatement object. Operations
performed on the returned PreparedStatement object affect the state of this RTStatement object as well.

Returns

— A java.sqgl .PreparedStatement object representing this RTStatement object.

Throws

— SQLException — if this RTStatement object cannot be represented asa java.sql .PreparedState-
ment object

13.2.6.2.26 getLongNoNull (int)

public abstract long getLongNoNull (int parameterlindex)
throws SQLException

Get the value of the SQL BIGINT parameter identified by parameterindex as a Java long.

NOTE 127 — An invocation of this method is generated by the translator if and only if the statement type of the profile EntryInfo
object for this RTStatement object has value CALLABLE_STATEMENT and the parameter Typelnfo at parameterindex in the
EntryInfo object has mode=OUT or INOUT, and javaTypeName=long.

258 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

Returns

— The value of the parameter identified by parameterindex.

Throws

— SQLNullException — if the value of the parameter indicated by parameterindex is the SQL null value

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”
— Subclause 13.3.2.4.13, “getStatementType ()”

— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.27 getLongWrapper (int)

public abstract Long getLongWrapper (int parameterlndex)
throws SQLException

Get the value of the SQL BIGINT parameter identified by parameterindex as a java.lang.Long.

NOTE 128 — An invocation of this method is generated by the translator if and only if the statement type of the profile EntryInfo
object for this RTStatement object has value CALLABLE_STATEMENT and the parameter Typelnfo at parameterindex in the
EntryInfo object has mode=OUT or INOUT, and javaTypeName=java.lang.Long.

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Package sqlj.runtime.profile 259

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”
— Subclause 13.3.2.4.13, “getStatementType ()”

— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.28 getMaxFieldSize ()

public abstract int getMaxFieldSize ()
throws SQLException

The maxFieldSize limit (in bytes) is the maximum amount of data returned for any column value; it only applies
to binary string and character string (BINARY, VARBINARY, LONGVARBINARY, CHAR, VARCHAR,
and LONGVARCHAR) columns. These columns can be fetched into Java String, Byte array, or stream objects.
If the limit is exceeded, the excess data is discarded. The default maxFieldSize is O (zero).

Returns

— The maxFieldSize limit of this RTStatement object; O (zero) means unlimited.

Throws

— SQLEXxception — if the SQL-implementation raises an exception condition.

13.2.6.2.29 getMaxRows ()

public abstract int getMaxRows ()
throws SQLException

Returns the maximum number of rows that can be contained by a ResultSet object or by an RTResultSet object
created by executing this RTStatement object. If this maxRows limit is exceeded, then the excess rows are
dropped. The default maxRows value is O (zero).

260 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

Returns

— The maxRows limit of this RTStatement object; 0 (zero) means unlimited.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

13.2.6.2.30 getMoreResults (int)

public abstract boolean getMoreResults (int closeType)
throws SQLException

Moves to an RTStatement's next result. It returns true if this result is a Java.sql .ResultSet object.
getMoreResults(int) also optionally closes java.sql . Resul tSet objects obtained with getRe-
sultSet(). There are no more results if and only if (IgetMoreResults(int) && (getUpdate-
Count() == -1)).

If the constant Java.sql . Statement.CLOSE_CURRENT_RESULT is passed, then the

Java.sqgl .ResultSet object returned by the last call to getResul tSet () against the currently registered
RTStatement is closed. If the constant java.sqgl . Statement.CLOSE_ALL_RESULTS is passed, then
all open java.sql .ResultSet objects previously obtained from the currently registered RTStatement are
closed. If the constant Java.sqgl .Statement.KEEP_CURRENT_RESULT is passed, then the last
Java.sql .ResultSet object obtained from the currently registered RTStatement is left open.

NOTE 129 — Invocation of this method occurs as a result of the <embedded SQL Java program> having invoked getNextRe-
sultSet(int) against the ExecutionContext for which this RTStatement is the currently registered RTStatement.

Returns

— If the next result is a ResultSet object, then true; if it is an update count or there are no more results, then
false.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 12.3.4.4.13, “getNextResultSet (int)”
— Subclause 13.2.6.2.3, “execute ()”

— Subclause 13.3.2.4.3, “getExecuteType ()”

— Subclause 13.3.2.2.5, “EXECUTE”

Package sqlj.runtime.profile 261

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

13.2.6.2.31 getObject (int, Class)

public abstract Object getObject
(int parameterindex, Class objectType)
throws SQLException

Get the value of the parameter identified by parameterindex as a java.lang.Object object. This method is used
to fetch implementation-defined instances of user-defined types with SQL Type STRUCT, DISTINCT,
JAVA_OBJECT, or OTHER.

The objectType parameter gives the static type of the Java Ivalue to which the value of the parameter indicated
by parameterindex is to be assigned. If the Typelnfo profile Entrylnfo object for the parameter has SQL Type
STRUCT, DISTINCT, or JAVA_OBJECT, then the runtime type map TM of the RTStatement object is non-
null and has a map entry mapping the actual SQL type name to the Java class specified in the Class argument
or to a subclass of that Java class. In this case, the result of getObject is equivalent to the invocation of getOb-
ject(columnindex, TM), as defined in [JDBC]. If the Typelnfo profile Entrylnfo object for the parameter has
SQL Type OTHER, then the runtime type map is null. An exception is thrown if the object returned is not
assignable to an Ivalue with static type objectType.

If an object of type objectType cannot be constructed or otherwise has invalid structure (as would be the case
with an iterator whose named accessor methods cannot be determined), then an SQLEXxception condition is
thrown: OLB-specific error — invalid class declaration.

NOTE 130 — An invocation of this method is generated by the translator if and only if the statement type of the profile Entrylnfo
object for this RTStatement object has value CALLABLE_STATEMENT and the parameter Typelnfo object at parameterindex
in the EntryInfo object has mode OUT or INOUT, and SQLType STRUCT, DISTINCT, JAVA_OBJECT, or OTHER. In such
cases, the javaTypeName of the Typelnfo profile entry indicates the expected Java Class of the object; the class cannot be handled
by any other getXXX method defined by this RTStatement object. Accordingly, this method is used as the catch-all for any
unrecognized types.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— objectType — the class of the Java Ivalue to which the value of the parameter indicated by parameterindex
is to be assigned.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if the class of the object returned is not assignment compatible with the given objectType
class, or if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.6.4.5, “getSQLType ()”

262 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”
— Subclause 13.3.2.4.13, “getStatementType ()”

— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.32 getQueryTimeout ()

public abstract int getQueryTimeout ()
throws SQLException

The queryTimeout limit is the number of seconds that the SQLJ runtime implementation will wait for an
invocation of execute() to complete. If the limit is exceeded, an SQLEXxception is thrown. The default
queryTimeout is O (zero).

Returns

— The queryTimeout limit of this RTStatement object in seconds; 0 (zero) means unlimited.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

13.2.6.2.33 getRef (int)

public abstract Ref getRef (int parameterindex)
throws SQLException

Get the value of an SQL REF parameter as a java.sql.Ref object.

NOTE 131 — An invocation of this method is generated by the translator if and only if the statement type of the profile Entrylnfo
object for this RTStatement object has value CALLABLE_STATEMENT and the parameter Typelnfo at parameterindex in the
EntrylInfo object has mode=OUT or INOUT, and javaTypeName=java.sql.Ref.

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Package sqlj.runtime.profile 263

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”
— Subclause 13.3.2.4.13, “getStatementType ()”

— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.34 getResultSet ()

public abstract ResultSet getResultSet ()
throws SQLException

Returns the current result of this RTStatement object as a ResultSet object. It is only called once per result if
using the execute() method.

NOTE 132 — Invocation of this method occurs as a result of the <embedded SQL Java program> having invoked getNextRe-
sultSet(int) against the ExecutionContext for which this RTStatement is the currently registered RTStatement.

Returns

— Ifthe result of this RT Statement object is an update count or there are no more results, then null; otherwise,
the current result of this RTStatement object as a ResultSet object.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.2.6.2.3, “execute ()”
— Subclause 13.3.2.4.3, “getExecuteType ()”
— Subclause 13.3.2.2.5, “EXECUTE”

264 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

13.2.6.2.35 getShortNoNull (int)

public abstract short getShortNoNull (int parameterindex)
throws SQLException

Get the value of the SQL SMALLINT parameter identified by parameterindex as a Java short.

NOTE 133 — An invocation of this method is generated by the translator if and only if the statement type of the profile Entrylnfo
object for this RTStatement object has value CALLABLE_STATEMENT and the parameter Typelnfo object at parameterindex
in the EntryInfo object has mode=OUT or INOUT, and javaTypeName=short.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

Returns

— The value of the parameter identified by parameterindex.

Throws

— SQLNullException — if the value of the parameter indicated by parameterindex is the SQL null value

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()"

— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”
— Subclause 13.3.2.4.13, “getStatementType ()”

— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.36 getShortWrapper (int)

public abstract Short getShortWrapper (int parameterlindex)
throws SQLException

Get the value of the SQL SMALLINT parameter identified by parameterindex as a java.lang.Short.

NOTE 134 — An invocation of this method is generated by the translator if and only if the statement type of the profile Entrylnfo
object for this RTStatement object has value CALLABLE_STATEMENT and the parameter Typelnfo object at parameterindex
in the EntryInfo object has mode=OUT or INOUT, and javaTypeName=java.lang.Short.

Package sqlj.runtime.profile 265

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”
— Subclause 13.3.2.4.13, “getStatementType ()”

— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.37 getString (int)

public abstract String getString (int parameterlndex)
throws SQLException

Get the value of the SQL character string (CHAR, VARCHAR, or LONGVARCHAR) parameter identified
by parameterindex as a Java String.

NOTE 135 — An invocation of this method is generated by the translator if and only if the statement type of the profile EntryInfo
object for this RTStatement object has value CALLABLE_STATEMENT and the parameter Typelnfo object at parameterindex
in the EntryInfo object has mode=OUT or INOUT and javaTypeName=java.lang.String.

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

266 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”
— Subclause 13.3.2.4.13, “getStatementType ()”

— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.38 getSQLXML (int)

public abstract java.sql.SQLXML getSQLXML (int parameterlindex)
throws SQLException

Get the value of the SQL XML parameter identified by parameterindex as a java.sql . SQLXML object.

NOTE 136 — An invocation of this method is generated by the translator if and only if the statement type of the profile EntryInfo
object for this RTStatement object has value CALLABLE_STATEMENT and the parameter Typelnfo object at parameterindex
in the EntryInfo object has mode=OUT or INOUT and javaTypeName=java.sql . SQLXML.

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is an SQL null value, then the Java null; otherwise,
the value of the parameter identified by parameterindex.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”
— Subclause 13.3.2.4.13, “getStatementType ()”

Package sglj.runtime.profile 267

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.39 getTime (int)

public abstract Time getTime (int parameterlndex)
throws SQLException

Get the value of the SQL TIME parameter identified by parameterindex as a java.sgl. Time.

NOTE 137 — An invocation of this method is generated by the translator if and only if the statement type of the profile Entrylnfo
object for this RTStatement object has value CALLABLE_STATEMENT and the parameter Typelnfo object at parameterindex
in the EntryInfo object has mode=OUT or INOUT, and javaTypeName=java.sgl.Time.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”
— Subclause 13.3.2.4.13, “getStatementType ()”

— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.40 getTimestamp (int)

public abstract Timestamp getTimestamp (int parameterlndex)
throws SQLException

Get the value of the SQL TIMESTAMP parameter identified by parameterindex as a java.sql. Timestamp.

NOTE 138 — An invocation of this method is generated by the translator if and only if the statement type of the profile EntryInfo
object for this RTStatement object has value CALLABLE_STATEMENT and the parameter Typelnfo object at parameterindex
in the EntryInfo object has mode=OUT or INOUT, and javaTypeName=java.sql.Timestamp.

268 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”

— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”
— Subclause 13.3.2.4.13, “getStatementType ()”

— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.41 getUpdateCount ()

public abstract int getUpdateCount ()
throws SQLException

Returns the current result of this RTStatement object as an update count; if the result is a ResultSet object or
there are no more results, —1 is returned. It is only called once per result.

NOTE 139 — An invocation of this method is generated by the translator if and only if the execute type of the profile EntryInfo
object for this RTStatement object has value EXECUTE.

Returns

— If the current result of this RTStatement object is a ResultSet object or there are no more results, then —1;
otherwise, the current result as an update count.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

Package sqlj.runtime.profile 269

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

See Also

— Subclause 13.2.6.2.3, “execute ()”
— Subclause 13.3.2.4.3, “getExecuteType ()”
— Subclause 13.3.2.2.5, “EXECUTE”

13.2.6.2.42 getURL ()

public abstract int getURL (int parameterindex)
throws SQLException, java.net.MalformedURLException

Get the value of an SQL DATALINK parameter identified by parameterindex as a java.net. URL object.

NOTE 140 — An invocation of this method is generated by the translator if and only if the statement type of the profile Entrylnfo
object for this RTStatement object has value CALLABLE_STATEMENT and the parameter Typelnfo object at parameterindex
in the EntryInfo object has mode=OUT or INOUT, and javaTypeName=java.net.URL.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

— java.net.MalformedURLException — if the DATALINK URL value cannot be used to construct a
java.net. URL object.

13.2.6.2.43 getWarnings ()

public abstract SQLWarning getWarnings ()
throws SQLException

The first warning reported by invocations of methods on this Statement object is returned. A Statement object's
execute methods clear its SQLWarning chain. Subsequent Statement warnings will be chained to this SQLWarn-

ing.
The warning chain is automatically cleared each time execute (), executeRTQuery(), or executeUp-
date() is invoked on this RTStatement object.

270 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

NOTE 141 — If a ResultSet object is being processed, then any warnings associated with ResultSet reads will be chained on the
ResultSet object and made available to the client on the associated iterator object.

Returns

— If there is any outstanding SQLWarning, then the first SQLWarning; otherwise, null.

Throws

— SQLEXxception — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.2.6.2.3, “execute ()”
— Subclause 13.3.2.4.3, “getExecuteType ()”
— Subclause 13.3.2.2.5, “EXECUTE”

13.2.6.2.44 isBatchable ()

public abstract boolean isBatchable () throws SQLException

Returns true if this RTStatement object is able to be added to a statement batch for deferred execution, false
otherwise. Batchable RTStatement objects are typically (but not exclusively) DDL, DML and invocations of
SQL-invoked procedures with no QUT parameters. If this RTStatement object returns OUT parameters or produces
one or more side-channel result sets, then false is returned.

If statement batching is not supported by the runtime implementation, this method returns false.

Use the method isBatchCompatible() to determine whether this RTStatement object is compatible with
the batch context object passed when this RTStatement object was created.

This method is called after all I N parameters and execution control attributes have been set, but before
RTStatement object execution.

Returns

— If able to be batched, then true; otherwise, false.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.2.6.2.45, “isBatchCompatible ()”

Package sqlj.runtime.profile 271

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

— Subclause 13.2.6.2.8, “getBatchContext ()”

13.2.6.2.45 isBatchCompatible ()

public abstract boolean isBatchCompatible () throws SQLException

Returns true if this RTStatement object is compatible with the underlying batch context object, and false oth-
erwise.

The underlying batch context object is the batch context object that was passed to ConnectedProfile._get-
Statement() when this RTStatement object was created. If no such batch context object was passed, false
is returned. The behavior of this method is undefined in the following cases.

— The RTStatement object was not obtained with getStatement(int,BatchContext).
— The RTStatement object is not batchable.

In general, RT Statement objects with one or more | N parameters are only compatible with batch context objects
that contain other instances of the same RTStatement object. RT Statement objects without | N parameters are
only compatible with batch context objects that contain other RTStatement objects without | N parameters.

This method is called after all I N parameters and execution control attributes have been set, but before
RTStatement object execution.

Returns

— If compatible with the underlying batch context object, then true; otherwise, false.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.2.6.2.44, “isBatchable ()”
— Subclause 13.2.6.2.8, “getBatchContext ()”
— Subclause 13.2.2.2.5, “getStatement (int, BatchContext, Map)”

13.2.6.2.46 aetArray (int, Array)

public abstract void setArray (int parameterlndex, java.sql._Array x) throws SQLException

Set the parameter identified by parameterindex to a java.sqgl - Array object.

272 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

NOTE 142 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terIndex in the profile EntryInfo object for this RTStatement object has mode=IN or INOUT, and javaTypeName = java.sql.Array.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— X —the value of the parameter identified by parameterindex

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.6, “getParaminfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”
— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.47 setAsciiStreamWrapper (int, AsciiStream)

public abstract void setAsciiStreamWrapper (int paramlndex, AsciiStream X)
throws SQLException

Set the parameter identified by parameterindex to an sglj.runtime.AsciiStream value. The driver converts this
to an SQL character string value. If the given value is Java null, then the parameter identified by parameterindex
is set to the SQL null value.

If a very long ASCII character string is input to a character string parameter, it might be more practical to send
it via a java.io.InputStream. JDBC reads the data from the stream as needed, until it reaches the end of the
stream. The JDBC driver does any necessary conversion from ASCII to the SQL-data's character set.

NOTE 143 — The AsciiStream class implements java.io.InputStream, and adds a Java field, length, which is used to determine

the number of octets in the stream. The AsciiStream class typically wraps a standard Java stream class or a custom subclass that
implements the InputStream interface.

NOTE 144 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terIndex in the profile Entrylnfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=sqlj.runtime.Asci-
iStream.

Package sglj.runtime.profile 273

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

— X —the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.6, “getParaminfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”
— Subclause 13.3.6.4.1, “getJavaTypeName ()”

13.2.6.2.48 setBigDecimal (int, BigDecimal)

public abstract void setBigDecimal
(int parameterlindex, BigDecimal x)
throws SQLException

Set the parameter identified by parameterindex to a java.math.Bigdecimal value. The driver converts this to an
SQL NUMERIC value. If the given value is Java null, then the parameter identified by parameterindex is set
to the SQL null value.

NOTE 145 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terIndex in the profile EntryInfo object for this RTStatement object has mode=IN or INOUT, and javaTypeName=java.math.BigDec-
imal.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— X — the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.6, “getParaminfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”
— Subclause 13.3.6.4.1, “getJavaTypeName ()”

274 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.49 setBinaryStreamWTrapper (int, BinaryStream)

public abstract void setBinaryStreamWrapper (int paramlndex, BinaryStream X)
throws SQLException

Set the parameter identified by parameterindex to an sglj.runtime.BinaryStream value. The driver converts this
to an SQL binary string value. If the given value is Java null, then the parameter identified by parameterindex
is set to the SQL null value.

If a very large binary value is input to a binary string parameter, it might be more practical to send it via a
java.io.InputStream. JDBC will read the data from the stream as needed, until it reaches the end of the stream.

NOTE 146 — The BinaryStream class implements java.io.InputStream, and adds a Java field, length, which is used to determine
the number of octets in the stream. The BinaryStream class typically wraps a standard Java stream class or a custom subclass that
implements the InputStream interface.

NOTE 147 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terIndex in the profile Entryinfo object for this RTStatement object has mode=IN or INOUT, and javaTypeName=sqlj.runtime.Bina-
ryStream.

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

— X —the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.6, “getParaminfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”
— Subclause 13.3.6.4.1, “getJavaTypeName ()”

13.2.6.2.50 setBlob (int, Blob)

public abstract void setBlob (int parameterlndex, Blob x) throws SQLException

Set the parameter identified by parameterindex to a Java Blob object.

NOTE 148 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terindex in the profile EntryInfo object for this RTStatement object has mode=IN or INOUT, and javaTypeName = java.sql.Blob.

Package sglj.runtime.profile 275

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

— X —the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.6, “getParaminfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”
— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.51 setBoolean (int, boolean)

public abstract void setBoolean
(int parameterlindex, boolean x)
throws SQLException

Set the parameter identified by parameterindex to a Java boolean value. The driver converts this to an SQL
BOOLEAN value.

NOTE 149 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terIndex in the profile EntryInfo object for this RTStatement object has mode=IN or INOUT, and javaTypeName=boolean.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— X — the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.6, “getParaminfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”
— Subclause 13.3.6.4.1, “getJavaTypeName ()”

276 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.52 setBooleanWrapper (int, Boolean)

public abstract void setBooleanWrapper
(int parameterlindex, Boolean x)
throws SQLException

Set the parameter identified by parameterindex to a java.lang.Boolean value. The driver converts this to an
SQL BOOLEAN value. If the given value is Java null, then the parameter is set to the SQL null value.

NOTE 150 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terIndex in the profile EntryInfo object for this RTStatement object has mode=IN or INOUT, and javaTypeName=java.lang.Boolean.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— X — the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.6, “getParamlInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”
— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.53 setByte (int, byte)

public abstract void setByte
(int parameterlindex, byte x)
throws SQLException

Set the parameter identified by parameterindex to a Java byte value. The driver converts thisto an SQL TINYINT
value.

NOTE 151 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terIndex in the profile EntryInfo object for this RTStatement object has mode=IN or INOUT, and javaTypeName=byte.

Package sqlj.runtime.profile 277

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

— X —the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.6, “getParaminfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”
— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.54 setBytes (int, byte)

public abstract void setBytes
(int parameterlindex, byte x[])
throws SQLException

Set the parameter identified by parameterindex to a Java array of bytes. The driver converts this to an SQL
binary string (VARBINARY or LONGVARBINARY, depending on the argument's size relative to the driver's
limits on VARBINARY values). If the given value is Java null, then the parameter identified by parameterindex
is set to the SQL null value.

NOTE 152 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terindex in the profile EntryInfo object for this RTStatement object has mode=IN or INOUT, and javaTypeName=[byte.

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

— X —the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.6, “getParaminfo (int)”

278 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces
— Subclause 13.3.6.4.5, “getSQLType ()”
— Subclause 13.3.6.4.1, “getJavaTypeName ()"
— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.55 setByteWrapper (int, Byte)

public abstract void setByteWrapper
(int parameterindex, Byte x)
throws SQLException

Set the parameter identified by parameterindex to a java.lang.Byte value. The driver converts this to an SQL
TINYINT value. If the given value is Java null, then the parameter identified by parameterindex is set to the
SQL null value.

NOTE 153 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terIndex in the profile EntryInfo object for this RTStatement object has mode=IN or INOUT, and javaTypeName=java.lang.Byte.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— X — the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.6, “getParaminfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”
— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.56 setCharacterStreamWrapper (int, CharacterStream)

public void setCharacterStreamWrapper (int columnindex, CharacterStream x)
throws SQLException

Set the parameter identified by parameterindex to an sqlj.runtime.CharacterStream object. The driver converts
this to an SQL LONGVARCHAR value. If the given value is Java null, then the parameter identified by
parameterindex is set to the SQL null value.

Package sqlj.runtime.profile 279

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

If a very large Unicode value is input to a LONGVARCHAR parameter, it might be more practical to send it
as an instance of java.io.Reader. JDBC will read the data from the stream as needed, until it reaches the end of
the stream. The JDBC driver will do any necessary conversion from Unicode to the appropriate SQL character
set.

NOTE 154 — The CharacterStream class implements java.io.Reader, and adds a Java field, length, which is used to determine the
number of characters in the stream. The CharacterStream class typically wraps a standard Java Reader object or an instance of a
custom subclass that implements the Reader interface.

NOTE 155 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terindex in the profile EntryInfo object for this RTStatement object has mode=IN or INOUT, and has javaTypeName = sqlj.run-
time.CharacterStream.

Parameters

— parameterIndex — the first column is 1 (one), the second is 2, etc.

— X — the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.6, “getParaminfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”
— Subclause 13.3.6.4.1, “getJavaTypeName ()”

13.2.6.2.57 setClob (int, Clob)

public abstract void setClob (int parameterlndex, Clob x) throws SQLException

Set the parameter identified by parameterindex to a Java Clob object.

NOTE 156 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terindex in the profile EntryInfo object for this RTStatement object has mode=IN or INOUT, and javaTypeName = java.sql.Clob.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— X — the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

280 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

See Also

— Subclause 13.3.2.4.6, “getParaminfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”
— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.58 setDate (int, Date)

public abstract void setDate
(int parameterlindex, Date x)
throws SQLException

Set the parameter identified by parameterindex to a java.sgl.Date value. The driver converts this to an SQL
DATE value. If the given value is Java null, then the parameter identified by parameterindex is set to the SQL
null value.

NOTE 157 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terindex in the profile EntryInfo object for this RTStatement object has mode=IN or INOUT, and javaTypeName=java.sql.Date.

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

— X —the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.6, “getParaminfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()"
— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.59 setDouble (int, double)

public abstract void setDouble

Package sqlj.runtime.profile 281

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

(int parameterlindex, double x)
throws SQLException

Set the parameter identified by parameterindex to a Java double value. The driver converts this to an SQL
DOUBLE PRECISION value.

NOTE 158 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terIndex in the profile Entryinfo object for this RTStatement object has mode=IN or INOUT, and javaTypeName=double.

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

— X — the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.6, “getParaminfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()"
— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.60 setDoubleWrapper (int, Double)

public abstract void setDoubleWrapper
(int parameterindex, Double x)
throws SQLException

Set the parameter identified by parameterindex to a java.lang.Double value. The driver converts this to an SQL
DOUBLE PRECISION value. If the given value is Java null, then the parameter identified by parameterindex
is set to the SQL null value.

NOTE 159 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terIndex in the profile EntryInfo object for this RTStatement object has mode=IN or INOUT, and javaTypeName=java.lang.Double.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— X — the value of the parameter identified by parameterindex

282 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces
Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.6, “getParaminfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”
— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.61 setFloat (int, float)

public abstract void setFloat
(int parameterlindex, float x)
throws SQLException

Set the parameter identified by parameterindex to a Java float value. The driver converts this to an SQL FLOAT
value.

NOTE 160 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terindex in the profile EntryInfo object for this RTStatement object has mode=IN or INOUT, and javaTypeName=float.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— X — the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.6, “getParamlInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”
— Subclause 13.3.6.4.3, “getMode ()”

Package sqlj.runtime.profile 283

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

13.2.6.2.62 setFloatWrapper (int, Float)

public abstract void setFloatWrapper
(int parameterindex, Float x)
throws SQLException

Set the parameter identified by parameterindex to a java.lang.Float value. The driver converts this to an SQL
FLOAT value. If the given value is Java null, then the parameter identified by parameterindex is set to the SQL
null value.

NOTE 161 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terindex in the profile EntryInfo object for this RTStatement object has mode=IN or INOUT, and javaTypeName=java.lang.Float.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— X —the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.6, “getParaminfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”
— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.63 setiInt (int, int)

public abstract void setint
(int parameterindex, int x)
throws SQLException

Set the parameter identified by parameterindex to a Java int value. The driver converts this to an SQL INTEGER
value.

NOTE 162 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terindex in the profile EntryInfo object for this RTStatement object has mode=IN or INOUT, and javaTypeName=int.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

284 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

— X — the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.6, “getParamlInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”
— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.64 setIntWrapper (int, Integer)

public abstract void setIntWrapper
(int parameterindex, Integer x)
throws SQLException

Set the parameter identified by parameterindex to a java.lang.Integer value. The driver converts this to an SQL
INTEGER value. If the given value is Java null, then the parameter identified by parameterindex is set to the
SQL null value.

NOTE 163 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terIndex in the profile EntryInfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=java.lang.Integer.

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

— X — the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.6, “getParaminfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”
— Subclause 13.3.6.4.3, “getMode ()”

Package sqlj.runtime.profile 285

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

13.2.6.2.65 setLong (int, long)

public abstract void setlLong
(int parameterindex, long x)
throws SQLException

Set the parameter identified by parameterindex to a Java long value. The driver converts this to an SQL BIGINT
value.

NOTE 164 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terIndex in the profile EntryInfo object for this RTStatement object has mode=IN or INOUT, and javaTypeName=long.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— X — the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.6, “getParaminfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”
— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.66 setLongWrapper (int, Long)

public abstract void setLongWrapper
(int parameterlindex, Long x)
throws SQLException

Set the parameter identified by parameterindex to a java.lang.Long value. The driver converts this to an SQL
BIGINT value. If the given value is Java null, then the parameter identified by parameterindex is set to the
SQL null value.

NOTE 165 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terIndex in the profile Entryinfo object for this RTStatement object has mode=IN or INOUT, and javaTypeName=java.lang.Long.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

286 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

— X — the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.6, “getParamlInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”
— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.67 setMaxFieldSize (int)

public abstract void setMaxFieldSize (int max)
throws SQLException

The maxFieldSize limit (in bytes) is the maximum amount of data returned for any column value; it only applies
to binary string and character string (BINARY, VARBINARY, LONGVARBINARY, CHAR, VARCHAR,
and LONGVARCHAR) columns. Such columns can be fetched into Java String, Byte array, or stream objects.
If the limit is exceeded, the excess data is discarded.

Parameters

— max — the new max column size limit; zero means unlimited

Throws

— SQLException — if the SQL-implementation raises an exception condition.

— SQLException: OLB-specific error — unsupported feature — if max is set to other than MaxFieldSize's
default value and support for Feature JO03, “Execution control”, is not provided

13.2.6.2.68 setMaxRows (int)

public abstract void setMaxRows (Int max)
throws SQLException

Sets the maxRows limit of this RTStatement object. The maxRows limit is the maximum number of rows that
can be contained by a ResultSet object or by an RTResultSet object created by executing this RTStatement
object. If the limit is exceeded, then the excess rows are dropped.

Package sqlj.runtime.profile 287

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

Parameters

— max — the new max row limit; zero means unlimited

Throws

— SQLException — if the SQL-implementation raises an exception condition.

— SQLException: OLB-specific error — unsupported feature— if max is set to other than MaxRow's default
value and support for Feature JO03, “Execution control”, is not provided

13.2.6.2.69 setObject ()

public abstract void setObject
(int parameterlindex, Object x)
throws SQLException

Set the parameter identified by parameterindex to a Java object value. If the Typelnfo object for this parameter
in the profile EntryInfo object has SQL Type STRUCT, DISTINCT, or JAVA_OBJECT, then the runtime
implementation uses this SQL Type, following the semantics described for the execution of setObject()
in [JDBC]. Otherwise, the driver uses the type SQL OTHER. If the given value is Java null, then the parameter
identified by parameterindex is set to the SQL null value.

This method can also be used to pass implementation-defined user-defined data types, by using a Driver-specific
Java type.

NOTE 166 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terindex in the profile Entrylnfo object for this RTStatement object has mode IN or INOUT, and SQLType STRUCT, DISTINCT,
JAVA_OBJECT, or OTHER. In such cases, the javaTypeName indicates the expected Java Class of the object; the class cannot
be handled by any other setXXX method defined by this RTStatement object. Accordingly, this method is also used as the catch-
all for any unrecognized types.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— X — the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.6, “getParaminfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”
— Subclause 13.3.6.4.1, “getJavaTypeName ()”

288 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.70 setQueryTimeout (int)

public abstract void setQueryTimeout (int seconds)
throws SQLException

Sets the queryTimeout limit of this RTStatement object. The queryTimeout limit is the maximum number of
seconds the SQLJ runtime implementation will wait for an invocation of execute () to complete. If the limit
is exceeded, an SQLEXxception is thrown.

Parameters

— seconds — the new query timeout limit in seconds; zero means unlimited

Throws

— SQLException — if the SQL-implementation raises an exception condition.

— SQLEXxception: OLB-specific error — unsupported feature— if seconds is set to other than QueryTimeout's
default value and support for Feature JO03, “Execution control”, is not provided

13.2.6.2.71 setRef (int, Ref)

public abstract void setRef
(int parameterindex, Ref x)
throws SQLException

Set the parameter identified by parameterindex to a java.sql.Ref value. The driver converts this to an SQL REF
value. If the given value is Java null, then the parameter identified by parameterindex is set to the SQL null
value.

NOTE 167 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terIndex in the profile Entryinfo object for this RTStatement object has mode=IN or INOUT, and javaTypeName=java.sql.Ref.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— X — the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

Package sqlj.runtime.profile 289

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

See Also

— Subclause 13.3.2.4.6, “getParaminfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”
— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.72 setShort (int, short)

public abstract void setShort
(int parameterlindex, short x)
throws SQLException

Set the parameter identified by parameterindex to a Java short value. The driver converts this to an SQL
SMALLINT value.

NOTE 168 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terIindex in the profile EntryInfo object for this RTStatement object has mode=IN or INOUT, and javaTypeName=short.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— X — the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.6, “getParaminfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”
— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.73 setShortWrapper (int, Short)

public abstract void setShortWrapper

290 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

(int parameterlindex, Short x)
throws SQLException

Set the parameter identified by parameterindex to a java.lang.Short value. The driver converts this to an SQL
SMALLINT value. If the given value is Java null, then the parameter identified by parameterindex is set to the
SQL null value.

NOTE 169 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terindex in the profile EntryInfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=java.lang.Short.

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

— X —the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.6, “getParaminfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”
— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.74 setString (int, String)

public abstract void setString
(int parameterlindex, String X)
throws SQLException

Set the parameter identified by parameterindex to a java.lang.String value. The driver converts this to an SQL
character string value (CHARACTER VARYING or LONGVARCHAR, depending on the argument's size
relative to the driver's limits on CHARACTER VARYING). If the given value is Java null, then the parameter
identified by parameterindex is set to the SQL null value.

NOTE 170 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terIndex in the profile Entrylnfo object for this RTStatement object has mode=IN or INOUT, and javaTypeName=java.lang.String.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— X — the value of the parameter identified by parameterindex

Package sqlj.runtime.profile 291

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.6, “getParaminfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”
— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.75 setSQLXML (int, SQLXML)

public abstract void setSQLXML
(int parameterlindex, java.sql.SQLXML x)
throws SQLException

Set the parameter identified by parameterindex to a java.sql.SQLXML value. If the given value is Java null,
then the parameter identified by parameterindex is set to the SQL null value.

NOTE 171 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terIndex in the profile EntryInfo object for this RTStatement object has mode=IN or INOUT, and javaType-
Name=java.sql . SQLXML.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— x—the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.6, “getParaminfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()"
— Subclause 13.3.6.4.3, “getMode ()”

292 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

13.2.6.2.76 setTime (int, Time)

public abstract void setTime
(int parameterlindex, Time X)
throws SQLException

Set the parameter identified by parameterindex to a java.sgl. Time value. The driver converts this to an SQL
TIME value. If the given value is Java null, then the parameter identified by parameterindex is set to the SQL
null value.

NOTE 172 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terindex in the profile EntryInfo object for this RTStatement object has mode=IN or INOUT, and javaTypeName=java.sql.Time.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— X —the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.6, “getParaminfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”
— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.77 setTimestamp (int, Timestamp)

public abstract void setTimestamp
(int parameterindex, Timestamp X)
throws SQLException

Set the parameter identified by parameterindex to a java.sgl. Timestamp value. The driver converts this to an
SQL TIMESTAMP value. If the given value is Java null, then the parameter identified by parameterindex is
set to the SQL null value.

NOTE 173 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terIndex in the profile EntryInfo object for this RTStatement object has mode=IN or INOUT, and javaTypeName=java.sql. Timestamp.

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

Package sqlj.runtime.profile 293

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

— X — the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

See Also

— Subclause 13.3.2.4.6, “getParamlInfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”

— Subclause 13.3.6.4.1, “getJavaTypeName ()”
— Subclause 13.3.6.4.3, “getMode ()”

13.2.6.2.78 setUnicodeStreamWTrapper (int, UnicodeStream)

public abstract void setUnicodeStreamWrapper (int paramlndex, UnicodeStream X)
throws SQLException

Set the parameter identified by parameterindex to an sql j - runtime.UnicodeStream value. The driver
converts this to an SQL character string value. If the given value is Java null, then the parameter identified by
parameterindex is set to the SQL null value.

If a very large Unicode string value is input to an SQL character string parameter, it might be more practical
to send it via a java.io.InputStream. JDBC will read the data from the stream as needed, until it reaches end of
file. The JDBC driver will do any necessary conversion from Unicode to the appropriate SQL character set.

NOTE 174 — The UnicodeStream class implements java.io.InputStream, and adds a Java field, length, which is used to determine
the number of octets in the stream. The UnicodeStream class typically wraps a standard Java stream class or a custom subclass
that implements the InputStream interface.

NOTE 175 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terIndex in the profile EntrylInfo object for this RTStatement object has mode=IN or INOUT, and javaTypeName=sqlj.runtime.Uni-
codeStream.

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

— X —the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

294 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.2 SQLJ sqglj.runtime.profile Interfaces

See Also

— Subclause 13.3.2.4.6, “getParaminfo (int)”
— Subclause 13.3.6.4.5, “getSQLType ()”
— Subclause 13.3.6.4.1, “getJavaTypeName ()”

13.2.6.2.79 setURL (int, URL)

public abstract void setURL
(int parameterindex, java.net.URL x)
throws SQLException

Set the parameter identified by parameterindex to a java.net.URL value. The driver converts this to an SQL
DATALINK value. If the given value is Java null, then the parameter identified by parameterindex is set to
the SQL null value.

NOTE 176 — An invocation of this method is generated by the translator if and only if the parameter Typelnfo object at parame-
terindex in the profile EntryInfo object for this RTStatement object has mode=IN or INOUT, and javaTypeName=java.net.URL.

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

— X —the value of the parameter identified by parameterindex

Throws

— SQLException — if the SQL-implementation raises an exception condition.

13.2.7 sqlj.runtime.profile.SerializedProfile

13.2.7.1 Interface Overview

public interface SerializedProfile

A class implementing the SerializedProfile interface is able to provide an InputStream object from which a
SerializedProfile object can be read. Instances of the SerializedProfile interface can be loaded and used by the
Profile. instantiate() method. This object provides a hook by which profile objects can be loaded
by non-standard means.
NOTE 177 — As an example of where this was found useful, it was discovered that a particular version of a web browser did not
support loading of a serialized object as an applet resource. In this case, the SerializedProfile object was encoded as a static string

on a class implementing SerializedProfile object, and the class packaged with the applet in place of the original SerializedProfile
object.

Package sqlj.runtime.profile 295

IWD 9075-10:201?(E)
13.2 SQLJ sqlj.runtime.profile Interfaces

See Also

— Subclause 13.3.3.3.11, “instantiate (Loader, InputStream)”
— Subclause 13.3.3.3.12, “instantiate (Loader, String)”

13.2.7.2 Methods

13.2.7.2.1 getProfileAsStream ()

public abstract InputStream getProfileAsStream ()
throws I0Exception

Returns an InputStream object from which a SerializedProfile object can be read. The first object on the
InputStream object returned is expected to be a SerializedProfile object.

Returns

— An InputStream object containing a SerializedProfile object.

Throws

— |OException — if the stream could not be created

Conformance Rules

None.

296 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

13.3 SQLJ sqlj.runtime.profile Classes

13.3.1 sqglj.runtime.profile.DefaultLoader

13.3.1.1 Class Overview

jJava.lang.Object
|

+—-sqlj.runtime.profile.DefaultLoader

public class Def aul t Loader
extends Object
implements Loader

The default profile.Loader implementation. The DefaultLoader class provides methods that implement the
Loader interface by deferring to a wrapped class Loader argument.

13.3.1.2 Constructors

13.3.1.2.1 DefaultLoader (ClassLoader)

public DefaultLoader (ClassLoader loader)

Creates a default profile.Loader object the implementation of which will defer to the given class loader. If the
given Loader object is Java null, the system Loader object is used instead.

Parameters

— loader — the class Loader object to use for loading classes and resources; if the system ClassLoader object
should be used, then null

Package sqlj.runtime.profile 297

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

13.3.1.3 Methods

13.3.1.3.1 getResourceAsStream (String)

public InputStream getResourceAsStream (String name)

Creates the named resource as an InputStream object using the underlying class Loader object's getResource-
AsStream() method, or ClassLoader .getSystemResourceAsStream() if the underlying class
Loader object is null.

Parameters

— name — the name of the resource

Returns

— If resource is found, then the InputStream object on the resource; otherwise, null.

See Also

— Subclause 13.3.1.3.1, “getResourceAsStream (String)”

— getSystemResourceAsStream — a standard Java class

13.3.1.3.2 loadClass (String)

public Class loadClass (String className)
throws ClassNotFoundException

Loads the class named in the className parameter using the underlying class Loader object's loadClass()
method; if the underlying class Loader object is null, then Class. forName().

Parameters

— className — the fully qualified name of the desired class to be loaded.

Returns

— The class that is loaded.

Throws

— ClassNotFoundException — if the underlying Loader object cannot find a definition for the class

298 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

See Also

— Subclause 13.2.4.2.2, “loadClass (String)”

— forName — the forName(String) method in java.lang.Class, a standard Java class

13.3.2 sqlj.runtime.profile.EntrylInfo

13.3.2.1 Class Overview

java.lang.Object

+—-sqlj.runtime.profile_Entrylnfo

public abstract class Entrylnfo
extends Object
implements java.io.Serializable, ObjectlnputValidation

A profile EntryInfo object contains the constant information describing an SQL-statement constructed at SQLJ
translation time, including the SQL string in the format defined by [JDBC], the return type of the operation,
the type of each bind parameter, and the way in which the operation is to be executed at runtime.

13.3.2.2 Variables

13.3.22.1 BLOCK

public static final int BLOCK = 9;

Constant possibly returned by getRole() indicating that the operation described by this EntryInfo object is
a <compound statement>.

See Also
— Subclause 13.3.2.4.11, “getRole ()"
13.3.2.2.2 CALL

public static final int CALL = 4;

Constant possibly returned by getRole () indicating the operation described by this Entrylnfo object is a
<call statement>.

Package sqlj.runtime.profile 299

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

See Also

— Subclause 13.3.2.4.11, “getRole ()"

13.3.2.2.3 CALLABLE_STATEMENT

public static final int CALLABLE_STATEMENT = 4;

Constant possibly returned by getStatementType() indicating that the RTStatement objects associated
with this EntrylInfo object might include QUT parameters (and calls to getXXX methods).

See Also

— Subclause 13.3.2.4.13, “getStatementType ()”

13.3.2.24 COMMIT

public static final int COMMIT = 11;

Constant possibly returned by getRole () indicating that the operation described by this EntryInfo object is
a <commit statement>.

See Also

— Subclause 13.3.2.4.11, “getRole ()”

13.3.2.25 EXECUTE

public static final int EXECUTE = 24;

Constant possibly returned by getExecuteType () indicating that the runtime RTStatement objects associated
with this EntryInfo object are executed via the execute () method. This constant is used only if the runtime
dynamically determines whether or not an operation described by this EntryInfo object returns a

Java.sql .ResultSet object. An Entrylnfo object of this type is expected to be rare since most SQL
environments should be able to deduce whether an operation described by this EntryInfo object might return
a java.sqgl .ResultSet object or not.

See Also

— Subclause 13.2.6.2.3, “execute ()”
— Subclause 13.3.2.4.3, “getExecute Type ()"

300 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

13.3.2.2.6 EXECUTE_QUERY

public static final int EXECUTE_QUERY = 16;

Constant possibly returned by getExecuteType () indicating that the runtime RTStatement objects associated
with this EntrylInfo object are permitted to be executed via the executeRTQuery () method. Such
RTStatement objects always return an iterator object that is described by the getResul tSetInfo() method
of this EntrylInfo object.

See Also

— Subclause 13.2.6.2.5, “executeRTQuery ()”
— Subclause 13.3.2.4.8, “getResultSetinfo (int)”
— Subclause 13.3.2.4.3, “getExecuteType ()”

13.3.2.2.7 EXECUTE_UPDATE

public static final int EXECUTE_UPDATE = 8;

Constant possibly returned by getExecuteType () indicating that the runtime RTStatement objects associated
with this Entrylnfo object are permitted to be executed via the executeUpdate () method. Such RTStatement
objects return no iterators; thus getResultSetInfo(), when invoked against such an EntrylInfo objet, returns null.

See Also

— Subclause 13.2.6.2.6, “executeUpdate ()”
— Subclause 13.3.2.4.3, “getExecuteType ()"

13.3.2.2.8 ITERATOR_CONVERSION

public static final int ITERATOR_CONVERSION = 18;

Constant possibly returned by getRole () indicating that the operation described by this EntryInfo object
contains an <iterator conversion clause>.

See Also

— Subclause 13.3.2.4.11, “getRole ()”

Package sqlj.runtime.profile 301

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

13.3.2.29 NAMED_RESULT

public static final int NAMED_RESULT = 32;

Constant possibly returned by getResultSetType () indicating that this EntryInfo object produces an
iterator object the columns of which are bound by name to the columns of the <query clause> described by this
EntryInfo object. If the result type is NAMED_RESULT, then getResultSetInfo() returns a Typelnfo
object the getName () method of which reflects the name of the column expected, and with which getExe-
cuteType() always returns EXECUTE_QUERY.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.2.4.3, “getExecuteType ()”

13.3.2.2.10 NO_RESULT

public static final int NO_RESULT = 128;

Constant possibly returned by getResul tSetType () indicating that this EntryInfo object does not produce
an iterator object. If the result type indicates NO_RESULT, then getResultSetInfo() always returns
null, getResultSetCount() always returns 0 (zero), and getExecuteType () always returns EXE-
CUTE_UPDATE.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetinfo (int)”
— Subclause 13.3.2.4.7, “getResultSetCount ()”
— Subclause 13.3.2.4.3, “getExecuteType ()”

13.3.2.2.11 OTHER

public static final int OTHER = 1024;

Constant possibly returned by getRole() indicating that the operation described by this EntryInfo object
cannot be categorized by any of the other constant roles returned by getRole (). The value of OTHER defines
an upper limit for future role constants that might be added to the EntryInfo class. Thus, any implementation-
defined role constants should be defined with values greater than the value of OTHER.

302 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

See Also

— Subclause 13.3.2.4.11, “getRole ()"

13.3.2.2.12 POSITIONED

public static final int POSITIONED = 6;

Constant possibly returned by getRole() indicating that the operation described by this EntryInfo object is
a <delete statement: positioned> or an <update statement: positioned>.

See Also

— Subclause 13.3.2.4.11, “getRole ()”

13.3.2.2.13 POSITIONED_RESULT

public static final int POSITIONED_RESULT = 64;

Constant possibly returned by getResultSetType() indicating that this EntryInfo object produces an
iterator object the columns of which are bound by position to the columns in the operation described by this
EntryInfo object. If the result type indicates POSITIONED_RESULT, then getResultSetInfo() fora
particular index returns a Typelnfo object describing the column type expected at that index in the operation
described by this EntryInfo object, and getExecuteType() always returns EXECUTE_QUERY.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.2.4.3, “getExecuteType ()”

13.3.2.2.14 PREPARED_STATEMENT

public static final Int PREPARED_STATEMENT = 2;

Constant possibly returned by getStatementType() indicating that the RTStatement objects associated
with this EntryInfo object do not have any OUT parameters. The effects of a call to a a getXXX method against
an RTStatement object associated with this EntryInfo object is implementation-dependent.

Package sqlj.runtime.profile 303

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

See Also

— Subclause 13.3.2.4.13, “getStatementType ()”

13.3.2.2.15 QUERY

public static final int QUERY = 2;

Constant possibly returned by getRole() indicating that the operation described by this EntryInfo object is
a <query clause>.

See Also

— Subclause 13.3.2.4.11, “getRole ()”

13.3.2.2.16 QUERY_FOR_UPDATE

public static final int QUERY_FOR_UPDATE = 7;

Constant possibly returned by getRole() indicating that the operation described by this EntryInfo object is
a <query clause> populating a ForUpdate iterator.

See Also

— Subclause 13.3.2.4.11, “getRole ()”
13.3.2.2.17 RELEASE_SAVEPOINT
public static final Int RELEASE_SAVEPOINT = 22;

Constant possibly returned by getRole() indicating that the operation described by this EntryInfo object is
a <release savepoint statement>.

See Also

— Subclause 13.3.2.4.11, “getRole ()"

304 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

13.3.2.2.18 ROLLBACK

public static final int ROLLBACK = 12;

Constant possibly returned by getRole() indicating that the operation described by this EntryInfo object is
a <rollback statement>.

See Also

— Subclause 13.3.2.4.11, “getRole ()"

13.3.2.2.19 SAVEPOINT

public static final int SAVEPOINT = 20;

Constant possibly returned by getRole() indicating that the operation described by this EntryInfo object is
a <savepoint statement>.
See Also

— Subclause 13.3.2.4.11, “getRole ()”

13.3.2.2.20 SET_TRANSACTION

public static final int SET_TRANSACTION = 17;

Constant possibly returned by getRole() indicating that the operation described by this EntryInfo object is
a <set transaction statement>. For such an EntrylInfo object, the getDescriptor () method returns an
sglj.runtime.profile.SetTransactionDescriptor that further describes the transaction access mode and isolation
level.

See Also

— Subclause 13.3.2.4.11, “getRole ()”
— Subclause 13.3.2.4.2, “getDescriptor ()”
— Subclause 13.3.2.4.14, “getTransactionDescriptor ()”

— Subclause 13.3.5, “sqlj.runtime.profile.SetTransactionDescriptor”

Package sqlj.runtime.profile 305

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

13.3.2.2.21 SINGLE_ROW_QUERY

public static final int SINGLE_ROW_QUERY = 8;

Constant possibly returned by getRole() indicating that the operation described by this EntryInfo object is
a <select statement: single row>.

See Also

— Subclause 13.3.2.4.11, “getRole ()"

13.3.2.2.22 STATEMENT

public static final int STATEMENT = 3;

Constant possibly returned by getRole() indicating that the operation described by this EntryInfo object is
an SQL-statement not categorized by other roles (e.g., DML, DDL, etc).

See Also

— Subclause 13.3.2.4.11, “getRole ()”

13.3.2.2.23 UNTYPED_SELECT

public static final int UNTYPED_ SELECT = 19;

Constant possibly returned by getRole() indicating that the operation described by this EntryInfo object is
a <query clause> that is assigned to a weakly-typed iterator object.

See Also

— Subclause 13.3.2.4.11, “getRole ()”

13.3.2.2.24 VALUES

public static final int VALUES = 5;

Constant possibly returned by getRole () indicating the operation described by this EntryInfo object is a
<function clause>.

306 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

See Also

— Subclause 13.3.2.4.11, “getRole ()"

13.3.2.3 Constructors

13.3.2.3.1 Entrylnfo ()

public Entrylnfo ()

The default constructor for the EntrylInfo class

13.3.2.4 Methods

13.3.2.4.1 executeTypeToString (int)

public abstract String executeTypeToString (int executeType)

If the executeType is not a valid execute type, a string representation of executeType as an int is returned. This
method is most often used in debugging profile EntryInfo object representations.

Parameters

— executeType — the execute type to be translated

Returns

— A sstring representation of an execute type constant.

See Also

— Subclause 13.3.2.4.13, “getStatementType ()”

13.3.2.4.2 getDescriptor ()

public abstract Object getDescriptor ()

Returns an object that describes any additional information particular to this Entrylnfo object. The object
returned will vary according to the role of the RTStatement object associated with this EntryInfo object.

Package sqlj.runtime.profile 307

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

Returns

— Case:

» If the role of this EntryInfo object is POSITIONED, then an Integer the value of which is the one-
based index of the <dynamic parameter specification> corresponding to the cursor name that appears
in the WHERE CURRENT OF clause in this EntryInfo object.

For example, if the SQL string is UPDATE TAB SET COL1=? WHERE CURRENT OF ?,then?2
would be returned. The index can be passed to getParamlnfo() to describe the cursor type.

e Ifthe role of this EntryInfo object is SET_TRANSACTION, then a sqlj.runtime.profile.SetTransac-
tionDescriptor that describes the access mode and isolation level of the <set transaction statement>.

» If the role of this EntryInfo object is neither POSITIONED nor SET_TRANSACTION, then a null
descriptor.

See Also

— Subclause 13.3.2.4.11, “getRole ()”
— Subclause 13.3.2.4.6, “getParaminfo (int)”
— Subclause 13.3.2.4.14, “getTransactionDescriptor ()”

— Subclause 13.3.5, “sqglj.runtime.profile.SetTransactionDescriptor”

13.3.2.4.3 getExecuteType ()

public abstract int getExecuteType ()

Describes the way in which all the executable RTStatement object associated with this Entrylnfo object are
executed at runtime.

Returns

— One of the constants EXECUTE_UPDATE, EXECUTE_QUERY, and EXECUTE.

See Also

— Subclause 13.3.2.2.7, “EXECUTE_UPDATE”
— Subclause 13.3.2.2.6, “EXECUTE_QUERY”
— Subclause 13.3.2.2.5, “EXECUTE”

308 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

13.3.2.4.4 getLineNumber ()

public abstract int getLineNumber ()

The value returned is the line number of the line in the original source file, as given by the getSourceFile()
method of the ProfileData object for this EntryInfo object. Source file lines are numbered starting at 1 (one).
I line number information is not available, then 0 (zero) is returned.

Returns

— The starting line number of the operation described by this EntryInfo object.

See Also

— Subclause 13.3.4.3.3, “getSourceFile ()”

13.3.2.45 getParamCount ()

public abstract int getParamCount ()

Returns

— The number of parameters for this Entrylnfo object (0 (zero) or greater).

13.3.2.4.6 getParamlnfo (int)

public abstract Typelnfo getParaminfo (int ndx)

Parameters

— ndx — the index of the parameter to describe, range 1 (one) to getParamCount()

Returns

— If ndx is out of range, then null; otherwise, a description of the parameter at index ndx.

Package sqlj.runtime.profile 309

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

13.3.2.4.7 getResultSetCount ()

public abstract int getResultSetCount ()

Returns the number of columns in the iterator object produced by this EntryInfo object, which is always non-
negative. If the operation described by this EntryInfo object does not produce an iterator object or produces a
Java.sql .ResultSet object, 0 (zero) is returned. Otherwise, getResultSetInfo() can be used to
determine the type of each result column.

Returns

— If there are no columns in the iterator object or if a java.sql .ResultSet object is produced, then 0
(zero); otherwise, the number of columns in the iterator produced by this Entrylnfo object.

See Also

— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.2.4.10, “getResultSetType ()”

13.3.2.4.8 getResultSetInfo (int)

public abstract Typelnfo getResultSetinfo (int ndx)

Returns a description of the iterator object column at index ndx. This might be useful to implementations of
[JDBC] that are able to preregister query result types. getResultSetInfo (i) .getmode () always returns
OUT. To determine whether the results are bound by name or by position, use getResultSetType().

NOTE 178 — If getResultSetCount returns 0 (zero), this method always returns null.

Parameters

— ndx — the index of the iterator object column to describe, range 1 (one) to the value returned by getRe-
sultSetCount().

Returns

— If ndx is out of range, then null; otherwise, a description of the iterator object column at index ndx.

See Also

— Subclause 13.3.6.4.4, “getName ()"
— Subclause 13.3.2.4.10, “getResultSetType ()”

310 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

13.3.2.4.9 getResultSetName ()

public abstract String getResultSetName ()

Returns the name of the Java Class associated with the strongly typed iterator object populated by this Entryinfo
object. If this entry does not populate a strongly-typed iterator object (e.g., resultSetType=NO_RESULT), null
is returned.

The getJavaType () method of a profile object can be used to load the class represented by the iterator
name using the current profile.Loader object.

Returns

— The name of the Java Class representation of the type.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.3.3.5, “getJavaType (String)”
— Subclause 13.3.3.3.6, “getJavaType (Typelnfo)”

13.3.2.4.10 getResultSetType ()

public abstract int getResultSetType ()

Describes the type of iterator object that is produced by this operation described by this EntryInfo object, if
any. This method should be used to determine how the results described by getResultSetiInfo() are to
be interpreted.

Returns
— One of the constants NAMED_RESULT, NO_RESULT, and POSITIONED RESULT.

See Also

— Subclause 13.3.2.4.8, “getResultSetInfo (int)”

— Subclause 13.3.2.2.9, “NAMED_RESULT”

— Subclause 13.3.2.2.10, “NO_RESULT”

— Subclause 13.3.2.2.13, “POSITIONED_RESULT”

Package sqlj.runtime.profile 311

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

13.3.2.4.11 getRole ()

public abstract int getRole ()

Returns the role of the operation described by this EntryInfo object. The role categorizes the operation described
by this EntryInfo object, and is used to determine how the operation described by this EntryInfo object is to be
treated at runtime.

NOTE 179 — Regardless of the role of the operation described by this EntryInfo object, getParameter Info() calls are
always permitted to be used to describe any parameters for the operation described by this EntryInfo object.

Returns

— One of the constants BLOCK, CALL, COMMIT, ITERATOR_CONVERSION, OTHER, POSITIONED,
QUERY, QUERY_FOR_UPDATE, RELEASE_SAVEPOINT, ROLLBACK, SAVEPOINT,
SET_TRANSATION, SINGLE_ROW_QUERY, STATEMENT, UNTYPED_SELECT, or VALUES.

— If not one of the specified constants, then a value that is larger than the value of the constant OTHER. Such
aresult indicates an implementation-defined role that might not be reliably processed by all implementations.

See Also

— Subclause 13.3.2.2.1, “BLOCK”

— Subclause 13.3.2.2.2, “CALL”"

— Subclause 13.3.2.2.4, “COMMIT”

— Subclause 13.3.2.2.8, “ITERATOR_CONVERSION”
— Subclause 13.3.2.2.11, “OTHER”

— Subclause 13.3.2.2.12, “POSITIONED”

— Subclause 13.3.2.2.15, “QUERY”

— Subclause 13.3.2.2.16, “QUERY_FOR_UPDATE”
— Subclause 13.3.2.2.17, “RELEASE_SAVEPOINT”
— Subclause 13.3.2.2.18, “ROLLBACK”

— Subclause 13.3.2.2.19, “SAVEPOINT”

— Subclause 13.3.2.2.20, “SET_TRANSACTION”
— Subclause 13.3.2.2.21, “SINGLE_ROW_QUERY”
— Subclause 13.3.2.2.22, “STATEMENT”

— Subclause 13.3.2.2.23, “UNTYPED_SELECT”

— Subclause 13.3.2.2.24, “VALUES”

312 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

13.3.2.4.12 getSQLString ()

public abstract String getSQLString ()

Returns, in the format defined by [JDBC], the text of the operation to be performed that is described by this
EntryInfo object. All host variable references are replaced with <dynamic parameter specification>. Any INTO
lists are removed. A positional update includes a clause of the form “WHERE CURRENT OF ?”. Comments
and hints are preserved as they appeared in the original source file. Function and procedure calls are in the
JDBC prescribed format: { call proc(?) },and{ ? = call fn(?) }.

Returns

— The text of the operation described by this EntryInfo object to be performed, in the format defined by
[JDBC].

13.3.2.4.13 getStatementType ()

public abstract int getStatementType ()

Describes the type of SQL-statement.

Returns

— One of the constants PREPARED_STATEMENT and CALLABLE_STATEMENT.

See Also

— Subclause 13.3.2.2.14, “PREPARED_STATEMENT”
— Subclause 13.3.2.2.3, “CALLABLE_STATEMENT”

13.3.2.4.14 getTransactionDescriptor ()

public SetTransactionDescriptor getTransactionDescriptor ()

Returns

— If the role of this EntryInfo object is SET_TRANSACTION, then a descriptor that contains the access
mode and isolation level of the <set transaction statement>; otherwise, null.

See Also

— Subclause 13.3.2.2.20, “SET_TRANSACTION”

Package sqlj.runtime.profile 313

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

— Subclause 13.3.2.4.2, “getDescriptor ()”

13.3.2.4.15 isDefinedRole (int)

public abstract boolean isDefinedRole (int role)

A defined role is a role that has been defined with a constant Java field in this class. An enumeration of such
constants is found in the getRole () method specification.

Parameters

— role — the role to be tested

Returns

— If the argument substituted for role represents a defined role, then true; otherwise, false.

See Also

— Subclause 13.3.2.4.11, “getRole ()"

13.3.2.4.16 isValidDescriptor (Object, int)

public abstract boolean isValidDescriptor (Object descriptor, int role)

The expected descriptor types are defined by the getDescriptor method. Note that in the case of user defined
roles, any descriptor value is permitted.

Parameters

— descriptor — the Object to be tested

— role — the role associated with the descriptor

Returns

— If the given descriptor is of valid type (and value) for an EntryInfo object that has the given role, then true;
otherwise, false.

See Also

— Subclause 13.3.2.4.2, “getDescriptor ()”

314 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

13.3.2.4.17 isValidExecuteType (int)

public abstract boolean isValidExecuteType (int execType)

Valid execute type values are those that might be returned by the getStatementType() method.

Parameters

— execType — the execute type to be tested

Returns

— If the argument substituted for execType represents a valid execute type, then true; otherwise, false.

See Also

— Subclause 13.3.2.4.3, “getExecuteType ()"

13.3.2.4.18 isValidResultSetType (int)

public abstract boolean isValidResultSetType (int resultSetType)

Valid result set type values are those that might be returned by the getResultSetType() method.

Parameters

— resultSetType — the result set type to be tested

Returns

— If the argument substituted for resultSetType represents a valid result set type, then true; otherwise, false.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”

13.3.2.4.19 isValidRole (int)

public static boolean isValidRole (int role)

Valid role values are any roles that are defined, or any values greater than the OTHER constant.

Package sqlj.runtime.profile 315

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

Parameters

— role — the role to be tested

Returns

— If the argument substituted for role represents a valid role, then true; otherwise, false.

See Also

— Subclause 13.3.2.4.11, “getRole ()"
— Subclause 13.3.2.4.15, “isDefinedRole (int)”
— Subclause 13.3.2.2.11, “OTHER”

13.3.2.4.20 isValidStatementType (int)

public abstract boolean isValidStatementType (int statementType)

Valid statement type values are those that might be returned by the getStatementType () method.

Parameters

— statementType — the statement type to be tested

Returns

— Ifthe argument substituted for statementType represents a valid statement type, then true; otherwise, false.

See Also

— Subclause 13.3.2.4.13, “getStatementType ()”

13.3.2.4.21 resultSetTypeToString (int)

public abstract String resultSetTypeToString (int type)

If type is the integer value of a named result set type constant, then the name of that constant is returned as a
string; otherwise, the string representation of the integer value is returns. This method is most often used in
debugging profile EntryInfo object representations.

316 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

Parameters

— type — the result set type to be translated

Returns

— Asstring representation of type.

See Also

— Subclause 13.3.2.4.10, “getResultSetType ()”
— Subclause 13.3.2.4.18, “isValidResultSetType (int)”

13.3.2.4.22 roleToString (int)

public abstract String roleToString (int role)

If role is the integer value of a named role constant, then the name of that constant is returned as a string; oth-
erwise, the string representation of the integer value is returned. This method is most often used in debugging
profile EntryInfo object representations.

Parameters

— role — the role to be translated

Returns

— Asstring representation of role.

See Also

— Subclause 13.3.2.4.11, “getRole ()"
— Subclause 13.3.2.4.19, “isValidRole (int)”

13.3.2.4.23 statementTypeToString (int)

public abstract String statementTypeToString (int type)

If type is the integer value of a named type constant, then the name of that constant is returned as a string;
otherwise, the string representation of the integer value is returned. This method is most often used in debugging
profile EntryInfo object representations.

Package sqlj.runtime.profile 317

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

Parameters

— type — the statement type to be translated

Returns

— Asstring representation of a statement type constant.

See Also

— Subclause 13.3.2.4.13, “getStatementType ()”
— Subclause 13.3.2.4.20, “isValidStatementType (int)”

13.3.2.4.24 validateObject ()

public abstract void validateObject () throws InvalidObjectException

Validates the internal state of this Entrylnfo object. An exception is thrown if this EntryInfo object contains
invalid state. Note that whenever an EntryInfo object is deserialized, it automatically registers validation of
itself via this method to ensure that internal state is maintained across serialization. This method does not validate
the contained Typelnfo objects for results or parameters.

It is recommended that subclasses use this method immediately after object construction to validate the EntryInfo
object.

Throws

— InvalidObjectException — if this object is invalid

13.3.3 sqlj.runtime.profile.Profile

13.3.3.1 Class Overview

jJava.lang.Object
|

+—-sqlj.runtime.profile_Profile

public abstract class Profile

318 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

extends Object
implements java.io.Serializable

A Profile object is a resource that contains the constant information describing a collection of SQL-statements.
It also provides a mechanism to add a java.sql .Connection object to a profile object, and in so doing,
creates a ConnectedProfile object that can be used to create executable RTStatement objects corresponding to
the SQL-statements contained within the profile object.

A profile object might have a number of associated ConnectedProfile objects, each of which represents a cus-
tomization for a particular data source Connection object. Profile customization typically involves implemen-
tation-dependent profile transformations that allow more efficient SQL execution, such as precompilation of
SQL text or use of SQL-invoked procedures. A profile object resolves a ConnectedProfile object from a data
source Connection object via the use of a profile Customization object. A profile object maintains a set of
Customization objects in much the same way that the JDBC DriverManager manages a set of JDBC drivers.
A profile object that has no Customization objects defaults to a JDBC-based dynamic SQL ConnectedProfile
object implementation.

13.3.3.2 Constructors

13.3.3.2.1 Profile (Loader)

public Profile (Loader loader)

Creates a new Profile object associated with the given Loader object. If the given profile.Loader object is Java
null, then a DefaultLoader object that uses the system ClassLoader object is used.

A profile object is an abstract object that only directly implements and manages those methods involving a
profile.Loader object. All other methods are implemented by subclasses.

NOTE 180 — This method is only used for creating new profile objects. To instantiate an existing profile object, use the
instantiate() method.

Parameters

— loader — the profile.Loader object to associate with this Profile object.

See Also

— Subclause 13.3.3.3.11, “instantiate (Loader, InputStream)”
— Subclause 13.3.3.3.12, “instantiate (Loader, String)”
— Subclause 13.3.1.2.1, “DefaultLoader (ClassLoader)”

Package sqlj.runtime.profile 319

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

13.3.3.3 Methods

13.3.3.3.1 deregisterCustomization (Customization)

public abstract void deregisterCustomization (Customization customization)

Drop a Customization object from the profile object's list.

Parameters

— customization — the Customization object to be dropped

Throws

— IllegalArgumentException — if the Customization object identified by the customization argument is not
currently registered

13.3.3.3.2 getConnectedProfile (Connection)

public abstract ConnectedProfile getConnectedProfile (Connection conn)
throws SQLException

Resolves the contents of this profile object with the given java.sqgl .Connection object and returns the

result. The implementation of this method returns the ConnectedProfile object associated with the first registered
Customization object that accepts the given Connection object. If no Customization object is found that accepts
the Connection object , then a default ConnectedProfile object implementation based on JDBC dynamic SQL
is returned.

An exception is thrown if a Customization object that accepts the Connection object is found but is unable to
create a ConnectedProfile object. For example, a profile object contains entries that cannot be executed on the
particular Connection object.

Parameters

— conn — the Java.sql .Connection object over which to perform operations

Returns

— The result of attaching this profile object to the given Connection object.

Throws

— SQLException — if a ConnectedProfile object cannot be created for the given Connection object

320 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

See Also

— Subclause 13.2.3, “sqlj.runtime.profile.Customization”

13.3.3.3.3 getContextName ()

public abstract String getContextName ()

Returns the fully qualified name of the connection context object for this profile object. Each profile object is
associated with a particular connection context class.

Returns

— The fully qualified name of the connection context object for this profile object.

13.3.3.3.4 getCustomizations ()

public abstract java.util_Enumeration getCustomizations ()

Returns

— Ajava.util.Enumeration object consisting of all Customization objects currently registered with this profile
object.

13.3.3.3.5 getJavaType (String)

public abstract Class getJavaType (String className)

Returns a Java Class representation of the given type name loaded using this profile object's profile.Loader
object. This profile object's profile.Loader object is used to load new class instances (for non-primitive types).
If the class cannot be loaded, a NoClassDefFoundError is thrown.

If className starts with “[”, then it is interpreted as an array name. Note that, unlike Java Virtual Machine
array naming, array names passed to this method are expected to have the form “[” + <COMPONENTNAME>.
Accordingly, an array of array of int is named “[[int”.

Parameters

— className — the name of the Java class to load

Package sqlj.runtime.profile 321

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

Returns

— A Java Class representation of the type whose name is given in the className parameter.

See Also

— Subclause 13.3.6.4.1, “getJavaTypeName ()”
— Subclause 13.3.2.4.9, “getResultSetName ()”
— Subclause 13.3.1.3.2, “loadClass (String)”

13.3.3.3.6 getJavaType (Typelnfo)

public abstract Class getJavaType (Typelnfo type)

Returns a Java Class representation of the given Typelnfo object loaded using this profile object's profile.Loader
object. Each type appears in the original source file as a Java expression (variable) or cursor column the type
of which can be determined at compile time. The returned class can be used to determine an appropriate JDBC
mapping into an SQL type.

This profile object's profile.Loader object is used to load new class instances (for non-primitive types). The
class is loaded based on the name of the Java type given by the Typelnfo object. If the class cannot be loaded,
a NoClassDefFoundError is thrown. This happens only when the classes with which the profile object was
created are not available to the profile object's profile.Loader object.

Parameters

— type — the Typelnfo object describing the Java class to load

Returns

— A Java Class representation of the type.

See Also

— Subclause 13.3.6.4.1, “getJavaTypeName ()"
— Subclause 13.3.1.3.2, “loadClass (String)”

322 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

13.3.3.3.7 getLoader ()

public abstract Loader getLoader ()

Returns

— The profile.Loader object used to instantiate this profile object.

13.3.3.3.8 getProfileData ()

public abstract ProfileData getProfileData ()

Returns

— A ProfileData object describing each of the SQL-statements contained in this profile object.

13.3.3.3.9 getProfileName ()

public abstract String getProfileName ()

Returns

— The fully qualified name of this profile object.

13.3.3.3.10 getTimestamp ()

public abstract long getTimestamp ()

Returns the creation time of this profile object, as given by System.currentTimeMillis. A profile object for a
particular application and context might evolve over time. The timestamp is intended to properly identify which
profile object should be used.

Returns

— The timestamp of this profile object.

Package sqlj.runtime.profile 323

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

13.3.3.3.11 instantiate (Loader, InputStream)

public abstract Profile instantiate
(Loader loader, InputStream serProfile)
throws ClassNotFoundException, I0Exception

Instantiates a profile object from a serialized format stored in the given InputStream object using the given
profile.Loader object. If the given profile.Loader object is Java null, a DefaultLoader that uses the system
ClassLoader object is used.

This routine is generally used at installation time to create a profile object from serialized form in a resource
file. The profile object will often be customized, and then reserialied to the same resource file. The installation
process relies on knowing the resource file with which a particular profile object is associated.

NOTE 181 — The given InputStream object is closed by this method, even if an exception is thrown.

Parameters

— loader — the profile.Loader object from which the profile object should be created

— serProfile - an InputStream object containing a profile object in serialized format

Returns

— The instantiated Profile object.

Throws

— ClassNotFoundException — if a SerializedProfile object could not be found

— |OException — if an 1/0 error occurs

See Also

— Subclause 13.3.1, “sqlj.runtime.profile.DefaultLoader”

13.3.3.3.12 instantiate (Loader, String)

public abstract Profile instantiate
(Loader loader, String profileName)
throws I0Exception, ClassNotFoundException

Instantiates a profile object corresponding to the given profile name using the given profile.Loader object. If
the given profile.Loader object is Java null, a DefaultLoader object that uses the system ClassLoader object is
used.

In general, profile objects are not instantiated directly through the SQLJ program. Instead, they are employed
by the runtime implementation and generated code. It is the responsibility of the runtime and generated code

324 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

to ensure that the profile.Loader object used to find a profile object is able to unambiguously resolve the profile
name associated with a particular application. For example, if a particular application is loaded from a JAR
file, then the profile objects associated with that application will be loaded from the same JAR file.

The profile object is created based on a name relative to a profile.Loader object. This name should be a dot-
separated name such as “a.b.c”.

The given name can indicate either a serialized object or a class. The profileName value is first treated as a
serialized object name and then as a class name.

When profileName is treated as a serialized object name, it is converted to a resource pathname and the suffix
“.ser” is added. An attempt to load a serialized object from that resource follows.

When profileName is treated as a class name, the type of the class loaded is considered. If the class represents
an sqglj.runtime.profile.Profile class or subclass, then the class is instantiated and the result returned. If the class
loaded implements the sglj.runtime.profile.SerializedProfile interface, then the class is instantiated as a Serial-
izedProfile object and the getProfi leAsStream() method is called to read and instantiate a profile object
from the resulting stream. If the class loaded does not adhere to one of these cases, then an exception is thrown.

For example, given a profileName of “x.y”, this method first tries to read a serialized object from the resource
“x/y.ser” and if that fails, then it tries to load the class “Xx.y” and create an instance of that class. Note that if a
serialized object and a class have the same profileName value, only the serialized object is instantiated and
returned.

A new profile object is created each time the instantiate method is called. Thus, an invocation given the same
profile.Loader object and profile name as a previously instantiated profile object does not return the same profile
object as the previous invocation but rather instantiates a new profile object.

Parameters

— loader — the profile.Loader object from which the profile object is created.

— profileName — the name of the profile object within the profile.Loader object (for example,
“sqlj.app.profilel”).

Returns

— The instantiated Profile object.

Throws

— ClassNotFoundException — if the class or a serialized object could not be found

— 1OException — if an 1/O error occurs

See Also

— Subclause 13.2.7, “sqlj.runtime.profile.SerializedProfile”

— Subclause 13.3.1, “sqlj.runtime.profile.DefaultLoader”

Package sqlj.runtime.profile 325

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

13.3.3.3.13 registerCustomization (Customization)

public abstract void registerCustomization (Customization customization)

Registers the Customization object for this profile object. The Customization object provided in the customization
argument is added after all currently registered Customization objects.

Generally, a runtime environment does call this method directly. Rather, this method might be called by cus-
tomization utilities that operate on application profile objects during an “installation” phase.

Parameters

— customization — the Customization object to register

Throws

— NullPointerException — if customization is null

13.3.3.3.14 registerCustomization (Customization, Customization)

public abstract void registerCustomization
(Customization newCustomization,
Customization nextCustomization)

Registers a Customization object for this profile object. The Customization object provided in the newCus-
tomization argument is added to the list of Customization objects immediately before the Customization object
identified in the nextCustomization argument. If the Customization object provided in the nextCustomization
argument is not currently registered, then an exception is thrown.

Generally, a runtime environment does call this method directly. Rather, this method might be called by cus-
tomization utilities that operate on application profiles during an “installation” phase.

Parameters

— newCustomization — the Customization object to register

— nextCustomization — the Customization object before which to add the newCustomization

Throws

— NullPointerException — if newCustomization is null

— Illegal ArgumentException — if the Customization object identified by the nextCustomization argument
is not currently registered

326 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

13.3.3.3.15 replaceCustomization (Customization, Customization)

public abstract void replaceCustomization
(Customization newCustomization,
Customization oldCustomization)

Registers a Customization object for this profile object. The Customization object provided in the newCus-
tomization argument is added to the list in place of the Customization object identified by the oldCustomization
argument. The Customization object provided in the newCustomization argument retains in the list the position
of the Customization object identified by the oldCustomization argument. If the Customization object identified
by the oldCustomization argument is not currently registered, then an exception is thrown.

Generally, a runtime environment does not call this method directly. Instead, this method might be called by
customization utilities that operate on application profile objects during an “installation” phase.

Parameters

— newCustomization — the Customization object to register

— oldCustomization — the Customization object to replace

Throws

— NullPointerException — if newCustomization is null

— IllegalArgumentException — if the object identified by the oldCustomization argument is not currently
registered

13.3.4 sqlj.runtime.profile.ProfileData

13.3.4.1 Class Overview

jJava.lang.Object
|

+—-sqlj.runtime.profile.ProfileData

public abstract class Profil eData
extends Object
implements java.io.Serializable

The ProfileData class provides methods to manage a collection of profile object entries, where each EntryInfo
object describes an SQL-statement. A ProfileData object represents the SQL resources of a particular connection
context object defined within an application module.

Package sqlj.runtime.profile 327

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

13.3.4.2 Constructors

13.3.4.2.1 ProfileData ()

public ProfileData ()

The default constructor for the ProfileData class

13.3.4.3 Methods

13.3.4.3.1 getEntrylnfo (int)

public abstract Entrylnfo getEntrylnfo (int ndx)

Returns a description of the EntryInfo object at index ndx in this profile object.

Parameters

— ndx — the index of the Entrylnfo object to describe, range 0 (zero) to size-1.

Returns

— A description of the EntryInfo object at index ndx in this profile object.

13.3.4.3.2 getProfile ()

public abstract Profile getProfile ()

Returns the Profile object with which this object is associated.

Returns

— The Profile object with which this object is associated.

328 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

13.3.4.3.3 getSourceFile ()

public abstract String getSourceFile ()

Gives the name of the source file from which thie Profile object was generated. The name returned includes
the file extension, but no path information (e.g., “MyFile.sqlj”).

Returns

— If the name of the source file from which this Profile object was generated is available, then that name;
otherwise, null.

13.3.4.3.4 size()

public abstract int size ()

Returns the number of entries in this profile object.

Returns

— The number of entries in this profile object.

13.3.5 sqlj.runtime.profile.SetTransactionDescriptor

13.3.5.1 Class Overview

java.lang.Object

+—-sqlj.runtime.profile.SetTransactionDescriptor

public class Set Transacti onDescri ptor
extends Object
implements java.io.Serializable

An sglj.runtime.profile.SetTransactionDescriptor object describes the access mode and isolation level of a
<set transaction statement>.

See Also

— Subclause 13.3.2.4.2, “getDescriptor ()”

Package sqlj.runtime.profile 329

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

13.3.5.2 Variables

13.3.5.2.1 READ_NONE

public static final int READ_NONE = 3;

Constant possibly returned by getAccessMode () indicating that no access mode is specified for the trans-
action.

See Also

— Subclause 13.3.5.4.1, “getAccessMode ()”

13.3.5.2.2 READ_ONLY

public static final int READ_ONLY = 1;

Constant possibly returned by getAccessMode () indicating transaction read-only access mode.

See Also

— Subclause 13.3.5.4.1, “getAccessMode ()”

13.3.5.2.3 READ_WRITE

public static final int READ_WRITE = 2;

Constant possibly returned by getAccessMode () indicating transaction read-write access mode.

See Also

— Subclause 13.3.5.4.1, “getAccessMode ()”

330 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

13.3.5.3 Constructors

13.3.5.3.1 SetTransactionDescriptor (int, int)

public SetTransactionDescriptor (int accessMode, int isolationLevel)

Creates a new set transaction descriptor with the given access mode and isolation level. If the <set transaction
statement> associated with this SetTransactionDescriptor object does not contain a <transaction access mode>,
then accessMode READ NONE is used; if the <set transaction statement> associated with this SetTransaction-
Descriptor object does not contain an <isolation level>, then isolationLevel TRANSACTION_NONE is used.

Parameters

— accessMode — the access mode for this SetTransactionDescriptor object

— isolationLevel — the isolation level for this SetTransactionDescriptor object

13.3.5.4 Methods

13.3.5.4.1 getAccessMode ()

public int getAccessMode ()

Returns the access mode of this SetTransactionDescriptor object.

Returns

— One of the constants READ_NONE, READ_ONLY, or READ_WRITE.

NOTE 182 — READ_NONE indicates that an access mode was not explicitly specified for this SetTransactionDescriptor
object.

See Also

— Subclause 13.3.5.2.1, “READ_NONE”
— Subclause 13.3.5.2.2, “READ_ONLY”
— Subclause 13.3.5.2.3, “READ_WRITE”

Package sqlj.runtime.profile 331

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

13.3.5.4.2 getlsolationLevel ()

public int getlsolationLevel ()

Returns the isolation level this SetTransactionDescriptor object.

Returns

— One of the constants TRANSACTION_READ_COMMITTED, TRANSACTION_READ_UNCOMMIT-
TED, TRANSACTION_REPEATABLE_READ, TRANSACTION_SERIALIZABLE, and TRANSAC-
TION_NONE.

NOTE 183 — TRANSACTION_NONE indicates that an isolation level was not explicitly specified for this SetTransaction-
Descriptor object.

13.3.6 sqlj.runtime.profile. Typelnfo

13.3.6.1 Class Overview

jJava.lang.Object

|
+—-sqlj.runtime.profile.Typelnfo

public abstract class Typelnfo
extends Object
implements java.io.Serializable, ObjectlnputValidation

A Typelnfo object describes the type of a parameter passed to an SQL-statement or column of a ResultSet
produced by an SQL-statement. The type consists of the Java type of the actual Java expression that appears
in the original source file, its corresponding JDBC SQL type, then the name of the variable or column producing
the type (if available), and its parameter mode.

See Also

— Subclause 13.3.3.3.6, “getJavaType (Typelnfo)”

332 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

13.3.6.2 Variables

13.3.6.2.1 IN

public static final int IN = 1;

IN parameter mode, same value as DatabaseMetaData.procedureColumnin

See Also

— procedureColumnin — the procedureColumnin Java field in java.sql.DatabaseMetaData, a standard
[JDBC]-defined class

13.3.6.2.2 INOUT

public static final int INOUT = 2;

INOUT parameter mode, same value as DatabaseMetaData.procedureColumninOut

See Also

— procedureColumninOut — the procedureColumnlInOut Java field in java.sgl.DatabaseMetaData, a
standard [JDBC]-defined class

13.3.6.2.3 OUT

public static final int OUT = 4;

OUT parameter mode, same value as DatabaseMetaData.procedureColumnOut

See Also

— procedureColumnOut — the procedureColumnQOut Java field in java.sgl.DatabaseMetaData, a standard
[JDBC]-defined class

Package sqlj.runtime.profile 333

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

13.3.6.3 Constructors

13.3.6.3.1 Typelnfo ()

public Typelnfo ()

Default constructor for the Typelnfo class

13.3.6.4 Methods

13.3.6.4.1 getJavaTypeName ()

public abstract String getJavaTypeName ()

Returns the name of the Java Class representation of the type. Each type appears in the original source file as
a Java expression (variable) or cursor column the type of which can be determined at compile time. This name
can be used to determine an appropriate JDBC mapping to an SQL type.

Some customizations work with type names, while others query the reflection of complete classes. The get-
JavaType() method of a profile object can be used to create a class reflection from a Typelnfo object.
getJavaTypeName () is guaranteed to succeed, while getJavaType () mightresultinaNoClassDef-
FoundError if the classes in question have not been distributed with the profile object.

In most cases, the name returned is the same as the result of calling profi le._getJavaTye(type) -.get-
Name (). Primitive types have their simple names (e.g., i nt), classes are fully qualified (e.g.,

j ava. sql . Dat e), and nested classes are delimited with '$' (e.g., X. y. Qut er O ass$l nner d ass).
However, array naming does not follow the conventions of Class . getName (). If the name returned represents
an array, then the string “[” is prefixed onto the full name of the component type. For example, an array of
array of String would have the name [[j ava. | ang. Stri ng.

Returns

The name of the Java Class representation of the type of a parameter passed to an SQL-statement or column
of a ResultSet object produced by an SQL-statement.

See Also

— Subclause 13.3.3.3.6, “getJavaType (Typelnfo)”

334 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

13.3.6.4.2 getMarkerindex ()

public abstract int getMarkerindex ()

Gives the zero-based index of the <dynamic parameter specification> for this Typilnfo object, assuming it
represents a parameter.

Returns

— If this Typelnfo object does not represent a parameter, then —1; otherwise, the zero-based index of the
<dynamic parameter specification> for this parameter in the SQL string.

See Also

— Subclause 13.3.2.4.12, *getSQLString ()”

13.3.6.4.3 getMode ()

public abstract int getMode ()

Returns the parameter mode of this parameter.

Returns

— One of the constants IN, OUT, or INOUT.

13.3.6.4.4 getName ()

public abstract String getName ()
Returns the name of the variable or column producing this Typelnfo object.

If this Typelnfo object is used to describe a parameter to an SQL-statement (similar to EntryInfo.getParaminfo),
then getName () returns the name of the variable associated with this parameter in the original source file. If
the name of the variable cannot be determined or cannot be expressed in terms of a simple name, then Java null
is returned. If the parameter is a complex expression, then Java null is returned.

If this Typelnfo object is used to describe a column of an iterator object produced by an SQL-statement (like
Entrylnfo.getResultSetInfo()), then getName() will return the name of the column in the iterator
object to which this Typelnfo object is bound. If the column name cannot be determined, then Java null is
returned. This name is required to match the name of a column in the result of an SQL-statement if and only
if the EntryInfo object indicates that results are bound by name.

Package sqlj.runtime.profile 335

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

Returns

The name of the variable or column producing this type.

See Also

— Subclause 13.3.2.4.6, “getParaminfo (int)”
— Subclause 13.3.2.4.8, “getResultSetInfo (int)”
— Subclause 13.3.2.4.10, “getResultSetType ()”

13.3.6.4.5 getSQLType ()

public abstract int getSQLType ()

Returns the default mapping of the Java Class of the parameter passed to an SQL-statement or column of a
ResultSet object produced by an SQL-statement, represented by this Typelnfo object as an SQL type, as defined
in java.sql. Types. The Java Class represented by this type is mapped into an SQL type as defined by the JDBC
default mappings. In the case that [JDBC] defines a mapping from Java type into SQL type, that mapping is
used. For example, if the Java class is Double, Types.DOUBLE is returned. For user-defined data types that
are covered by a property definition in the associated connection context type map, this field contains the SQL
type (i.e.,, STRUCT, DISTINCT, or JAVA_OBJECT) corresponding to the Java type name as defined in that
property definition. If the property definition for the Java type does not specify an SQL Type, then the following
default mechanism is used for determining the SQL type: If the Java type of the <embedded Java expression>
or result set column implements the interface java.sql.SQLData, then the SQL Type field is set to STRUCT;
otherwise, it is set to JAVA_OBJECT. If no property entry is found in the connection context type map for the
given Java type name, or no type map has been associated with the connection context class, and if no JDBC-
recommended conversion exists for the class specified, then the SQL type Types.OTHER is returned. Profile
Customization objects can be used to properly handle classes that would otherwise not be recognized by default
JDBC mappings. They can also be used to override the default mappings.

Default conversions are described in [JDBC], Appendix B, “Data Type Conversion Tables”.

Returns

The default mapping of the Java Class of the parameter passed to an SQL-statement or column of a ResultSet
object produced by an SQL-statement, represented by this Typelnfo object as an SQL type.

See Also

— Types — the java.sgl. Types class, a standard [JDBC]-defined class

336 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

13.3.6.4.6 getSQLTypeName ()

public abstract String getSQLTypeName ()

Returns

If the SQL Type field of the Typelnfo object is either STRUCT, DISTINCT, or JAVA_OBJECT, then this
method returns a String giving the user-defined name of the SQL type corresponding to the Java type of the
<embedded Java expression> or result set column, as defined by the associated connection context type map.

See Also

— Types — the java.sgl. Types class, a standard [JDBC]-defined class

13.3.6.4.7 isValidMode (int)

public static boolean isValidMode (int mode)

Valid SQL mode values are those constants that might be returned by the getMode () method.

Parameters

— mode — the mode type to be tested

Returns

— If mode represents a valid mode type, then true; otherwise, false.

See Also

— Subclause 13.3.6.4.3, “getMode ()”

13.3.6.4.8 isValidSQLType (int)

public static boolean isValidSQLType (int sqlType)

Valid SQL type values are those constants that are defined in the class java.sql. Types. An implementation may
define its own SQL types in addition to those found in java.sgl.Types. In such cases, this method will return
false.

Package sqlj.runtime.profile 337

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

Parameters

— sqlType — the SQL type to be tested

Returns

— If sqlType represents a valid SQL type, then true; otherwise, false.

See Also

— Subclause 13.3.6.4.5, “getSQLType ()”
— Types — the java.sgl. Types class, a standard [JDBC]-defined class

13.3.6.4.9 modeToString (int)

public static String modeToString (int mode)

Glves a string representation of the given mode. This method is most often used in debugging profile object
EntryInfo object representations.

Parameters

— mode — the mode type to be tested

Returns

— If mode represents a valid mode, then a string representation of the corresponding mode constant; otherwise,
a string representation of mode.

See Also

— Subclause 13.3.6.4.3, “getMode ()”
— Subclause 13.3.6.4.7, “isValidMode (int)”

13.3.6.4.10 SQLTypeToString (int)

public static String SQLTypeToString (int sqlType)

Gives a string representation of the given SQL type. This method is most often used in debugging profile object
EntryInfo object representations.

338 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
13.3 SQLJ sqlj.runtime.profile Classes

Parameters

— sqlType — the SQL type to be translated

Returns

— IfsqlType is valid, then a string representation of the corresponding SQL type constant; otherwise, a string
representation of sqlType's value.

See Also

— Subclause 13.3.6.4.5, “getSQLType ()”
— Subclause 13.3.6.4.8, “isValidSQLType (int)”

13.3.6.4.11 validateObject ()

public void validateObject () throws InvalidObjectException

Validates the internal state of this Typelnfo object. An exception is thrown if this Typelnfo object contains
invalid state. Note that whenever a Typelnfo object is deserialized, it automatially registers validation of itself
via this method to ensure that internal state is maintained across serialization.

Throws

— InvalidObjectException — if this Typelnfo object is invalid

Conformance Rules

None.

Package sqlj.runtime.profile 339

IWD 9075-10:201?(E)

(Blank page)

340 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
14.1 Interface Overview

14 sqlj.runtime.profile.util.ProfileCustomizer

14.1 Interface Overview

public interface Profil eCustoni zer

A profile customizer is a JavaBean component, as defined by [JavaBeans], that customizes a profile to allow
implementation-dependent features, extensions and/or behavior. A class is a profile customizer if it implements
the Profi leCustomizer interface, provides an accessible parameterless constructor, and conforms to the
JavaBeans API to expose its properties.

Most profile customizers extend the functionality of a profile by creating and registering an appropriate pro-
file.Customization object with the profile. However, it is not required that all profile customizers install cus-
tomization objects. Some customizers might only inspect the contents of a profile to verify conformance with
a particular SQL dialect. Other customizers might install profile specific data into a schema to be accessed at
runtime without modifying the profile itself.

Profile Customizer Usage

Because profile customizers are JavaBeans components, they can be used within generic tools that operate on
profiles. A ProfileCustomizer object is typically created and used by a profile customization utility with the
following steps.

— A profile customizer bean is created by name using a call to Beans. instantiate().

— The customizer's properties are discovered using the JavaBeans Introspector class. Each property
value is set according to the caller's needs, using that property's read and write methods.

— The customizer's acceptsConnection() method is called to verify whether or not it can be used with
aparticular java.sqgl - Connection object. If no connection is to be used, null is passed as the argument
to this method.

— The customizer's customize () method is called, passing the profile object to customize, a
Java.sql .Connection object, and an error log.

— The customize() method returns true if the profile object is changed, false if the profile object is
unchanged.

— Log entries added by the customizer during the customize () call are reported as appropriate by the
calling utility.

— Assuccessfully updated profile object is repackaged with the application by the calling utility. Successfully
updated profile objects returns true and there are no errors reported in the error log.

The same profile customizer can be used to customize different profile objects and/or customize the same
profile object using different properties and/or SQL-connections.

sglj.runtime.profile.util.ProfileCustomizer 341

IWD 9075-10:201?(E)
14.1 Interface Overview

NOTE 184 — Any properties affecting the current customize() call must be set before the call is made. The customize()
method should only be called with connection objects for which acceptsConnection() has previously returned true.

Interpreting Customize Results

A profile object is typically saved every time it has been updated. Before saving the profile object, it can be
customized further using other customizers or settings. A profile object should only be saved or customized
further if it is in an appropriate state. The following table summarizes the possible outcomes of a call to cus-
tomize() and the corresponding state of the profile. Warnings and informational messages logged during a
call to customize () do not affect the state of the profile object. Table 21, “Customize Result Interpretation”,
specifies the interpretation of Customize Results.

Table 21 — Customize Result Interpretation

Customize | Did Should Isit Safe | Comment

Return Customize | the to

Value Log an Profile be | Customize

Error? Saved? Further?

true no yes yes Customization successfully updated profile object

false no no yes Customization successful but did not require a profile
change

true yes no no Customization unsuccessfully updated profile object.
The profile object contains erroneous data

false yes no yes Customization unsuccessful but did not update profile
object

Customizer Properties

A profile customizer uses the JavaBeans component model to describe the properties it contains. The beans
Introspector class is used to discover all properties supported by a profile customizer. A property's read
method (if available) is used to query the property's current value. A property's write method (if available) is
used to set the property to a new value. No explicit processing of a property file or argument array is required
on the part of the profile customizer. Because the Introspector class is used to discover properties, a profile
customizer can publish its properties in many ways. Most classes that implement the ProfileCustomizer interface
use the JavaBeans default getXXX () and setXXX() method patterns to publish properties. A custom
BeanInfo class could also be used if the default property mappings are insufficient. Note that profile cus-
tomizers without properties do not require any special modification.

See Also

— Subclause 13.2.3, “sqlj.runtime.profile.Customization”
— instantiate — the instantiate() method in java.beans.Beans, a standard Java class

— Introspector — the java.beans.Introspector class, a standard Java class

342 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
14.1 Interface Overview

— BeanlInfo — the java.beans.Beanlnfo class, a standard Java class

14.2 Methods

14.2.1 acceptsConnection (Connection)

public abstract boolean AcceptsConnection (Connection conn)

Returns true if this ProfileCustomizer object is able to customize profile objects using conn; otherwise, returns
false. A null argumentindicates that customization will be performed “offline” (without a connection).

Most customizers customize profiles strictly offline (accepting only null arguments to acceptsConnec-
tion()) or strictly online (accepting only non-null arguments). For those customizers that are able to operate
both online and offline, this method returns true for both null and non-null arguments. The definition of what
constitutes an acceptable non-null argument is determined by the customizer implementation. Some accept
only connections to a particular SQL implementation. Others accept only connections created by a particular
JDBC driver.

This method allows customizers to be pooled and queried dynamically as to whether or not they can perform
a particular customization, in much the same way that JDBC drivers are pooled with the driver manager and
report whether or not they understand a particular URL.

Parameters

— conn — the Java.sql .Connection object to use during customization. Null indicates offline cus-
tomization

Returns

— If customization can be performed using conn, then true; otherwise, false.

14.2.2 customize (Profile, Connection, ErrorLog)

public abstract boolean customize
(Profile profile, Connection conn, ErrorLog log)

Customizes the Profile object provided in the profile argument. If the Profile object is modified by the invocation
of customize (), then true is returned; otherwise, false is returned. The value returned indicates whether or
not the Profile object needs to be reserialized to save its state.

This method can register or deregister one or more customization objects with the Profile object. The Profile
object might have been previously customized by this method. Typical customization objects are installed only
once, and thus any previously registered customization objects might be removed or overwritten.

sglj.runtime.profile.util.ProfileCustomizer 343

IWD 9075-10:201?(E)
14.2 Methods

conn is used to perform any installation required for customization. Only connection objects for which
acceptsConnection() has previously returned true are acceptable. A null argument indicates that the
profile object is customized offline and does not require any access to an SQL-implementation.

log is used to report information, warnings, and errors that arise from the invocation of customization().
Logging an error indicates that the invocation is unsuccessful.

Parameters

— profile — the profile object to customize
— conn—a java.sqgl .Connection object to be used in the customization process

— log — an ErrorLog object into which error messages are written

Returns

— If profile was changed, then true; otherwise, false.

Conformance Rules

None.

344 Object Language Bindings (SQL/OLB)

15 Status codes

This Clause modifies Clause 24, “Satus codes”, in |SO/IEC 9075-2.

15.1 SQLSTATE

This Subclause modifies Subclause 24.1, “SQLSTATE”, in ISO/IEC 9075-2.

|Augment Table 33, “SQLSTATE class and subclass values”

Table 22 — SQLSTATE class and subclass values

IWD 9075-10:201?(E)
15.1 SQLSTATE

Category | Condition Class | Subcondition Subclass
All alternatives from |SO/IEC
9075-2
X OLB-specific error 46 (no subclass) 000
invalid class declaration 120
invalid column name 121
invalid number of columns 122
invalid profile state 130
unsupported feature 110

Status codes 345

IWD 9075-10:201?(E)

(Blank page)

346 Object Language Bindings (SQL/OLB)

16 Conformance

16.1 Claims of conformance to SQL/OLB

IWD 9075-10:201?(E)
16.1 Claims of conformance to SQL/OLB

In addition to the requirements of ISO/IEC 9075-1, Clause 8, “Conformance”, a claim of conformance to this
part of ISO/IEC 9075 shall:

1) Claim conformance to Feature JO01, “Embedded Java”.

16.2 Additional conformance requirements for SQL/OLB

There are no additional conformance requirements for this part of ISO/IEC 9075.

16.3 Implied feature relationships of SQL/OLB

Table 23 — Implied feature relationships of SQL/OLB

Feature Feature Name Implied Implied Feature Name
ID Feature

ID
JO05 Call statement T321 Basic SQL-invoked routines
JO06 Assignment Function statement T321 Basic SQL-invoked routines
JOoo7 Compound statement P002 Computational completeness
Joos Datalinks via SQL language MO001 Datalinks
JO10 XML via SQL language X010 XML type

Conformance 347

IWD 9075-10:201?(E)

(Blank page)

348 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)

Annex A
(informative)

SQL Conformance Summary

This Annex modifies Annex A, ““SQL Conformance Summary”, in |SO/IEC 9075-2.
The contents of this Annex summarizes all Conformance Rules, ordered by Feature ID and by Subclause.
1) Specifications for Feature J001, “Embedded Java”:

a) Subclause 8.2, “<embedded SQL Java program>":

i) Without Feature JOO1, “Embedded Java”, conforming SQL language shall not specify an
<embedded SQL Java program>.

2) Specifications for Feature J002, “ResultSetlterator access to JDBC ResultSet”:
a) Subclause 11.4, “<iterator declaration clause>":

i) Without Feature J002, “ResultSetlterator access to JDBC ResultSet”, conforming SQL language
shall not contain an invocation of the sgl j - runtime.ResultSetlterator interface's
public method getResultSet() orthe sqlj.runtime.profile.RTResultSet
interface's public method getJDBCResultSet().

3) Specifications for Feature JO03, “Execution control”:
a) Subclause 11.9, “<executable clause>":

i) Without Feature JO03, “Execution control”, conforming SQL language shall not contain an
invocation of the sqlj - runtime.ExecutionContext class's public methods setMax-
FieldSize(int), setMaxRows(int), or setQueryTimeout(int) that sets the corresponding Exe-
cutionContext Java field to anything other than its default value, and shall not contain an
attempt is made to register a statement with such an ExecutionContext (which, as specified
under Code Generation in this Subclause, invokes the sql j - runtime.profile.RTState-
ment interface's methods of the same name).

4) Specifications for Feature JO04, “Batch update”:
a) Subclause 11.9, “<executable clause>":

i) Without Feature JO04, “Batch update”, conforming SQL langauge shall not contain an invocation
of an implementation of the sqlj - runtime .ExecutionContext class's public methods
executeBatch(), getBatchLimit(), getBatchUpdateCounts(), isBatch-
ing(), setBatching(boolean), or setBatchLimit(int).

5) Specifications for Feature JO05, “Call statement”:

a) Subclause 11.11, “<statement clause>":

SQL Conformance Summary 349

IWD 9075-10:201?(E)

6)

7)

8)

9)

10)

11)

12)

)] Without Feature JO05, “Call statement”, conforming SQL language shall not contain a <statement
spec clause> that contains a <call statement>.

Specifications for Feature JO06, “Assignment Function statement”:
a) Subclause 11.25, “<function clause>":

i) Without Feature JO06, “Assignment Function statement”, conforming SQL language shall not
contain a <function clause>.

Specifications for Feature JO07, “Compound statement”:
a) Subclause 11.27, “<compound statement>":

i) Without Feature JO07, “Compound statement”, conforming SQL language shall not contain a
<compound statement>.

Specifications for Feature JO08, “Datalinks via SQL language”:
a) Subclause 10.4, “<java datatype>":

)] Without Feature J0O08, “Datalinks via SQL language”, conforming SQL language shall not
contain a <java datatype> that specifies Java.net.URL.

b) Subclause 10.6, “<embedded Java expression>":

)] Without Feature J0O08, “Datalinks via SQL language”, conforming SQL language shall not
contain an <embedded Java expression> whose Java type is Java.net.URL.

Specifications for Feature JO09, “Multiple Open ResultSets”:
a) Subclause 11.9, “<executable clause>":

i) Without Feature JO09, “Multiple Open ResultSets”, conforming SQL language shall not contain
an invocation of an implementation of the sgl j - runtime .ExecutionContext class's
public method getNextResultSet(int) with any value other than java.sql . State-
ment.CLOSE_CURRENT_RESULT.

Specifications for Feature J010, “XML via SQL language”:
a) Subclause 10.4, “<java datatype>":

i) Without Feature J010, “XML via SQL language”, conforming SQL language shall not contain
a <java datatype> that specifies java.sql . SQLXML.

b) Subclause 10.6, “<embedded Java expression>"":

i) Without Feature J010, “XML via SQL language”, conforming SQL language shall not contain
a <embedded Java expression> whose Java type is java.sql . SQLXML.

Specifications for Feature S071, “SQL paths in function and type name resolution”:
a) Subclause 10.8, “<declaration with clause>":

i) Without Feature S071, “SQL paths in function and type name resolution”, conforming SQL
language shall not contain a <predefined connection with keyword> that simply contains path.

Specifications for Feature S241, “Transform functions”:

350 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)

a) Subclause 10.8, “<declaration with clause>":

i)

i)

Without Feature S241, “Transform functions”, conforming SQL language shall not contain a
<predefined connection with keyword> that is transformGroup.

Without Feature S241, “Transform functions”, conforming SQL language shall not contain a
user-defined type map specified using a <predefined connection with keyword> that simply
contains typeMap and that contains a property group specification.

SQL Conformance Summary 351

IWD 9075-10:201?(E)

(Blank page)

352 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)

Annex B
(informative)

Implementation-defined elements

This Annex modifies Annex B, ““‘Implementation-defined elements”, in ISO/IEC 9075-2.

This Annex references those features that are identified in the body of this part of ISO/IEC 9075 as implemen-
tation-defined.

1)

2)

3)

4)

5)

6)

7)

Subclause 3.1.1, “Definitions provided in Part 10”:

a) The preparation needed, prior to execution of an SQLJ application, that is not addressed by either
SQLJ translation or customization is implementation-defined.

Subclause 4.1, “Embedded syntax”:

a) Whether a portion of the name space is reserved by an implementation for the names of procedures,
subroutines, program variables, branch labels, <SQL-client module definition>s, or <externally-invoked
procedure>s for <embedded SQL host program>s other than <embedded SQL Java program>s is
implementation-defined; if a portion of the name space is so reserved, the portion reserved is imple-
mentation-defined.

Subclause 4.2.1, “Unicode support”:

a) When moving character data between an SQL/OLB implementation and an SQL-server, support for
implicit conversions other than the implicit conversion between Java string data and UTF8, UTFL16,
and/or UCS2 is implementation-defined.

Subclause 4.3.9, “Default connection context™:

a) The specification of the default connection context is implementation-defined. If the name
jdbc/defaultDataSource is not defined to JNDI then the SQL-connection used by the default connection
context is implementation-defined.

Subclause 4.3.10, “Schema checking using exemplar schemas™:

a) The mechanism used to provide an SQLJ translator with a mapping of connection context classes to
exemplar schemas is implementation-defined.

Subclause 4.3.13, “SQL execution control and status”:

a) Runtime support of the sglj. runtime. ExecutionContext class methods setMaxRows, setMaxFieldSize,
and setQueryTimeout if invoked to set an ExecutionContext object's corresponding underlying values
to anything other than their default values is implementation-defined.

Subclause 4.3.17.1, “Creating an SQLJ iterator from a java.sqgl .ResultSet object”:

Implementation-defined elements 353

IWD 9075-10:201?(E)

a) Givena java.sqgl .ResultSet object rs, once an iterator object is created due to rs having been
referenced in an <iterator conversion clause> the result of invoking methods against rs is implemen-
tation-defined.

8) Subclause 4.3.17.2, “Obtaining a java.sqgl .ResultSet object from an SQLJ iterator object”:

a) Support for the sglj. runtime. ResultSetlterator interface method getResultSet is runtime implementation-
defined.

9) Subclause 4.3.17.4, “Iterator and java.sql .ResultSet object resource management”:

a) If invocation of a ResultSetlterator object's isClosed method would return the value true, then the
effect of invoking any methods other than isClosed and close against that object is implementation-
defined.

b) The semantics of calling close on a java.sql -ResultSet object that has already been closed is
implementation-defined.

10) Subclause 4.3.5.1, “EntryInfo overview:

a) The Role OTHER is reserved for SQLJ <executable clause> extensions that are implementation-
defined.

11) Subclause 4.3.5.2, “Typelnfo overview”:

a) The established default mapping between Java types and [JDBC]-defined SQL type constants might
be disregarded or remapped by implementation-defined profile customizations.

12) Subclause 10.8, “<declaration with clause>":
a) The support for each <predefined iterator with keyword> is implementation-defined.
13) Subclause 11.3, “Generated connection class”™:

a) If the connection context object isn't created using <data source constructors> or <url constructors>
that have a user parameter and a user name isn't provided as part of the info parameter, and if the
connection context object isn't created using the constructor that takes an existing connection context
object, and if the connection context object isn't created using the constructor that takes an existing
jJava.sql .Connection object then the connection context user identifier is implementation-
defined.

b) The opaque profile key object returned by invocation of a generated connection class's getProfileKey
method, and subsequently used in the generated connection class's getProfile and getConnectedProfile
methods, is implementation-defined.

14) Subclause 11.9, “<executable clause>":
a) The class name of the default connection context is implementation-defined.
15) Subclause 11.26, “<iterator conversion clause>":

a) Givena java.sqgl .ResultSet object rs, once an iterator object is created due to rs having been
referenced in a <result set expression> the result of invoking methods against rs is implementation-
defined.

16) Subclause 11.27, “<compound statement>"":

354 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)

a) If an <embedded Java expression> containing an <Lval expression> has either an implicit or explicit
<parameter mode> of OUT or INOUT in a given <SQL procedure statement> then let LV denote the
location of the <Lval expression>. If another <embedded Java expression> containing an <Lval
expression> has either an implicit or explicit <parameter mode> of IN or INOUT in a subsequent
<SQL procedure statement> and the location of the <Lval expression> is LV, then the value of the
<Lval expression> is implementation-defined.

17) Subclause 12.2.5.3.4, “getResultSet ()”

a) If support for Feature J002, “ResultSetlterator access to JDBC ResultSet” is provided, then any syn-
chronization between the iterator object and the returned java.sqgl .ResultSet object is imple-
mentation-defined.

18) Subclause 12.2.6, “sqlj.runtime.Scrollable:

a) The effect of an update operation being performed against a Scrollable iterator object is implementation-
defined.

19) Subclause 13.2.2, “sqlj.runtime.profile.ConnectedProfile”:

a) During customization, the user identifier for inclusion in a customized profile, to be used for runtime
privilege checking, may be specified in an implementation-defined manner.

20) Subclause 13.2.2.2.4, “getStatement (int, Map)”:

a) The Map object provided in the typemap parameter is passed to the returned RTStatement object in
an implementation-defined manner.

21) Subclause 13.2.2.2.5, “getStatement (int, BatchContext, Map)”

a) The Map object provided in the typemap parameter is passed to the returned RTStatement object in
an implementation-defined manner.

22) Subclause 13.2.5, “sglj.runtime.profile. RTResultSet”:

a) The manner in which a java. util. Map object is provided to a RTResultSet object at the time of that
RTResultSet object's creation is implementation-defined.

23) Subclause 13.2.5.2.25, “getJDBCResultSet ()"

a) If support for Feature J002, “ResultSetlterator access to JDBC ResultSet” is provided, then any syn-
chronization between the RTResultSet object and the returned java.sql .ResultSet object is
implementation-defined.

24) Subclause 13.2.6, “sqglj.runtime.profile.RT Statement”:

a) The manner in which a java. util. Map object is provided to a RTStatement object at the time of that
RTStatement object's creation is implementation-defined

b) The manner in which an RTStatement object's java. util. Map object is provided to a RTResultSet
object created as the result of execution of that RTStatement object is implementation-defined.

25) Subclause 13.2.6.2.5, “executeRTQuery ()”:

a) The manner in which an RTStatement object's java. util. Map object is provided to a RTResultSet
object is implementation-defined

26) Subclause H.5.17, “Example program”:

Implementation-defined elements 355

IWD 9075-10:201?(E)

a) An SQLJ translator can perform syntactic and semantic checking based on an exemplar schema provided
as a connection context class in an implementation-defined manner.

356 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)

Annex C
(informative)

Implementation-dependent elements

This Annex modifies Annex C, ““I mplementati on-dependent elements™, in ISO/IEC 9075-2.

This Annex references those features that are identified in the body of this part of ISO/IEC 9075 as implemen-
tation-dependent.

1)

2)

3)

4)

5)

6)

7)

Subclause 4.3.12.4, “Connection resource management”:

a) If invocation of a ConnectionContext object's isClosed method would return the value true, then the
effect of invoking any methods other than isClosed and close against that object is implementation-
dependent.

Subclause 4.3.5, “Profile overview”:
a) Customization objects are implementation-dependent.

b) The deployment tool, or customizer, used to load the profile, inspect and precompile the SQL-statements
it contains, register an appropriate customization object and store the profile in persistent storage is
implementation-dependent.

Subclause 9.1, “Naming runtime library components”;

a) The effect of violating SQLJ's reserved package name space is implementation-dependent.
Subclause 9.2, “Temporary variable names”:

a) The effect of violating SQLJ's reserved variable name space is implementation-dependent.
Subclause 9.3.2, “Generated classes”:

a) The effect of declaring a top-level class with a name of the form a_SJb, where a is the name of an
existing class included in the SQLJ application and b has the form of a Java identifier is implementation-
dependent.

b) If the name of a file included with the application has the same format as names of files that might be
generated by an SQLJ translator, the effect is implementation-dependent.

Subclause 9.3.3, “Resource files and profiles”:

a) If the name of a file included with the application has the same format as the names that might be
generated by an SQLJ translator as the names of resource files, the effect is implementation-dependent.

Subclause 11.3, “Generated connection class”:

a) Ifagenerated connection class's getProfileKey method is called with a profile loader PL and a profile
name PN and a profile key object does not already exist for the profile named PN loaded with profile
loader PL, then the profile key object that is returned is implementation-dependent.

Implementation-dependent elements 357

IWD 9075-10:201?(E)

8) Subclause 11.9, “<executable clause>":

a) If aruntime exception condition is raised during the execution of an <executable clause>, then the
values of any OUT or INOUT <embedded Java expression>s are implementation-dependent.

9) Subclause 11.14, “<select statement: single row>"":

a) If <select statement: single row> is not contained in an <embedded SQL Java program>, then the
order of assignment of values to targets in the <select target list> is implementation-dependent.

10) Subclause 11.15, “<fetch statement>"":

a) If <fetch statement> is not contained in an <embedded SQL Java program>, then the order of assignment
of values to targets in the <fetch target list> is implementation-dependent

b) If the execution of a <fetch statement> results in a row not found, then the values of the <embedded
Java expression>s contained in the <fetch target list> are implementation-dependent.

11) Subclause 11.24, “<query clause>":

a) The order of the Typelnfo objects in the Result Set Info of the Result Set Column Java fields of Profile
EntryInfo for a <query clause>whose associated iterator object is a <named iterator> is implementation-
dependent.

12) Subclause 12.2.3, “sqlj.runtime.NamedIterator”:

a) After invocation of a Namedlterator object's next () method has returned false, the behavior of any
subsequent invocations of that object's named accessor methods is implementation-dependent.

13) Subclause 12.2.5.3, “Methods”:

a) Afterinvocation of a ResultSetlterator object's isClosed () method has returned true, the behavior
of any subsequent invocations of that ResultSetlterator object's methods is implementation-dependent

14) Subclause 12.2.5.3.3, “getFetchSize ()”:

a) If a ResultSetlterator object has not had its fetch size set by invocation of its setFetchSize method, or
has a fetch size of 0 (zero), then the value resulting from invocation of getFetchSize is implementation-
dependent

15) Subclause 12.2.5.3.6, “getSensitivity ()"

a) If SQLJ runtime does not support this ResultSet iterator object's declared sensitivity <with value> of
SENSITIVE or INSENSITIVE, then the result of invoking getSensitivity against that ResultSet iterator
object is implementation- dependent.

16) Subclause 12.2.5.3.10, “setFetchSize (int)”:

a) Ifthe int value specified in invocation of setFetchSize against this ResultSet iterator object is 0 (zero),
then the fetch size used is implementation-dependent.

17) Subclause 13.2.2, “sqlj.runtime.profile.ConnectedProfile”:

a) Atruntime a registered Customization object can make a user identifier, stored in a customized profile,
the user identifier for privilege checking of that profile object's statements in an implementation-
dependent manner.

18) Subclause 13.2.6, “sqlj.runtime.profile.RTStatement”:

358 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)

a) The processing of escape clauses during customization is implementation-dependent.
19) Subclause 13.2.6.2.4, “executeComplete ()"

a) Once a RTStatement object's executeComplete method has been called, the effect of further calls to
any of its other methods are implementation-dependent.

20) Subclause 13.3.2.2.14, “PREPARED_STATEMENT”:

a) The effects of a call to any getXXX method of an RTStatement object whose associated EntryInfo
object's getStatementType() method returns PREPARED_STATEMENT is implementation-
dependent.

21) Subclause H.4.1, “Profile customization process”:

a) Creating the SQL-connection with which a profile will be customized is implementation-dependent.

Implementation-dependent elements 359

IWD 9075-10:201?(E)

(Blank page)

360 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)

Annex D
(infomative)

Deprecated features

This Annex modifies Annex D, “Deprecated features”, in ISO/IEC 9075-2.

It is intended that the following features will be removed at a later date from a revised version of this part of
ISO/IEC 9075:

None.

Deprecated features 361

IWD 9075-10:201?(E)

(Blank page)

362 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)

Annex E
(informative)

Incompatibilities with 1ISO/IEC 9075:2008

This Annex modifies Annex E, “Incompatibilities with 1SO/IEC 9075:2008, in 1SO/IEC 9075-2.

This edition of this part of ISO/IEC 9075 introduces some incompatibilities with the earlier version of Database
Language SQL as specified in ISO/IEC 9075-10:2008.

Except as specified in this Annex, features and capabilities of Database Language SQL are compatible with
ISO/IEC 9075-10:2008.

None.

Incompatibilities with ISO/IEC 9075:2008 363

IWD 9075-10:201?(E)

(Blank page)

364 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)

Annex F
(informative)

SQL feature taxonomy

This Annex modifies Annex F, ““SQL feature taxonomy”’, in | SO/IEC 9075-2.
This Annex describes a taxonomy of features defined in this part of ISO/IEC 9075.

Table 24, “Feature taxonomy for optional features”, contains a taxonomy of the features of the SQL language
not in Core SQL that are specified in this part of ISO/IEC 9075.

In this table, the first column contains a counter that can be used to quickly locate rows of the table; these values
otherwise have no use and are not stable — that is, they are subject to change in future editions of or even
Technical Corrigenda to ISO/IEC 9075 without notice.

The “Feature ID” column of this table specifies the formal identification of each feature and each subfeature
contained in the table.

The “Feature Name” column of this table contains a brief description of the feature or subfeature associated
with the Feature ID value.

Table 24, “Feature taxonomy for optional features”, does not provide definitions of the features; the definition
of those features is found in the Conformance Rules that are further summarized in Annex A, “SQL Conformance
Summary”.

Table 24 — Feature taxonomy for optional features

Feature Feature Name
ID
1 Joo1 Embedded Java
2 Joo2 ResultSetlterator access to JDBC ResultSet
3 J0o3 Execution control
4 Joo4 Batch update
5 J005 Call statement
6 J0O06 Assignment Function statement
7 Joo7 Compound statement
8 Joos Datalinks via SQL language

SQL feature taxonomy 365

IWD 9075-10:201?(E)

Feature Feature Name

ID
9 J009 Multiple Open ResultSets
10 | Jo10 XML via SQL language

Table 24, “Feature taxonomy for optional features”, does not provide definitions of the features; the definition
of those features is found in the Conformance Rules that are further summarized in Annex A, “SQL Conformance

Summary”.

366 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)

Annex G
(informative)

Defect reports not addressed in this edition of this part of ISO/IEC 9075

Each entry in this Annex describes a reported defect in the previous edition of this part of ISO/IEC 9075 that
remains in this edition.

None.

Defect reports not addressed in this edition of this part of ISO/IEC 9075 367

IWD 9075-10:201?(E)

(Blank page)

368 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
H.1 Design goals

Annex H
(informative)

SQLJ tutorial

H.1 Design goals

The following items represent the major design features of this part of ISO/IEC 9075.

Provide a concise, legible mechanism for embedding SQL-statements in a program that otherwise conforms
to [Java].

Syntactic and semantic check of SQL-statements prior to program execution.

SQLJ can use an SQL-connection at translate time to check embedded SQL-statements to make sure that
they are syntactically and semantically correct.

Allow the syntax and semantics of SQL-statements to be location-independent.

The syntax and semantics of SQL-statements in an SQLJ program do not depend on the configuration
under which SQLJ is running. This makes it possible to implement SQLJ programs that run on the client,
in the SQL-server, or in a middle tier.

Provide facilities that enable the programmer to move between the SQLJ and JDBC environments by
sharing a single SQL-connection in both environments.

Provide for binary portability of translated and compiled Java SQL-client applications such that they can
be used transparently with multiple SQL-servers. In addition, binary portability profiles allow for customiza-
tion and optimization of SQL-statements within an SQLJ application. (See Subclause 4.3.4, “Binary
portability”.)

H.2 Advantages of SQLJ over JDBC

JDBC provides a complete, low-level SQL interface from Java to SQL-implementations. SQLJ is designed to
fill a complementary role by providing a higher-level programming interface to SQL-implementations in such
amanner as to free the programmer from the tedious and complex programming interfaces found in lower-level
APIs.

The following are some major differences between the two:

SQLJ source programs are smaller than equivalent JDBC programs since the translator can implicitly
handle many of the tedious programming chores that dynamic interfaces require.

SQLJ programs can use translate time SQL-connections to type check SQL code. JDBC, being a completely
dynamic API, can not.

SQLJ tutorial 369

IWD 9075-10:201?(E)
H.2 Advantages of SQLJ over JDBC

SQLJ programs allow direct embedding of Java host expressions within SQL-statements. JDBC requires
a separate call statement for each bind variable and specifies the binding by position number.

SQLJ enforces strong typing of query outputs and values returned and allows type checking on calls. JDBC
passes values to and from SQL without compile time type checking.

SQLJ provides simplified rules for invoking SQL-invoked routines. [JDBC] requires a generic call to an
SQL-invoked routine, fun, to have the following syntax:

prepStmt.prepareCall (*"{call fun(...)}"); // For SQL-invoked procedures
prepStmt.prepareCall(""{? = call fun(...)}"); // For SQL-invoked functions

SQLJ provides simplified notations:

#sql { CALL fun(...) }; // SQL-invoked procedure
// Declare x

#sql x = { VALUES(fun(...)) }; // SQL-invoked function
// VALUES is an SQL construct

H.3 Consistency with existing embedded SQL languages

Programming languages containing embedded SQL are called host languages. Java differs from the traditional
host languages (Ada, C, COBOL, Fortran, MUMPS (M), Pascal, PL/I) in ways that significantly affect its
embedding of SQL.

Java has automatic storage management (also known as “garbage collection™) that simplifies the management
of storage for data retrieved from SQL-implementations.

All Java types representing composite data, and data of varying sizes, have a distinguished value nul |,
which can be used to represent the SQL NULL value. This gives Java programs an alternative to the indi-
cator variables that are part of the interfaces to other host languages.

Java is designed to support programs that are automatically heterogeneously portable (also called “super
portable” or simply “downloadable”). That, along with Java's type system of classes and interfaces, enables
component software. In particular, an SQLJ translator, written in Java, can call components that are spe-
cialized by SQL-implementations, in order to leverage the existing authorization, schema checking, type
checking, transactional, and recovery capabilities that are traditional of SQL-implementations, and to
generate code optimized for particular SQL-implementations.

Java is designed for binary portability in heterogeneous networks, which promises to enable binary porta-
bility for applications that use SQL.

SQLJ extends the traditional concept of embedded host variables by allowing generalized host expressions.

H.4 Profile customization overview

This Subclause describes how implementation-specific “customized” SQL execution control can be added to
SQLJ applications. The SQLJ runtime framework uses the following interfaces:

370 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
H.4 Profile customization overview

— sglj.runtime.profile.RTStatement to execute SQL-statements.
— sqlj.runtime.profile. RTResultSet to describe query results.

— sqlj.runtime.profile.ConnectedProfile to create RTStatement objects corresponding to particular SQL-
statements.

An implementation is able to control SQL execution by providing an implementation of the RTStatement,
RTResultSet, and ConnectedProfile interfaces. An implementation is able to redirect control to their imple-
mentation by registering customization hooks with the application profiles.

For example, if the client connects to SQL-server A, then a customization that understands SQL-server A's
system will be used. If the client connects to SQL-server B, then SQL-server B's customization will be used.
In the absence of a connection specific customization, the default JDBC based customization will be used. Like
the profile object, customization objects are serializable. This allows the customization state to be stored and
restored with the profile. In this manner, an implementation-dependent deployment tool is able to load the
profile, inspect and precompile the SQL-statements it contains, register an appropriate customization, and store
the profile in persistent storage. Then at application runtime, the profile and the registered implementation-
dependent customization will both be restored, and the customization will be used to execute the SQL-statements.

H.4.1 Profile customization process

The profile customization process is the act of registering profile customization objects with the profile(s)
associated with an application. The profile customization process can be generalized to the following steps:
1) Discover the profile objects within a JAR file.

2) For each profile, deserialize the profile object from the appropriate JAR entry.

3) Create an SQL-connection with which the profile will be customized.

4) Create and register a profile customization with the profile.

5) Serialize the customized profile back to persistent storage.

6) Recreate the JAR contents using the customized serialized profiles.

Of the above steps, only step 4) is likely to change from implementation to implementation. While step 3) is
implementation-dependent, it can be done using a parameterized tool and JDBC. The rest of the steps involve
actions that can be performed by any generic utility without specific knowledge of the customization being
performed.

The act of creating and registering a customization object with a profile (step 4 above) is abstractly defined by
the Java interface sqlj.runtime.profile.util.ProfileCustomizer. The intent of defining this interface is to allow
SQL implementations to concentrate on writing profile customizers and customization objects (step 4 above),
while tools and application implementations concentrate on writing generic tools that apply customizers to
application profiles (steps 1 — 3 and 5 — 6 above).

The profile customizer interface is able to support most customization registration requirements. However, it
is not required that all utilities that register customization objects with a profile implement this interface. SQLJ
applications will be able to run and leverage all implementation-specific customization objects registered with
a profile, regardless of whether or not they were registered by a profile customizer. The primary benefit of

SQLJ tutorial 371

IWD 9075-10:201?(E)
H.4 Profile customization overview

conforming to the profile customizer interface is to be able to take advantage of existing and future automated
profile customization utilities that are able to load, call and manipulate profile customizers.

H.4.2 Profile customization utilities

Profile customizers can be instantiated and used by automated general-purpose profile customization utilities.
An implementation might include a command-line based tool that serves as a customization utility prototype.
In addition to a command line-based utility, other useful customization utilities might include:

— GUI-based IDEs used to drag-and-drop customizations into profiles.

— Tight integration of customization utilities with SQL-implementations to automatically customize the
profiles loaded into the SQL-server.

— Background “SQLJ installer” process used as administrative tool to discover and customize SQLJ applica-
tions for available SQL-schemas.

NOTE 185 — Implementors are encouraged to implement utilities using these and other ideas. Making such tools publically
available will greatly benefit and facilitate the SQLJ binary-portability effort.

H.5 Examples

H.5.1 Example of Profile generation and naming

Suppose we have the following file, Bar.sqlj, which defines package COM.foo, and contains three <executable
clause>s associated with two <connection context>s.

package COM foo;
#sgl context MyContext;
public class Bar

{
public static void doSQL(MyContext ctx) throws SQLException
{
// 1: explicit context
#sql [ctx] { UPDATE TAB1 SET COL1 = COL1 + 2 };
// 2: implicit context
#sql { INSERT INTO TAB2 VALUES(3, "Hello there®) };
// 3: explicit context again
#sql [ctx] { DELETE FROM TAB1 WHERE COL1 > 500 };
}
3

Two profiles are created for this file; they are named COM.foo.Bar_SJProfile0 and COM.foo.Bar_SJProfilel.
COM.foo.Bar_SJProfile0 contains information describing <executable clause>s 1 and 3, and is stored in a
file called Bar_SJProfile0.ser. Com.foo.Bar_SJProfilel describes clause 2, and is stored in file
Bar_SJProfilel.ser.

372 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
H.5 Examples

H.5.2 Example of a JAR manifest file

Working again with the file Bar.sqglj from the last example, if the Bar application were packaged for deployment
as a JAR file, the JAR's manifest can be used by SQLJ customization utilities to locate the application’s profile
files. To allow that use, the profile section of the manifest file would have the following entries:

— Name: COM/foo/Bar_SJProfile0.ser SQLJProfile: TRUE
— Name: COM/foo/Bar_SJProfilel.ser SQLJProfile: TRUE

H.5.3 Host variables

The following query contains host variable : x (which is the Java variable, Java field, or parameter x visible
in the scope containing the query):

SELECT COL1, COL2 FROM TABLE1l WHERE :x > COL3

H.5.4 Host expressions

Host expressions are evaluated from left to right and can cause side effects. For example:

SELECT COL1, COL2 FROM TABLE1l WHERE : (x++) > COL3

Host expressions are always passed to and retrieved from the SQL-server using pure value semantics. For
instance, in the above example, the value of x++ is determined prior to statement execution and its determined
value is the value that is passed to the SQL-server for statement execution.

SELECT COL1, COL2 FROM TABLE1l WHERE : (x[--i]) > COL3

In the above example, prior to statement execution, the value of i is decremented by 1 (one) and then the value
of the i -th element of x is determined and passed to the SQL-server for statement execution.

Consider the following example of an SQL/PSM <assignment statement>:
SET :(z[i++]) = t(x[i++]) + :(y[i++])
Assume that i has an initial value of 1 (one). Host expressions are evaluated in lexical order.

Therefore, the array index used to determine the location in the array z is 1 (one), after which the value of i

is incremented by 1 (one). Consegently, the array index used to determine the location in the array x is 2, after
which the value of i is incremented by 1 (one). As a result, the array index used to determine the location in
the array y is 3, after which the value of i is incremented by 1 (one). The value of i in the Java space is now
4. The statement is then executed. After statement execution, the output value is assigned to z[1] .

Assignments to output host expressions are also performed in lexical order. For example, consider the following
call to an SQL-invoked procedure f oo that returns the values 2 and 3.

CALL foo(:OUT x, :OUT x)

After execution, x has the value 3.

SQLJ tutorial 373

IWD 9075-10:201?(E)
H.5 Examples

H.5.5 SQLJ clauses

The following SQLJ clause is permitted to appear wherever a Java statement can legally appear and its purpose
is to delete all of the rows in the table named TAB:

#sql { DELETE FROM TAB };

The following Java method, when invoked, inserts its arguments into an SQL table. The method body consists
of an SQLJ executable clause containing the host expressions X, y, and z.

void m (int x, String y, float z) throws SQLException
{

}

The following method selects the address of the person whose hame is specified by the input host expression
name and then retrieves an associated address from the assumed table PEOPLE, with columns NAME and
ADDRESS, into the output host expressions addr , where it is then permitted to be used, for example, in a call
to System.out._printin:

#sql { INSERT INTO TABL VALUES (X, :y, :z) }:

void print_address (String nane) throws SQLException

{
String addr ;
#sql { SELECT ADDRESS INTO : addr
FROM PEOPLE
WHERE : name = NAME };
}

H.5.6 Connection contexts

In the following SQLJ clause, the connection context is the value of the Java variable nyconn.

#sql [myconn] { SELECT ADDRESS INTO :addr
FROM PEOPLE
WHERE :name = NAME } ;

The following illustrates an SQLJ connection clause that defines a connection context class named “I nven-
tory™:

#sql context | nventory;

H.5.7 Default connection context

If an invocation of an SQLJ translator indicates that the default connection context class is class G een, then
all SQLJ clauses that use the default connection will be translated as if they used the explicit connection context
object & een. get Def aul t Cont ext () . For example, the following two SQLJ clauses are equivalent if
the default connection context class is class G- een:

374 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
H.5 Examples

#sql { UPDATE TAB SET COL = :x };
#sql [G een. get Def aul t Context ()] { UPDATE TAB SET COL = :Xx };

Programs are permitted to install a connection context object as the default connection by calling setDefaul t-
Context. For example:

Green_setDefaultContext(new Green(argv[0], autoCommit));

argv[0] is assumed to contain a URL. aut oCormmi t is a boolean flag that is true if auto commit mode
should be on, and false otherwise.

H.5.8 Iterators

H.5.8.1 Positional bindings to columns

The following is an example of an iterator class declaration that binds by position. It declares an iterator class
called By Pos, with two columns of types String and int.

#sql public iterator ByPos (String, int);
Assume a table PEOPLE with columns FULLNANME and Bl RTHYEAR:

CREATE TABLE PEOPLE (FULLNAME VARCHAR(50),
BIRTHYEAR NUMERIC(4,0))

An iterator object of type By Pos is used in conjunction with a FETCH. . . | NTOstatement to retrieve data
from table PEOPLE, as illustrated in the following example:

{
ByPos positer; // declare iterator object
String name = null;
int year = 0;

// populate it

#sql positer = { SELECT FULLNAME, BIRTHYEAR
FROM PEOPLE };

#sgql { FETCH :positer INTO :name, :year };

while (!'positer.endFetch())

{

System.out.println(name + ' was born in " + year);
#sql { FETCH :positer INTO :name, :year };

}
}

The predicate method endFetch () of the iterator object returns true if no more rows are available from the
iterator (specifically, it becomes true following the first FETCH that returns no data).

The first SQLJ clause in the block above effectively executes its query and constructs an iterator object containing
the result set returned by the query, and assigns it to variable posi t er . The type of the iterator object is derived
from the assignment target, which is of type By Pos.

SQLJ tutorial 375

IWD 9075-10:201?(E)
H.5 Examples

The second SQLJ clause in that block contains a FETCH. . . | NTOstatement. The SQLJ translator checks that
the types of host variables in the | NTOclause match the positionally corresponding types of the iterator columns.
The types of the SQL columns in the query shall be convertible to the types of the positionally corresponding
iterator columns, according to the SQL to Java type mapping of SQLJ. Those conversions are statically checked
at SQLJ translation time if an SQL-connection to an exemplar schema is provided to the translator.

H.5.8.2 Named bindings to columns

The following is an example of an iterator class declaration that binds by name. It declares an iterator class
called By Nanre, the named accessor methods f ul | NAME and bi r t hYEAR of which correspond to the columns
FULLNAME and Bl RTHYEAR:

#sgl public iterator ByName (String fulINAME,
int birthYEAR);

That iterator class can then be used as follows:

{

ByName namiter; // define iterator object
#sql namiter = { SELECT FULLNAME, BIRTHYEAR
FROM PEOPLE }%;

String S;

int i;

// advances to next row

while (namiter.next())

{
i namiter .birthYEAR(Q); // returns column named BIRTHYEAR
s = namiter.FulINAMEQ); // returns column named FULLNAME
System.out.printin(s + " was born in "+i);

3

3

In this example, the first SQLJ clause constructs an iterator object of type By Nane, as that is the type of the
assignment target in that clause. That iterator has generated accessor methods bi rthYEAR() and ful INAMEQ)
that return the data from the result set columns with those names.

The names of the generated accessor methods are an exact case-sensitive match with their definitions on the
iterator declaration clause. Matching a specific accessor method to a specific column name in the SELECT list
expressions is performed using a case-insensitive match.

Two column names that differ only in the case of one or more characters shall use the SQL AS clause to avoid
ambiguity, even if one or both of those column names are specified using delimited identifiers.

Method next () advances the iterator object to successive rows of the result set. It returns true if a next row
is available and false if it fails to retrieve a next row because the iterator contains no more rows.

A Java compiler will detect type mismatch errors in the uses of named accessor methods. Additionally, if a
connection to an exemplar schema is provided at translate time, then the SQLJ translator will statically check
the validity of the types and names of the iterator columns against the SQL queries associated with it.

376 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
H.5 Examples

H.5.8.3 Providing names for columns of queries

If the expressions selected by a query are unnamed, or have SQL names that are not legal Java identifiers, then
SQL column aliases can be used to name them. Consider a table named " Tr oubl e! " with a column called
"Not a legal Java identifier":

CREATE TABLE "Trouble!™ (
"Not a legal Java identifier"™ VARCHAR(10),
col2 FLOAT)

The following line generates an iterator class called x .

#sql iterator xY (String x, double Y);
The SQLJ clause in the following block uses column aliases to associate that column's name with an expression
in the query:

{
XY 1t;
#sql it = { SELECT "Not a legal Java identifier'™ AS "x",
COL2 * COL2 AS Y
FROM "Trouble!™ };
while (it.next()) { System.out_println(it.x() + it.Y(Q);

}
}

The first line declares a local variable of that iterator class.
The second line initializes that variable to contain a result set obtained from the specified query.

The whi | e() loop calls the named accessor methods of the iterator to obtain and print data from its rows.

H.5.9 Invoking SQL-invoked routines

An SQLJ executable clause, appearing as a Java statement, can call an SQL-invoked procedure by means of
the SQL CALL statement. For example:

#sql { CALL SOME_PROC(:INOUT myarg) };
Support for invoking SQL-invoked routines is not required for conformance to Core SQLJ.

SQL-invoked procedures can have I N, OUT, or | NOUT parameters. In the above case, the value of host variable
myar g is changed by the execution of that clause.

An SQLJ executable clause can invoke an SQL-invoked function by means of the SQL VALUES construct.
For example, assume an SQL-invoked function F that returns an integer. The following example illustrates an
invocation of that function that then assigns its result to Java local variable x.

{

int x;

SQLJ tutorial 377

IWD 9075-10:201?(E)
H.5 Examples

#sql x ={ VALUES (F(34)) }:
ks

H.5.10 Using multiple SQLJ contexts and connections

The following program demonstrates the use of multiple concurrent connections. It uses one user-defined
context to access a table of employees through one connection and another user-defined context to access
employee department information via a separate connection. By using distinct contexts, it is possible for the
employee and department information to be stored on physically different SQL-servers.

// declare a new context class for obtaining departments
#sql context DeptContext;
#sql context EmpContext;
#sqgl iterator Employees (String ename, int deptno);
class MultiSchema {
void masterRoutine(String deptURL, String empURL)
throws SQLException
{
// create a context for querying department info
DeptContext deptCtx = new DeptContext(deptURL, true);
// a second connection
EmpContext empCtx = new EmpContext(empURL, true);
printEmployees(deptCtx, empCtx);
deptCtx.close();
empCtx.close();
}
// performs a join on deptno field of two tables
// accessed from different connections.
void printEmployees(DeptContext deptCtx, EmpContext empCtx)
throws SQLException
{
// obtain the employees from the emp table connection context
Employees emps;
#sql [empCtx] emps = { SELECT ENAME, DEPTNO FROM EMP };
// for each employee, obtain the department name
// using the dept table connection context
while (emps.next())
{
String dname;
#sql [deptCtx]

SELECT DNAME INTO :dname

FROM DEPT
WHERE DEPTNO = :(emps.deptno())
}:
System.out.printIn(employee: " + emps.ename() +

", department: " + dname);

emps.close();

}
}

For now, it is sufficient to note that close () executed against the connection contexts DeptContext and
EmpContext, and against the iterator emps, frees the resources associated with the object against which it

378 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
H.5 Examples

is invoked. The semantics of close () when executed against connection contexts are detailed in
Subclause 12.2.1.3.1, “close ()”, and of close () when executed against iterators in Subclause 12.2.5.3.2,
“close ().

A programmer might wish to release the resources maintained by the connection context (e.g., ConnectedProfile,
and RTStatement objects) without actually closing the underlying SQL-connection. To this end, connection
context classes also support a close method that takes a boolean argument indicating whether or not to close
the underlying SQL-connection. Pass the constant CLOSE_CONNECTION if the SQL-connection should
be closed, and KEEP_CONNECTION if it should be retained. The variant of close that takes no arguments
is a shorthand for calling close(CLOSE_CONNECTION).

As a final point, even if not using multiple SQLJ connection context objects, explicit manipulation of connection
objects is recommended. This allows applications to avoid hidden global state (e.g., Java “static variables”)
that would be necessarily used to implement the <SQL connection statement>. In particular, Java “applets”
and other multi-threaded programs are usually coded to avoid contention of global state. Such programs should
store connection objects in local variables and use them explicitly in SQLJ clauses.

H.5.11 SQL execution control and status

An execution context can be supplied explicitly as an argument to each SQL-statement.

ExecutionContext execCtx = new ExecutionContext();
#sgl [execCtx] { DELETE FROM EMP WHERE SAL > 10000 };

If explicit execution context objects are used, each SQL-statement can be executed using a different execution
context object. If an explicit connection context object is also being used, both are available to be queried and
modified during execution of the SQL-statement.

#sgl [connCtx, execCtx] { DELETE FROM EMP
WHERE SAL > 10000 };

If an execution context object is not supplied explicitly as an argument to an SQL-statement, then a default
execution context object is used implicitly. The default execution context object for a particular SQL-statement
is obtained via the getExecutionContext() method of the connection context object used in the operation.
For example:

#sql [connCtx] { DELETE FROM EMP WHERE SAL > 10000 };

The preceding example uses the execution context object associated with the connection context object given
by connCtx. If neither a connection context object nor an execution context object is explicitly supplied, then
the execution context object associated with the default connection context object is used.

The use of an explicit execution context object overrides the execution context boject associated with the con-
nection context object, referenced explicitly or implicitly by an SQL clause.

The following code demonstrates the use of some ExecutionContext methods.

{

ExecutionContext execCtx = new ExecutionContext();
// Wait only 3 seconds for operations to complete
execCtx.setQueryTimeout(3);

try {
// delete using explicit execution context

SQLJ tutorial 379

IWD 9075-10:201?(E)
H.5 Examples

// if operation takes longer than 3 seconds,
// SQLException is thrown
#sql [execCtx] { DELETE FROM EMP WHERE SAL > 10000 };
System.out.println
("'removed " + execCtx.getUpdateCount() +

employees™);
}
catch(SQLException e) {
// Assume a timeout occurred
System.out.printIn("'SQLException has occurred with" +

}

exception " + e);

}

H.5.12 Multiple java.sql.ResultSet objects from SQL-invoked procedure calls

If execution of an SQL-statement produces multiple results, the resources are not released until all results have
been processed using getNextResultSet. Accordingly, if an SQL-invoked procedure might return side-channel
result sets, then the calling program should process all results using getNextResultSet until null is returned.
Further, if one or more side-channel result sets have been left open, they should be explicitly closed, because
their associated resources cannot be released until they are closed.

If the invocation of an SQL-invoked procedure does not produce side-channel result sets, then there is no need
to call getNextResultSet. All resources are automatically reclaimed as soon as the CALL execution completes.

The following code snippet demonstrates how multiple results are processed. The example assumes that an
SQL-invoked procedure named “nul ti _resul t s” exists and produces one or more side-channel result sets
when executed.

#sgl [execCtx] { CALL MULTI_RESULTSQ) };

ResultSet rs;

while ((rs = execCtx.getNextResultSet()) != null)
{ // process result set

rs.close();

}

The following snippet demonstrates how multiple result sets can be processed simultaneously. The example
assumes an SQL-invoked procedure named “rul ti _r esul t s” exists and produces between 2 and 10 side-
channel result sets when executed.

#sql [execCtx] { CALL MULTI_RESULTSQ) };

ResultSet[] rsets = new ResultSet[10];

ResultSet rs;

int rsCounter = 0O;

// access the ResultSets

while ((rs = execCtx.getNextResultSet(Statement.KEEP_CURRENT_RESULT)) != null)
{ rsets[rsCounter++] = rs;
}

// process ...

// close

for (int 1i=0; ii < rsCounter; ii++)

380 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
H.5 Examples

{ rsets[ii].close();
3

H.5.13 Creating an SQL.J iterator object from a java.sgl.ResultSet object

An SQLJ iterator object can be created from a java.sqgl .Resul tSet object with the <iterator conversion
clause>. Once an iterator object has been created this way, portable code should not issue any further calls to
the Java.sql .ResultSet object, because the result of doing so is implementation-defined.

As an example, assume we have the following iterator declaration:

#sql iterator Employees (String ename, double sal) ;

The following method uses JDBC to perform a dynamic query and uses an instance of the above iterator decla-
ration to view the results. It illustrates the use of an iterator conversion statement.

public void listEarnings(Connection conn, String whereClause)
throws SQLException

{

// prepare a java.sgl.Statement object to execute a dynamic query
PreparedStatement stmt = conn.prepareStatement();
String query = "SELECT ename, sal FROM emp WHERE **
query += whereClause;
ResultSet rs = stmt.executeQuery(query);
Employees emps;
// Use the iterator conversion statement to create a
// SQLJ iterator from a java.sqgl.ResultSet object
#sql emps = { CAST :rs };
while (emps.next()) {

System.out._printin(emps.ename() +

" earns " + emps.sal());

}

emps.close(); // closing emps also closes rs
stmt.close();

}

H.5.14 Obtaining a java.sql.ResultSet object from an iterator object

Every SQLJ iterator object, whether typed or untyped, has a getResultSet method that returns a

Java.sqgl .ResultSet object representation of its data. For portable code, the getResultSet () method
should be invoked before the first next() method invocation on the iterator object. And, once the
Java.sql .ResultSet object has been produced, all operations to fetch data, or update the ResultSet,
should be through that java.sqgl .ResultSet object; doing so avoids potential problems due to the
implementation-defined nature of the synchronization (if any) between the iterator object and its

jJava.sql .ResultSet object.

As an example, the following method uses a weakly typed iterator to hold to results of an SQLJ query and then
process them using a java.sqgl .ResultSet object:

public void showEmployeeNames() throws SQLException

{

SQLJ tutorial 381

IWD 9075-10:201?(E)
H.5 Examples

sqlj -runtime.ResultSetlterator iter;
#sqgl iter = { SELECT ename FROM emp };
ResultSet rs = iter.getResultSet();
while (rs.next(Q)) {
System.out.printIn("employee name: ' + rs.getString(1));

iter.close(); // close the iterator, not the result set

H.5.15 Working with user-defined types

Consider the following type mapping information to be specified in file addrpckg/address-
map .properties:

Ffile: addressmap.properties
class.addrpckg.Address = STRUCT ADDRESS
class.addrpckg.BusinessAddress = STRUCT BUSINESS
class.addrpckg.HomeAddress = STRUCT HOME
class.addrpckg.ZipCode = DISTINCT ZIPCODE

The first entry defines that the Java class Address in package addrpckg corresponds to the SQL user-defined
type ADDRESS. It further indicates that the SQL type is a structured type.

The type map specified in the above file can be attached to a connection context class as part of the connection
context declaration in the following way:

#sql context Ctx with (typeMap = "addrpckg.addressmap'™)

The SQLJ translator and runtime will interpret the specified type map ""addrpckg .addressmap’" as a Java
resource bundle family name, and look for an appropriate properties or class file using the Java class path. This
means that the type map can easily be packaged with the rest of the SQLJ application or application module.

It is now possible to define host variables or iterators based on the Java types that participate in the type map:

#sql public iterator ByPos (String, int, addrpckg.Address);
Assume a table PEOPLE with columns FULLNAME, BIRTHYEAR, and ADDRESS:

CREATE TABLE PEOPLE (

FULLNAME CHARACTER VARYING(50),
BIRTHYEAR NUMERIC(4,0),
ADDR ADDRESS)

An iterator object of type ByPos is used in conjunction with a FETCH...INTO statement to retrieve data,
including instances of the user-defined type ADDRESS from table PEOPLE, as illustrated in the following
example:

{

ByPos positer; // declare iterator object
String name = null;

int year = 0;

addrpckg.Address addr = null;

// populate it

#sql [Ctx] positer = { SELECT FULLNAME, BIRTHYEAR,

382 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
H.5 Examples

ADDR FROM PEOPLE };
#sgql { FETCH :positer INTO :name, :year, :-addr};
while (!positer.endFetch())

{

System.out.println (name + " was born in " + year +
" and lives in " addr.print(Q));
#sgql { FETCH :positer INTO :name, :year, :-addr};

}
}

The SQLJ translator also checks for type correctness for user-defined types. For example, when translating the
SQLJ clause that populates the iterator positer in the above example, the check involves determining the result
type of the ADDR column (i.e,, ADDRESS) and verifying that based on the type mapping associated with the
statement context (i.e., Ctx), the corresponding Java class (i.e., Address) is assignment compatible with the
corresponding Java type specified in the declaration of the iterator class poslter.

The above-described mechanism also handles SQL type hierarchies and, correspondingly, Java class hierarchies.
For example, assume that the SQL type ADDRESS has subtypes BUSINESS and HOME, and that the corre-
sponding Java class Address has subclasses BusinessAddress and HomeAddress.

In that case, the ADDR column of the PEOPLE table defined above may very well contain instances of
BUSINESS and HOME due to the concept of substitutability—which will then, if retrieved into host variables,
be materialized as instances of the corresponding Java classes BusinessAddress and HomeAddress.

H.5.16 Batching

When using batched statements, it is the responsibility of the client to ensure that statements which depend on
the statement batch are not executed until the batch has been executed. Pay particular attention when statements
executed on a non-batched execution context object are interleaved with statements executed on a batched
execution context object. This also applies to commit statements; issuing a Connection.commit() when
there are pending statement batches does not implicitly execute the statement batch. Remember that access to
an SQL-implementation is not limited to the SQLJ statements appearing in the program, and may also include
JDBC, RMI, CORBA and EJB calls.

H.5.17 Example program

In this Subclause, an example SQLJ program that prints the names and grades of students with grade point
averages above a given percentile is considered. It assumes a schema containing a table of student names and
grades:

CREATE TABLE GRADE_REPORTS (

STUDENT VARCHAR(20), — student®s name
SCORE FLOAT, — student®s grade
ATTENDED NUMERIC(3), — days present at school

DEMERITS NUMERIC(3) count of rule violations

))

and an SQL-invoked function GRADE_AT_PERCENT that returns the grade corresponding to a given percentile
in that table:

SQLJ tutorial 383

IWD 9075-10:201?(E)
H.5 Examples

CREATE FUNCTION GRADE_AT_PERCENT (N FLOAT) RETURNS FLOAT...

The program below declares a connection context class, Recor ds, for an object representing the SQL-connection
where clauses will be executed at run time. An SQLJ translator can check those SQL constructs against an
exemplar schema that is supplied in the invocation of the translator (say, on the command line), paired with
the connection context class name “Recor ds”. As described in Subclause 4.3.10, “Schema checking using
exemplar schemas”, the SQLJ translator can perform syntactic and semantic checking based on an exemplar
schema for the “Records” connection context class provided in an implementation-defined manner (e.g., as an
additional parameter during invocation of the translator).

import java.sql.SQLException;
#sql context Records;
#sql iterator Honors (String name, float grade);
public class HonorRoll
{
static Records recs; // for a connection context object
public static void main (String argv[]) // main entrypoint
throws SQLException
{
// open a connection context using logon info from command line
recs = new Records(argv[0], true);
float limit;
#sql [recs] limit = { VALUES(GRADE_AT_PERCENT(95)) };
printHonors(limit, 150, 2);
}
static void printHonors (float limit, int days, int offences)
throws SQLException
{ Honors honor;
// set variable honor to contain result set from query:
#sql [recs] honor =
{ SELECT STUDENT AS "name', SCORE AS '‘grade"
FROM GRADE_REPORTS
WHERE SCORE >= :limit
AND ATTENDED >= :days
AND DEMERITS <= :offences
ORDER BY SCORE DESCENDING };
// honor has accessor methods for column values:
while (honor.next())
System.out._printIn(honor_name() + " has grade " + honor.grade());

H.5.18 Host variable definition

The evaluation of host expressions does have side effects in a Java program as they are evaluated by the Java
Virtual Machine rather than the SQL-server. Host expressions are evaluated left to right within the SQL-statement
prior to submission to the SQL-server. For example, consider the following:

{
String dname; int deptno = 100;
#sql [deptCtx] {
SELECT DNAME INTO :dname
FROM DEPT

384 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)
H.5 Examples

WHERE DEPTNO >= :(deptno++)
AND DEPTNO < :(deptno)
}:
}

SQLJ tutorial 385

IWD 9075-10:201?(E)

(Blank page)

386 Object Language Bindings (SQL/OLB)

[1]

[2]
[3]

[4]

IWD 9075-10:201?(E)

Bibliography

[1ISO9075-4] ISO/IEC 9075-4:2011, Information technology — Database languages — SQL — Part 4:
Persistent Stored Modules (SQL/PSM).

[UCS] ISO/IEC 10646, Information technol ogy — Universal Multiple-Octet Coded Character Set (UCS).

[RFC2368] RFC 2368, The mailto URL scheme, P. Hoffman, L. Masinter, J. Zawinski.
http://www.ietf.org/rfc/rfc2368.txt

[RFC3986] RFC 3986, Uniform Resource |dentifier (URI): Generic Syntax, T. Berners-Lee, R. Fielding,
L. Masinter.
http://www. ietf.org/rfc/rfc3986. txt

387

http://www.ietf.org/rfc/rfc2368.txt
http://www.ietf.org/rfc/rfc3986.txt

IWD 9075-10:201?(E)

(Blank page)

388 Object Language Bindings (SQL/OLB)

IWD 9075-10:201?(E)

Index

Index entries appearing in boldface indicate the page where the word, phrase, or BNF nonterminal was defined; index
entries appearing in italics indicate a page where the BNF nonterminal was used in a Format; and index entries appearing
in roman type indicate a page where the word, phrase, or BNF nonterminal was used in a heading, Function, Syntax Rule,
Access Rule, General Rule, Conformance Rule, Table, or other descriptive text.

— A —
ABSOLUTE « 119
AND « 124, 384, 385
ARRAY - 208, 244
AS - 97, 376, 377, 384
ASENSITIVE » 77, 154
accessor method ¢ 5

<assignment clause> « 48, 91, 96, 98, 99, 100, 129, 130,
131, 134, 135, 136, 140

<assignment spec clause> » 48, 56, 129, 130, 131
automatically heterogeneously portable « 370

—B —
BEGIN ¢ 47, 141
BIGINT » 258, 259, 286
BINARY « 176, 184, 260, 287
BLOB - 211, 247
BY « 384
Bind by name « 25
Bind by position ¢ 25
batch compatible « 42
binary portable « 13
bind by name ¢« 25
bind by position « 25

—C—
CALL - 11, 15, 39, 127, 171, 242, 312, 370, 373, 377, 380
CAST » 39, 138, 381

CHAIN « 124

CHAR « 176, 184, 260, 266, 287

CHARACTER - 291, 382

CLOB « 217, 251, 252

COMMIT « 10, 42, 43, 124, 312

CONTINUE « 47

CREATE - 10, 375, 377, 382, 383, 384

CURRENT - 44, 109, 111, 148, 308, 313

cardinality violation « 113

<comment> ¢ 56

<complex expression>« 16, 72, 73, 114

<compound statement>« 15, 107, 141, 142, 299, 350, 354
connection clause * 21

<connection context> ¢ 49, 50, 99, 100, 101, 105, 372
connection context class ¢ 21

connection context object « 7, 21

<connection declaration clause>+5, 7, 17, 66, 78, 81, 82,
84, 147

<context clause> « 98, 99, 105, 106
<context spec clause> « 105

<create connection constructors> « 83
cursor ¢ 25

customization « 5

customization objects « 14

customizer ¢ 10

— D—
DATALINK » 234, 270, 295

DATE » 252, 281

DEALLOCATE « 46

DECLARE « 47

DELETE - 10, 14, 42, 109, 244, 372, 374, 379, 380
DESCRIBE » 46

DESCRIPTOR » 47

DISTINCT » 26, 32, 41, 78, 197, 227, 262, 288, 336, 337,
382

DOUBLE « 253, 254, 282, 336

DROP « 10

data exception « 49, 194

<data source constructors> « 83, 84, 144, 354

<declaration with clause>« 76, 77, 78, 82, 84, 88, 91, 96,
147, 354

<declaration with list> « 48, 76

Index 389

IWD 9075-10:201?(E)

default connection « 21
<delete statement: positioned> « 15, 109, 110, 303
division by zero « 49

— E—
END - 47, 141

EXEC » 47, 49, 62

EXECUTE - 16, 46, 127, 242, 269, 308

<embedded Java expression> « 14, 15, 16, 17, 18, 56, 61,
62,72,73,74,98,99, 102, 103, 109, 110, 112, 114, 115,
118, 119, 127, 128, 133, 134, 135, 136, 138, 139, 141,
336, 337, 350, 355, 358

embedded SQL ¢ 10

<embedded SQL Java program> « 9, 10, 55, 56, 57, 59,
61, 62, 63, 64, 109, 111, 113, 117, 118, 120, 126, 261,
264, 349, 353, 358

<embedded SQL host program>-+2, 9, 10, 61, 62, 63, 353

<embedded variable name> ¢ 59, 61, 62, 117, 120

<executable clause> « 14, 15, 16, 17, 49, 50, 52, 65, 81,
84, 85, 86, 98, 99, 100, 101, 102, 103, 127, 128, 133,
136, 354, 358, 372

executable clauses « 11

<executable spec clause> « 8, 98, 99

<execution context> ¢ 99, 102, 105

execution context object « 7

exemplar schema « 22

explicit connection « 21

<expression> e« 62, 72, 114, 118

— F—
FETCH « 10, 42, 49, 117, 150, 375, 383
FIRST » 119

FLOAT « 255, 283, 284, 377, 383, 384
FOR + 78

FROM« 109, 117, 141, 372, 373, 374, 375, 376, 377, 378,
379, 380, 381, 382, 383, 384

FUNCTION -« 384

<fetch statement>« 14, 48, 52, 86, 92, 94, 100, 117, 118,
119, 358

<function clause> ¢ 15, 129, 135, 137, 306, 350

— G —
GET « 47
GOTO « 47
GROUP « 78
generated connection class « 5
generated iterator class < 5, 119
generated named iterator class * 5
generated positioned iterator class ¢ 5
getter method * 5

390 Object Language Bindings (SQL/OLB)

—H —
homogeneous batch « 43

host languages * 370
host variables ¢ 20

IN « 15, 17, 20, 42, 43, 44, 47,72, 73, 99, 102, 127, 141,
164, 165, 197, 245, 271, 272, 273, 274, 275, 276, 277,
278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289,
290, 291, 292, 293, 294, 295, 333, 335, 355, 377

INOUT « 15, 17, 20, 39, 47, 72, 98, 99, 100, 102, 103, 127,
128, 141, 176, 184, 245, 246, 247, 248, 249, 250, 251,
252, 253, 254, 255, 256, 257, 258, 259, 262, 263, 265,
266, 267, 268, 270, 273, 274, 275, 276, 277, 278, 279,
280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291,
292, 293, 294, 295, 333, 335, 355, 358, 377

INSENSITIVE « 77, 154, 358

INSERT -« 10, 14, 42, 141, 244, 372, 374

INTEGER » 256, 257, 284, 285

INTO -« 10, 42, 49, 114, 117, 141, 150, 313, 372, 374, 375,
378, 383, 384

implementation-specific « 6

<implements clause> ¢ 75, 77, 82, 88, 89

implicit » 48

implicit cursor « 48

installation « 6

<interface element> ¢ 75

<interface list> 48, 75, 83, 91, 96

invalid class declaration « 227, 262, 345

invalid column name « 207, 345

invalid number of columns » 114, 118, 132, 138, 139, 345

invalid profile state » 199, 200, 345

iterator » 7, 25, 88

<iterator conversion clause> ¢ 15, 39, 40, 129, 130, 138,
139, 140, 301, 354, 381

<iterator declaration clause> 5, 7, 48, 66, 77, 81, 84, 88,
89, 91, 96, 132, 139, 149, 153, 349

<iterator host expression> 46, 109, 110, 111, 112, 117,
118, 119

<iterator spec declaration> + 5, 16, 18, 88

—J —
Feature JOO1, “Embedded Java” » 64, 347, 349

Feature J002, “ResultSetlterator access to JDBC
ResultSet” « 88, 89, 153, 224, 225, 349, 355

Feature JO03, “Execution control”+ 98, 103, 167, 184, 185,
287, 288, 289, 349

Feature JO04, “Batch update” « 98, 104, 349
Feature JO05, “Call statement” » 108, 349, 350
Feature JO06, “Assignment Function statement”« 137, 350

Feature J007, “Compound statement” « 142, 350
Feature J0O08, “Datalinks via SQL language” « 70, 74, 350

Feature J009, “Multiple Open ResultSets” « 99, 104, 177,
350

Feature J010, “XML via SQL language” * 70, 74, 350
JAR ¢ 50, 51, 100, 325, 371

<Java comment> ¢ 56

<Java comment introducer> « 56

Java primitive datatype « 6

<java class name> « 68, 75, 77, 78, 82, 83, 84, 88, 91, 96
<java constant expression> e« 71, 76, 77

<java datatype>* 70, 83, 90, 91, 92, 94, 96, 97, 102, 103,
114, 115, 118, 120, 121, 129, 130, 132, 133, 134, 136,
138, 139, 140, 350

<java id>* 69, 76, 94, 96, 97, 105, 132, 133, 139, 149
<java pair>« 94, 97, 132, 139

<java pair list> « 94, 96, 97, 132, 133, 139, 149

<java type list>« 90, 92, 118, 132, 133, 138, 139

— L —
LAST « 119
LOCAL « 126
<Lval expression>+48, 72, 73, 74, 99, 100, 114, 118, 121,

129, 130, 131, 133, 134, 135, 136, 138, 139, 140, 141,
355

I-valued expression « 6

— M=
MAX » 141

MONTH « 141
<modifiers> « 67, 82, 83, 84, 88, 91, 96

— N —
NAME « 374, 376
NEXT « 119
NO « 48, 124
NULL « 48
NUMERIC « 246, 274, 375, 382, 383
named accessor method « 5

<named iterator> e« 5, 7, 18, 88, 91, 94, 95, 96, 97, 132,
133, 139, 358

no data « 49, 113, 131

no subclass « 345

null value, no indicator parameter 194

<number sign> « 10, 55, 61

00—

OF « 44,109, 111, 148, 308, 313

IWD 9075-10:201?(E)

OLB-specific error « 49, 89, 98, 99, 114, 118, 132, 138,
139, 153, 167, 177, 184, 185, 199, 200, 207, 225, 227,
262, 287, 288, 289, 345

OPEN « 49

ORDER + 384

OUT 15, 16, 17, 20, 39, 41, 42, 47, 72, 73, 98, 99, 100,
103, 114, 118, 121, 128, 133, 141, 154, 176, 184, 197,
235, 241, 245, 246, 247, 248, 249, 250, 251, 252, 253,
254, 255, 256, 257, 258, 259, 262, 263, 265, 266, 267,
268, 270, 271, 300, 303, 310, 333, 335, 355, 358, 373,
377

—P—
PATH « 78

PRECISION « 253, 254, 282
PREPARE * 46

PRIOR » 119

pending statement batch ¢ 43

positioned accessor method « 5

<positioned iterator> ¢ 5, 7, 18, 88, 90, 91, 92, 132, 133,
138

<predefined connection with keyword> « 76, 77, 78, 79,
84, 147, 350, 351

<predefined interface class> « 48, 75, 77, 82

<predefined iterator with keyword> « 76, 77, 82, 88, 154,
354

profile « 6

profile customizer « 51
profile file « 6

profiles « 12
properties file « 41

<query clause>+ 15, 48,97, 109, 111, 118, 129, 131, 133,
134, 302, 304, 306, 358

— R —
REF « 263, 289
RELATIVE « 119
RELEASE « 42
RETURN » 48
RETURNS ¢ 384
ROLLBACK « 10, 42, 125, 312
<Rval expression> -« 72, 73, 74
<result set expression> ¢ 138, 139, 140, 354
result set iterator « 24
runtime library component « 6

—S—

Index 391

IWD 9075-10:201?(E)

Feature S071, “SQL paths in function and type name
resolution” » 78, 350

Feature S241, “Transform functions” » 78, 79, 350, 351
SAVEPOINT « 42, 122, 312

SCROLL « 48

SECTION « 47

SELECT « 10, 43, 118, 141, 373, 374, 375, 376, 377, 378,
381, 382, 384

SENSITIVE « 77, 154, 358

SET 11, 42, 47, 111, 372, 373, 375
SMALLINT « 265, 290, 291

<SQL prefix> ¢ 55, 61, 62

<SQL special character> « 10, 55

SQLJ clauses « 11

SQLIfile « 6

SQLJ input assignable « 32

SQLJ output assignable « 26

<SQLJ specific clause> « 8, 12, 56, 61, 62, 78, 81, 141
SQLJ translation « 6

SQLJ translation unit « 6

SQLSTATE - xx, 63, 194

STATEMENT - 14, 107, 121, 312
serializable « 14

setter method « 6

side-channel « 39

<simple variable> « 16, 72, 73, 114, 118, 121
simply underlying table « 131

<statement clause> « 98, 107, 124, 141, 349
<statement or declaration> ¢ 61, 62
<statement spec clause> ¢ 56, 107, 108, 350

—T —
Feature T271, “Savepoints” « 125
TABLE « 375, 377, 382, 383
TIME » 268, 293
TIMESTAMP « 268, 293
TRANSACTION » 42
TRANSFORM « 78
TYPE « 78
translator « 10

—U—
UPDATE - 10, 14, 42, 111, 244, 372, 375

unsupported feature « 49, 89, 98, 99, 153, 167, 177, 184,
185, 225, 287, 288, 289, 345

<update statement: positioned> « 15, 111, 112, 303
<url constructors> « 83, 84, 144, 354

<user defined interface class> ¢ 75

<user defined with keyword> « 76

392 Object Language Bindings (SQL/OLB)

—V—
VALUES » 11, 135, 141, 312, 370, 372, 374, 378, 384

VARCHAR « 176, 184, 260, 266, 287, 375, 377, 383
VARYING - 291, 382

— W —
WHENEVER - 47

WHERE « 44, 109, 111, 141, 148, 308, 313, 372, 373, 374,
378, 379, 380, 381, 384, 385

WITH « 48

WORK « 124, 125

<with element>« 76, 77

<with keyword> « 76, 83, 84, 91, 96

<with value> « 76, 77, 78, 83, 84, 91, 96, 147, 154, 358

— Y —
YEAR « 376

Editor's Notes for IWD 9075-10:201?(E)
Introduction

Editor's Notes

Some possible problem and language opportunities have been observed with the specifications contained in this document.
Further contributions to this list are welcome. Deletions from the list (resulting from change proposals that correct the
problems or from research indicating that the problems do not, in fact, exist) are even more welcome.

Because of the dynamic nature of this list (problems being removed because they are solved, new problems being added),
each problem or opportunity has been assigned a "fixed" number. These numbers do not change from draft to draft.

Editor's Notes (Introduction) Notes-1

Editor's Notes for IWD 9075-10:201?(E)
Possible Problems

Possible Problems: Major Technical

OLB-000]| The following Possible Problem has been noted:
Severity: major technical

Reference:

Note At: None.

Source: Your humble Editor.
Possible Problem:

In the body of the Working Draft, there occasionally appears a point that requires particular attention,
highlighted thus:

** Editor's Note (number 2) **

Text of the problem.

Solution:
None provided with comment.

OLB-033| The following Possible Problem has been noted:
Severity: major technical

Reference: P10, SQL/OLB, Subclause 8.1, “<embedded SQL host program>"
Note At: !l Delete this element if its content is empty!!

Source: WG3:KOA-030 = DM32.2-2011-00098

Possible Problem:

Should the references to <data type> in Subclause 8.1, “<embedded SQL host program>”, SR 6)a) really
be <host parameter data type>? See WG3:KOA-030/DM32.2-2011-00098.

Solution:
None provided with comment.

Notes—2 Editor’s Notes for Object Language Bindings (SQL/OLB)

Editor's Notes for IWD 9075-10:201?(E)
Language Opportunities

Language Opportunities

OLB-031| The following Language Opportunity has been noted:
Severity: Language Opportunity

Reference: P10, SQL/OLB, Table 2, “SQLJ type properties”
Note At: None.

Source: WG3:WLG-057 = H2-2005-326r1

Language Opportunity:

When JDBC supports an SQL data type, SQL/OLB should be enhanced to provide JDBC's support of
that data type. (This LO should be addressed when possible, but should not be considered fully resolved
as long as JDBC continues to evolve.)

Solution:
None provided with comment.

The following Language Opportunity has been noted:
Severity: Language Opportunity
Reference: P10, SQL/OLB, No particular location
Note At: None.
Source: Wellington ballot resolution meeting, WG3:WLG-101r1
Language Opportunity:
In responding to comments on WLG-052 and WLG-092, WLG-101rl moved a paragraph of

Subclause 4.3.20.4, “Program semantics and exceptions” to a new subclause "Batching" in the tutorial
Annex E, and suggested that other items from Concepts could be added to that subclause.

Solution:
None provided with comment.

Editor's Notes (Language Opportunities) Notes—3

