
SQL99, SQL/MM, and SQLJ: An SQL99, SQL/MM, and SQLJ: An
Overview of the SQL StandardsOverview of the SQL Standards
Nelson M. MattosNelson M. Mattos
HughHugh DarwenDarwen
Paul CottonPaul Cotton
Peter PistorPeter Pistor
Krishna KulkarniKrishna Kulkarni
Stefan DesslochStefan Dessloch
Kathryn ZeidensteinKathryn Zeidenstein

with contributions from Curt Cotner, Bob Lyle, Bill with contributions from Curt Cotner, Bob Lyle, Bill
Bireley, and many others Bireley, and many others

IBM Database Common IBM Database Common
TechnologyTechnology

1

Table of ContentsTable of Contents
Database Standards Organizations..13

Process..15
Other Related Standards...16

History of SQL Standard..17
DBL Project History..17
Progression of SQL Standards..18
SQL Conforming Products...20

Vendor contributions to the SQL standard..21
SQL 86...22

Definition of Orthogonality..23
SQL 89...24
SQL 92...27

Entry Level...29
Transitional Level...30
Intermediate Level...32
Full Level..35

FIPS 127-2...38
SQL99 (so-called SQL3)...39

Overview..39
SQL Framework...42
SQL Foundation...43

Overview..43
Database Objects..50
Catalogs and Schemas...51
Schema Manipulation Language...52

2

Table of ContentsTable of Contents
SQL99 (so-called SQL3) continued

SQL Foundation continued
Identifiers..53
Information Schema Tables...54
Data Types...55

Overview...55
Predefined Types..56
 Character String Data...58
 Character Sets..61
 Collations...63
 Translations and Conversions...64
 Boolean Type...65
 Date, Time, Timestamp, Interval Types...66
 Intervals...68
 Operations...69
 Data Conversions...70

Domains...71
SQL-invoked Routines...72

SQL Routines..75
External Routines..77
Routine Characteristics...81
Privilege Requirements...83
Routine Overloading..84
Specific Names..85
Routine Invocation..86
Subject Routine Determination...87
Dropping Routines...91
Altering Routines...92 3

Table of ContentsTable of Contents
SQL99 (so-called SQL3) continued

SQL Foundation continued
Object-Relational Support..93

Overview and Motivation ...94
Large Object Data Types..97

LOB Functions...102
Locators...104

User-defined Types...109
Distinct Types...112
Structured Types...115
 Methods...118
 Creating Structured Types...121
 Uninstantiable Types...122
 Manipulating Attributes..123
 Dot Notation...125
 Initiatizing Instances...126
 Manipulating Structured Types..128
 Subtyping and Inheritance...129
 Value Substitutability...132
 Structured Types used as Column Types...................................133
 Structured Types used as Row types - Typed Tables.................136
 Reference Types..137
 Subtables - Table Hierarchies..140
 Substitutability...141
 Substitutability: Type Predicate and ONLY..................................142
 Path Expressions - <dereference operator>................................143
 Method Reference..144
 Reference Resolution...145
 4

Table of ContentsTable of Contents
SQL99 (so-called SQL3) continued

SQL Foundation continued
Object-Relational Support continued

Object Views..146
Comparison of User-defined Types..149
User-defined Casts..155
Cast Functions for Distinct Types..157
Transforms...160
Arrays...169
UDT and Array Locators..173

Constraints...177
UNIQUE Constraints..179
Check Constraints..180
Assertions...181
Referential Constraints...182

Match Types..183
Referential Actions..186
Referential Constraint Evaluation...194
Referential Integrity between Comparable Types.....................195

Triggers..196
Execution Flow..198
Trigger Characteristics..200
Transition Variables...206
Transition Tables...207
SQL Statements Allowed in Triggers..209
Invoking UDFs and Stored Procedures..210
Raising Exceptions..211
Trigger Execution Model...213

5

Table of ContentsTable of Contents
SQL99 (so-called SQL3) continued

SQL Foundation continued
Predicates..214

Extensions to BETWEEN..216
Extensions to SIMPLE match..217
DISTINCT..218
SIMILAR..219
Type Predicate..220

SET Operators..221
DML Orthogonality..222
CAST Specification...225
CASE Expression...226
Joined Tables..227

OUTER Join..228
Derived Tables (Table Expressions)...229
Common Table Expression...230
Recursive SQL..231

Overview...232
Bill of Material Queries..234

OLAP Extensions..240
ROLLUP..242
CUBE..244
GROUPING SETS...246
Grand Total...247
GROUPING Function...248
Selecting Nongrouped Columns..250

6

Table of ContentsTable of Contents
SQL99 (so-called SQL3) continued

SQL Foundation continued
Update through UNION and JOIN..251
 INSERT through Join...253
Named Expressions...254

Cursors...255
Scrollable..255
READ ONLY, FOR UPDATE, INSENSITIVE................................257
Holdable..258

ORDER BY Expressions and on Columns not in Select List..............261
Temporary Tables...262
Roles..264
Error Handling..267
Transactions...269
Savepoints..272
Connections...273
SQL Flagger..274
Module Language..275
.

7

Table of ContentsTable of Contents
SQL99 (so-called SQL3) continued

SQL Persistent Stored Modules (PSM)...276
SQL Procedural Language Extensions..279

Compound Statement...280
Assignment Statement..284
LEAVE Statement...285
IF Statement..286
CASE Statement...287
LOOP Statement...288
WHILE Statement..289
REPEAT Statement...290
FOR Statement..291
ITERATE Statement...292
Condition Handling...293

Embedding Control Statements...296
SQL Language Bindings..297

Embedded SQL...298
Dynamic SQL...299
Direct SQL...302

SQL Call Level Interface (CLI)..303
Conformance...313

Core...314
Packages...319

8

Table of ContentsTable of Contents
SQL/MM...326

SQL/MM Full Text...328
SQL/MM Spatial..332
SQL/MM Still Image...340

SQLJ and JDBC...345
SQLJ Part 0 (Embedded SQL forJava)...................................346

SQLJ Syntax...348
SQLJ Versus JDBC..349
Result Set Iterators...352
Named Iterator..353
Positioned Iterator...354
Connection Contexts...355
Execution Contexts..356
Advanced Features..357
Compiling an SQLJ Application..358
Binary Portability...359

SQLJ Part 1 (Stored procedures and UDFs using Java)..........360
Installing Java Classes in the DB...361
Creating Procedures and UDFs...362
Invoking SQLJ Routines...363
SQLJ Stored Procedures..364

9

Table of ContentsTable of Contents
SQLJ and JDBC continued

SQLJ Part 1 (Stored procedures and UDFs for Java) continued
Error Handling...365
Additional Features..366
Conformance...367

JDBC 2.0 Extensions for SQL99 Types..368
"Native" Java Object Support...369
Mapping Java Objects to Structured Types.......................................370
JDBC 2.0 Structured Type Support..371
Mapping Infrastructure..372
Object References..375
Manipulating Large Objects...376
Arrays...377

SQLJ Part 2 (SQL Types and Methods using Java).................................378
Mapping Java Classes to SQL..379
Instance Update Methods..381

Future Developments within SQL..383
 SQL Management of External Data (MED)..383

SQL4...386
Further information...388

10

DisclaimersDisclaimers

The content of this presentation is not intended to
represent the viewpoint of IBM, NCITS, or ISO DBL.
This presentation does not cover all features of
SQL99, SQL/MM, and SQLJ.

Not all options are presented
Examples do not include error handling, and may
contain simplifications and /or inaccuracies

Any problems caused by mistakes in this presentation
are solely the responsibility of the user.

11
11

SQL StandardSQL Standard

Goal: enable the portability of SQL applications
across conforming products
Side effect: Increases and stabilizes the database
market
Joint efforts between vendors and users

Computer Associates
IBM
Informix
Oracle
Sybase
Microsoft
etc.

Joint effort among several countries

12
12

Database Standards Database Standards
Organizations: JTC1Organizations: JTC1

JTC1/SC32: Data Mangement and Interchange
WG1: Open EDI (Finland)
WG2: Metadata (USA)
WG3: Database Languages (Netherlands)
WG4: SQL Multimedia and Application Packages (Japan)
WG5: Remote Database Access (RDA) (United Kingdom)
RG1: Reference Model for Data Management (Manintenance) (United
Kingdom)
RG2: Export /Import (Maintenance) (Canada)

JTC1/SC32/WG3 Projects (SQL3 only):
Part 1: Framework
Part 2: Foundation
Part 3: Call-Level Interface
Part 4: Persistent Stored Modules
Part 5: Language Bindings
Part 6: XA Specialization
Part 7: Temporal
Part 9: Management of External Data
Part 10: Object Language Bindings

JTC1/SC32/WG4 Projects:
Part 1: SQL/MM Framework
Part 2: SQL/MM Full-Text
Part 3: SQL/MM Spatial
Part 4: SQL/MM General Purpose Facilities
Part 5: SQL/MM Still Image

1313

Database SQL StandardsDatabase SQL Standards

Specification:
Vendor extensions allowed
Implementation-defined behaviors exist

Players
US: ANSI NCITS H2 Database Language Committee

Mix of vendors (18) and users (13)
International: ISO/JTC1 SC32/WG3 DBL Working Group
(Database Languages)

11 countries participating

Consortia: SQLJ
Major database vendors

DIN (Germany)
NI

NI 32
...

NABau
Arbeits-Ausschuss
Kartographie und
Geoinformation

ANSI (USA)
NCITS

H2
H2.2 (CLI)

...
...

JTC1
SC32

WG3 (Database
languages)
WG4 (SQL/MM)

...
TC211 (Geographic
information/Geomatics)

14
14

Database SQL StandardDatabase SQL Standard
Process

Standards are produced by volunteers
Open process oriented towards achieving consensus
Proposals to change existing base document

Life cycle of an ISO standard:

Final Draft
International

Standard

Working
Draft Proposals Committee

Draft Proposals
Final

Committee
Draft

Prop osal s

YES/NO
vote

International
Standard

Technical
Corrigendum

Review every 5 years to reaffirm, replace, or withdraw 15 15

Other Related StandardsOther Related Standards

NDL: (X3.133-1986)
Network Database Language
Has been reaffirmed for another 5 years
Cancelled as international standard

RDA: (IS 9579-1: 1993, IS 9579-2:1993)
Remote Database Access
Defines client/server protocol
IS 9579-1: Information Technology - Remote Database Access - Part 1:
Generic Model, Service, and Protocol
IS 9579-2, Information Technology - Remote Database Access - Part 2:
SQL Specialization
RDA/SQL Amendm.1: Secure RDA (work in progress)
RDA/SQL Amendm.2: Distribution Schema for RDA (work in progress)
RDA/SQL Amendm.3: Encompassing Transaction (work in progress)
RDA/SQL Support for SQL3 (work in progress)

1616

early 70's Ted Codd's first papers on Relational Algebra

1975 CODASYL Database Specifications

1977 database Project Initiated in U.S.

1978 ANSI Database Project Approved

1979 ISO Database Project Initiated

1982 ANSI Project Split into NDL and SQL

1983 ISO Project Split into NDL and SQL

1986 ANSI SQL Published - December

1987 ISO/IEC 9075:1986 (SQL86)

1989 ISO/IEC 9075:1989 (SQL89)

1992 ISO/IEC 9075:1992 (SQL92)

1995 ISO/IEC 9075-3:1995 (SQL/CLI for SQL92)

1996 ISO/IEC 9075-4:1996 (SQL/PSM for SQL92)

DBL Project HistoryDBL Project History

17
17

Progression of SQL StandardsProgression of SQL Standards
SQL/86
SQL/89 (FIPS 127-1)
SQL/89 with Integrity Enhancement 120pp
SQL/92 622pp July 92

Entry Level (FIPS 127-2)
Intermediate Level
Full Level

SQL CLI 200pp Sept 95
SQL PSM 250pp Nov 96
SQL/3 (Work in Progress)

SQL Framework 20pp May 99
SQL Foundation 900pp May 99
SQL Call Level Interface (CLI) 100pp Dec 99
SQL Persistent Stored Modules (PSM) 150pp May 99
SQL Language Bindings 200pp May 99
SQL Management of External Data 112pp Jul 00
SQL Object Language Bindings 238pp Feb 00

SQL/4 (Work to be defined soon)
All of the above, and...
XA
SQL Temporal 18

18

Progression of SQL Standards Progression of SQL Standards
(cont.)(cont.)

SQL/MM (for SQL3)
Framework 007pp Oct 99
Full Text 208pp May 99
Spatial 343pp May 99
Still Image 045pp Oct 00

SQL/MM "Later progression"
Full Text Sep 01
Spatial Sep 01

19
19

SQL Conforming ProductsSQL Conforming Products

Validation
Performed formerly by NIST. Discontinued in 1996. Other
organizations are considering using the NIST test suite for
certification.

SQL/89
11 validated products on 52 different platforms

SQL/92
over 10 validated products on over 100 different platforms
IBM DB2
Informix Online
Microsoft SQL Server
Oracle 7 and Rdb
Software AG ADABAS D
Sybase SQL Server
etc.

20
20

SQL/86 (X3. 135-1983, ISO/IEC SQL/86 (X3. 135-1983, ISO/IEC
9075:1986)9075:1986)

The starting point: IBM's SQL implementation
SQL/86 became a subset of IBM's SQL
implementation

Criticized for lack of common features and
orthogonality (described in next slide)
Defined 3 ways to process DML

"Direct processing"
"Module language"
Embedded SQL

Bindings to
Cobol
Fortan
Pascal
PL/1

22
21

Orthogonality: What does that Orthogonality: What does that
mean?mean?

"Orthogonality means independence.
A language is orthogonal if independent
concepts are kept independent and not mixed
together in confusing ways."

From A Guide to the SQL Standard,
4th Edition, by
Chris Date with Hugh Darwen

"..desirable because the less orthogonal a
language is, the more complicated it is...and
the less powerful it is."

23
22

SQL/89 (X3.135-1989, ISO/IEC SQL/89 (X3.135-1989, ISO/IEC
9075:1989)9075:1989)

Superset of SQL/86
Replaced SQL/86
C and ADA were added to existing language
bindings
DDL in a separate "schema definition language"
CREATE TABLE
CREATE VIEW
GRANT PRIVILEGES
(No DROP, ALTER, OR REVOKE)

24
23

SQL/89 with Integrity SQL/89 with Integrity
EnhancementEnhancement

DEFAULT
Default value for a column when omitted at INSERT time

UNIQUE (column-list)
NOT NULL
Views WITH CHECK OPTION

Insertions to view are rejected if they don't satisfy the view-definition
PRIMARY KEYs
CHECK constraint

Integrity constraint on values in a single row
Referential Integrity
CREATE TABLE T2
.... FOREIGN KEY (COL3) REFERENCES T1 (COL2)

Any update that would violate referential integrity is rejected

25
24

SQL/89 Language BindingsSQL/89 Language Bindings

Database Language Embedded SQL
(X3.168-1989)

ANSI only, not needed in ISO
Necessary because embedding was defined in an
appendix in SQL/86 and SQL/89
C and ADA language bindings (in addition to
COBOL, Fortran, Pascal, and PL/I)

26
25

SQL/92: OverviewSQL/92: Overview

Superset of SQL/89
Very few incompatibilities documented in an annex

Not "least-common-denominator"
Significantly larger than SQL/89 (579 versus 120 pages)

Greater orthogonality
Data type extensions (varchar, bit, character sets, date, time & interval)
Multiple join operators
Catalogs
"Domains"
Derived tables in FROM clause
Assertions
Temporary tables
Referential actions
Schema manipulation language
Dynamic SQL
Scrollable cursors
Connections
Information schema tables

27
26

SQL/92: OverviewSQL/92: Overview (cont.)(cont.)
Many (but not all) features are available in exsiting products
Divided into 3 levels:

Entry level (much the same as SQL/89 with Integrity
Enhancement)

Intermediate level
Full level

Features are assigned to level
Full is a superset of Intermediate
Intermediate is superset of Entry

FIPS 127-2 defines a Transitional Level:
Level between Entry and Intermediate
Subset of Intermediate
Superset of Entry

28
27

SQL/92 Entry LevelSQL/92 Entry Level

SQL/89 plus a small set of new features:
SQLSTATE

Carries more feedback information than SQLCODE
Delimited identifiers
CREATE TABLE "SELECT"...
Named expressions in SELECT - list:

SELECT name, sal+comm AS pay
FROM employee
ORDER BY pay

29
28

SQL/92: Transitional LevelSQL/92: Transitional Level

Defined by FIPS 127-2
Subset of SQL/92: Intermediate Level
Data types and operators
DATE, TIME, TIMESTAMP, INTERVAL (with arithmetic)
CHAR VARYING(n)
LENGTH, SUBSTR, TRIM, and || (concatenate) operators
Referential integrity with cascading delete
New types of join

NATURAL JOIN
LEFT and RIGHT OUTER JOIN

Dynamic SQL
PREPARE
EXECUTE
DESCRIBE

30
29

SQL/92: Transitional LevelSQL/92: Transitional Level (cont.)(cont.)

Schema evolution
ALTER TABLE
DROP TABLE
REVOKE PRIVILEGE

CAST (expression AS type)
Conversions among

Numeric types
Numeric <-> Character
Character <-> Date and time

Standard Catalogs
TABLES VIEWS COLUMNS
PRIVILEGE

Views containing UNION
Multiple schemas (collection of tables and other objects) per
user
Transaction isolation levels
READ UNCOMMITTED
READ COMMITTED
REPEATABLE READ
SERIALIZABLE

31
30

SQL/92: Intermediate LevelSQL/92: Intermediate Level

Scrollable cursors
FULL OUTER JOIN
Domains

"Macro" facility for data type, default, value, nullability, and
CHECK constraint
No strong typing (type checking based on underlying data type)
Not the same as Codd's notion of domains

Online DDL
Implicit casting

Scalar-valued subquery can be used in place of any scalar

32
31

SQL/92: Intermediate LevelSQL/92: Intermediate Level (cont.)(cont.)

Set operations between query blocks:
INTERSECT
EXCEPT
CORRESPONDING (allows operators to apply to like-named
columns of tables)

CASE expression
SELECT CASE (sex)
WHEN "F" THEN "female"
WHEN "M" THEN "male"
END
...
COALESCE

Returns the first non-null value
COALESCE (EMP.AGE, "Age is null")

33
32

SQL/92: Intermediate LevelSQL/92: Intermediate Level (cont.)(cont.)

UNIQUE predicate
UNIQUE <subquery>

Returns true if the subquery returns no duplicates; otherwise,
false

128-character identifiers
Multiple character sets (including double-byte)
SET statement to change authorization-ID
More comprehensive catalog information

Constraints
Usage
Domains
Assertions

Date and time arithmetic with time zones
SQL FLAGGER

Extensions
Conforming language being processed in a non-conforming
way

34
33

SQL/92: Full LevelSQL/92: Full Level

Derived tables
table-expressions in FROM-clause

Referential integrity with CASCADE UPDATE and
SET NULL
Integrity assertions

Stand-alone assertions that apply to entire tables or
multiple tables
Subqueries in CHECK clause
Deferred checking of constraints (including assertions)

Enhanced predicates
Multiple-column matching:
WHERE (X,Y) MATCH (SELECT A, B FROM T2)
Comparison by high-order and low-order columns:
WHERE (X, Y) > (A,B)

35
34

SQL/92: Full LevelSQL/92: Full Level (cont.)(cont.)

More types of join
CROSS JOIN
UNION JOIN

New data types
BIT (n)
BIT VARYING (n)

Temporary tables (vanish at end of transaction or
session)
Implementation-defined collating sequences
More character-string operators:

UPPER
LOWER
POSITION

INSERT privilege on individual columns

36
35

SQL/92: Full LevelSQL/92: Full Level (cont.)(cont.)

Row and table constructors:
((1, 'OPERATOR', 'JONES'),
 (2, 'PROGRAMMER', 'SMITH'),
 (3, 'MGR', 'MATTOS')
)

Explicit Tables
TABLE EMP can be a subquery

DISTINCT applies to expression:
SELECT COUNT (DISTINCT SAL+COMM)
Cursors declared SENSITIVE (see updates after
OPEN) or INSENSITIVE
Updates via scrollable or ordered cursors
UPDATE and DELETE with subqueries on the
same table

37
36

FIPS SQLFIPS SQL

NIST (National Institute of Standards and
Technology)

Publishes FIPS (Federal Information Processing Standards)

A FIPS provides guidelines for purchases by U.S.
federal agencies:

FIPS 127 for SQL/86
FIPS 127-1 for SQL/89
FIPS 127-2 for SQL/92

FIPS requires a FIPS flagger to detect extensions to
the standard
NIST develops test suites

FIPS 127-1 : close to 200 test cases
FIPS 127-2 for Entry Level of SQL/92: over 400 test cases
Performing validation tests

Conforming implementation placed on Validated Products List
Certificates of conformance issued

38
37

SQL99 OverviewSQL99 Overview
Existing Standard

Development began before publication of SQL/92
Published in 1999
Identical ANSI and ISO standards
Other countries republish or translate
the ISO standard (e.g. Japan, Brazil)

Many contributions from ...
Australia
Brazil
France
Canada
Germany
Italy
Japan
Netherlands
Spain
UK
USA
...

O R D E M E
P

RO

G
R E S S O

P LVS ARLV T

39
38

SQL99 OverviewSQL99 Overview
Superset of SQL/92

Completely upward compatible
Significantly larger than SQL/92

 Object-Relational extensions
User-defined data types
Reference types
Collection types (e.g., arrays)
Large object support (LOBs)
Table hierarchies

 Triggers
 Stored procedures and user-defined functions
 Recursive queries
 OLAP extensions (CUBE and ROLLUP)
 SQL procedural constructs
 Expressions in ORDER BY
 Savepoints
 Update through unions and joins

40
39

SQL99 OverviewSQL99 Overview
Multipart standard:

SQL/Framework (Part 1)
Overview and conformance clause

SQL/Foundation (Part 2)
The basics: types, schemas, tables, views, query and update
statements, expressions, security model, predicates,
assignment rules, transaction management and so forth

SQL/CLI (Call Level Interface) (Part 3)
No preprocessing of SQL statements necessary

SQL/PSM (Persistent Stored Modules) (Part 4)
Extensions to SQL to make it procedural

SQL/Bindings (Part 5)
Dynamic, embedded, direct invocation

41
40

SQL99 Framework OverviewSQL99 Framework Overview

Overview
Provides an overview of the complete standard

Conformance
Contains conformance clause

42
41

SQL99 Foundation OverviewSQL99 Foundation Overview

All of SQL/92 functionality
Schemas
Different kinds of joins
Temporary tables
CASE expressions
Scrollable cursors
...

New built-in data types for increased modeling power
Boolean
Large objects (LOBs)

Enhanced update capabilities
Increase expressive powers

Update/delete through unions
Update/delete through joins

Other relational extensions to increase modeling and
expressive power

Additional predicates (FOR ALL, FOR SOME, SIMILAR TO)
Extensions to cursors (sensitive cursor, holdable cursor)
Extensions to referential integrity (RESTRICT))
Extensions to joins 43

42

Triggers
Enhances integrity mechanism (active DBMS)

Different triggering events: update/delete/insert
Optional condition
Activation time: before or after
Multi-statement action
Several triggers per table
Condition and multi-statement action per each row or per
statement

Roles
Enhanced security mechanisms

GRANT/REVOKE privileges to roles
GRANT/REVOKE roles to users and other roles

SQL99 Foundation Overview...SQL99 Foundation Overview...

44
43

SQL99 Foundation OverviewSQL99 Foundation Overview

Recursion
Increase expressive power
Linear (both direct and mutual) recursion
Stop conditions
Different search strategies (depth first, breadth first)

Savepoints
Enhances user-controlled integrity
Savepoint definition
Roll back to savepoint
Nesting

OLAP extensions
Enhances query capabilities

CUBE
ROLLUP
Expressions in ORDER BY

45
44

SQL99 Foundation OverviewSQL99 Foundation Overview

Object-relational Extensions
Extensibility: application specific data types "understandable" by DBMS
Increase modeling power (complex objects): increase the range of
applications
Reusability: sharing existing type libraries
Integration: enable integration of OO and relational concepts in a single
language

User-defined types
Distinct types

Strong typing
Type-specific behavior

Structured types
Strong typing
Type-specific behaviors
encapsulation
Value substitutability
Polymorphic routines
Dynamic binding (run-time function dispatch)
Compile-time type checking

46
45

SQL99 Foundation OverviewSQL99 Foundation Overview

Collection types
Arrays

Row types
Like record structures in programming languages
Type of rows in tables
Nesting (rows with row-valued fields)

Reference types
Support "object identity"
Navigational access (path expressions)

47
46

User-defined functions
SQL and external functions
Overloaded functions
User-defined paths
Compile time type checking
Static binding

User-defined procedures
SQL and external procedures
NO overloading
Input and output parameters
Result sets
Static binding

User-defined methods
Describe a user-defined type behavior
SQL and external methods
Overloading and overriding
Compile time checking
Late binding (dynamic dispatch)

SQL99 Foundation OverviewSQL99 Foundation Overview

48
47

SQL99 Foundation OverviewSQL99 Foundation Overview

Subtables (table hierarchies)
Increase modeling power and expressive power of
queries
Means to model collection hierarchies or object extents

CREATE/DROP subtable
CREATE/DROP subview
Object "identity" by means of references
Queries on a table operate on subtables as well
"Object-like" manipulation through references and
path expressions
Extensions to authorization model to support
"object-like" manipulation

49
48

Database ObjectsDatabase Objects
SQL

environment

implementation authorization
identifier

catalog client
module privilege

schema

character set

user-defined
typecollation

viewed
table domain

assertion
constraint

constraint

translation

procedure

routine

function

method

table

trigger

role

50
49

Catalogs and SchemasCatalogs and Schemas

SQL objects (i.e., tables, views, ...) are contained in
schemas
Schemas are contained in catalogs
Each schema has a single owner
Objects can be referenced with explicit or implicit
catalog and schema name

FROM people --unqualified name
FROM sample.people --partially qualified name
FROM cat1.sample.people --fully qualified name

51
50

Schema Manipulation LanguageSchema Manipulation Language

Syntax for creating objects
Syntax for dropping or revoking with two behaviors

RESTRICT disallows the operation if database objects exist that
reference the object being dropped or revoked
CASCADE propagates the change (in some form) to database objects
that may reference the object being dropped or revoked

DROP TABLE => drop assertion that references the table
DROP DOMAIN => columns that reference the domain take on the data
type, constraints, and the default value of the domain

Syntax for altering objects
Table

Add/drop column
Alter column default and scope
Add/drop constraints

Domain
Set/drop default
Add/drop constraint

User-defined type
Add/drop attribute
Add/drop method

SQL-invoked routines
Alter routine characteristics

52
51

IdentifiersIdentifiers

Up to 128 characters
Lower case characters may be used in identifiers
and key words

These lower case characters are considered to be their upper
case counterparts

Delimited identifiers are case sensitive
Allow wider range of characters

CREATE TABLE "People Hobbies"
...

5352

Information Schema TablesInformation Schema Tables

A set of views describing the metadata contained in
a catalog

Exist in the INFORMATION_SCHEMA schema
Are fully defined (column names, data types, and semantics)
May be queried by users
Are read-only
Reflect database objects that the user owns or for which the
user has some privilege
TABLES
COLUMNS
VIEWS
DOMAINS
etc

54
53

Data TypesData Types

Predefined types
Numeric
String
BLOB
Boolean
Datetime
Interval

Constructed atomic types
Reference

Constructed composite types
Collection: Array
Row

User-defined types
Distinct type
Structured type

55
54

Predefined TypesPredefined Types

Numeric String Interval Boolean

BLOB

Exact

Date

Time

Timestamp

Bit Character

CLOBVaryingFixedFixed Varying

Approximate

Datetime

smallint
integer
decimal
numeric

real
float
double

56
55

Constructed TypesConstructed Types

More collection types likely in SQL4

RowCollection

Array

Atomic
Currently, only one: reference type

Composite

5756

Varying Length Character StringVarying Length Character String

CHARACTER VARYING (150)
VARCHAR (150)

The number of characters in a value may vary, from 0 to
some implementation-defined maximum
Additional functions

CHARACTER_LENGTH
OCTET_LENGTH

Fully compatible with fixed-length character strings
Comparison is allowed between character strings,
regardless of whether they are varying or fixed
Assignment is allowed between character strings,
regardless of whether they are varying or fixed

Character string literals are fixed-length character strings
(i.e., CHAR)

58
57

Bit StringsBit Strings

BIT (32)
BIT VARYING (1024)

String of binary digits, very much like character strings

Literals
B’101010’
X’123456789ABCDEF’ -- hex digits

Function
BIT_LENGTH (bs)

Fixed and varying-length bit strings are fully compatible with one another
Comparison is allowed between bit strings, regardless of whether they
are varying or fixed
Assignment is allowed between bit strings, regardless of whether they
are varying or fixed

59
58

String OperationsString Operations

Concatenation
 ‘abc’ || ‘xyz’ ‘abcxyz’

b’10’ || b’01’ b’1001’

Position
POSITION (‘bc’ IN ‘abcd’) 2

Substring
SUBSTRING (‘Alexandre’ FROM 4 FOR 1) ‘x’
SUBSTRING (b’1011’ FROM 2 FOR 2) b’01’

Upper/lower case transformation
UPPER (‘Hello’) ‘HELLO’
LOWER (‘HI’) ‘hi’

 Elimination of blanks and other characters
TRIM (LEADING ‘ ‘ FROM ‘ NELSON ‘) ‘NELSON ‘
TRIM (TRAILING ‘ ‘ FROM ‘ NELSON ‘) ‘ NELSON‘
TRIM (BOTH ‘ ‘ FROM ‘ NELSON ‘) ‘NELSON‘
TRIM (BOTH ‘N‘ FROM ‘ NELSON ‘) ‘ ELSO ‘

60
59

Character SetsCharacter Sets
May be defined by a standard, by an implementation, or (in a
limited fashion) by a user

Must have the space character
Comparisons and string operators require operands with the
same character set

Character set may be specified for literals, or for characteristics
of CHAR and VARCHAR types
Character set for identifiers: SQL_IDENTIFIER

_SPANISH ‘?Como Esta¿’ -- character string

name CHAR(20) -- column data type
 CHARACTER SET BRAZILIAN

In SQL92, user could specify character set for identifiers
CREATE TABLE -- identifier

 _GERMAN Bücher

This feature was removed in SQL99

6160

SQL99-defined Character SetsSQL99-defined Character Sets
SQL_CHARACTER

52 upper/lower case simple characters
10 digits
21 special characters

GRAPHIC_IRV
95 characters of ISO 646:1991

LATIN1 (aka ISO 8859-1)
ISO8BIT (aka ACII_FULL)
3 Unicode character sets

ISO10646 UTF16, UTF8, and UCS2
SQL_Text

Union of all supported character sets
SQL_IDENTIFIER

Subset of SQL_Text
Implicitly used for identifiers

62
61

CollationsCollations

Set of rules for ordering character strings
A character set has a default collation
Additional collations may be defined by the implementation or
by the user
Rules exist to cover the case where operands of a
comparison or operator have different collations
The use of collations is pervasive
• Comparison predicate
• DISTINCT
• ORDER BY
• GROUP BY

SELECT lname, COUNT (*)
FROM people
GROUP BY lname COLLATE latin1_insensitive;

63
62

Translations and ConversionsTranslations and Conversions

TRANSLATE built-in function is used to change input
characters to characters of another character set

TRANSLATE (lname USING german)

CONVERT built-in function is used to change input
characters to a different "form-of-use," where
form-of-use is defined as "an encoding for representing
characters (e.g., fixed length vs. variable length)"

CONVERT (lname USING utf8toutf16)

64
63

SELECT DEPT#, EVERY (salary > 20000) AS all_rich,
SOME (salary > 20000) AS some_rich

FROM EMP
GROUP BY DEPT#;

DEPT# all_rich some_rich
J64 false false
Q05 true true
M05 false true

Boolean Data TypeBoolean Data Type
Comprises distinct truth values true and false
unknown if nulls are allowed

SOME and EVERY are functions valid for boolean expressions and
boolean result data types

SELECT cname, storename
FROM stores s, customer c
WHERE within(s.zone, c.location) AND --boolean

 overlaps (s.zone, 'California')

Boolean comparison:

65
64

Date, Time, and TimestampDate, Time, and Timestamp

DATE
TIME
TIMESTAMP
TIME WITH TIME ZONE
TIMESTAMP (3) WITH TIME ZONE

Comparisons are only allowed between the same types

TYPE VALUE
DATE YEAR

MONTH
DAY

TIME [WITH TIME ZONES] HOUR
MINUTE
SECOND (+ fractional digits)

TIMESTAMP [precision] [WITH
TIMEZONE]

YEAR
MONTH
DAY
HOUR
MINUTE
SECOND (+ fractional digits)

66
65

Date, Time, TimestampDate, Time, Timestamp
Coordinated universal time (UTC) used to store TIME and
TIMESTAMP values

WITH TIME ZONE can be specified
Each session has a time zone, which is used if no time zone is

explicitly specified

Additional functions
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP (3)

Literals
DATE ‘1992-06-03’
TIME ‘13:00:00’
TIME ‘13:00:00.5+08:00’
TIMESTAMP ‘1992-06-03 13:00:00’

67
66

IntervalsIntervals

INTERVAL YEAR TO MONTH
INTERVAL HOUR
INTERVAL HOUR TO MINUTE
INTERVAL MINUTE TO SECOND (1)

May be positive or negative
Interval qualifier determines the specific fields to be used
Literals:

INTERVAL +’1-3’ YEAR TO MONTH
INTERVAL -’15:15,15’ MINUTE TO SECOND (2)

Comparisons cannot be performed between the two types of
intervals

TYPE VALUE

year - month YEAR
MONTH

day - time DAY
HOUR
MINUTE
SECOND (+ fractional digits)

68
67

Operations on Datetime and Operations on Datetime and
Interval ValuesInterval Values
The following operations are supported:

1st operand operator 2nd operand result

DATETIME - DATETIME INTERVAL

DATETIME + INTERVAL DATETIME

DATETIME - INTERVAL DATETIME

INTERVAL + DATETIME DATETIME

INTERVAL + INTERVAL INTERVAL

INTERVAL - INTERVAL INTERVAL

INTERVAL * number INTERVAL

INTERVAL / number INTERVAL

number * INTERVAL INTERVAL

69
68

Data Type ConversionsData Type Conversions

Implicit conversions
Dynamic SQL
UNION and similar operators

VALUES ((10.5), (5.E2), (2))
 results in data type approximate numeric

Explicit conversions by means of CAST specification

70
69

DomainsDomains

Persistent (named) definition of
A data type
An optional default value
An optional set of constraints
An optional collating sequence

Used in place of a data type
Do not provide strong typing

Not true “relational domains”
CREATE DOMAIN money AS DECIMAL (7,2);

CREATE DOMAIN account_type AS CHAR (1)
DEFAULT ‘C’
CONSTRAINT account_type_check CHECK (value IN (‘C’, ‘S’, ‘M’));

CREATE TABLE accounts
(account_id INTEGER,
balance money,
type account_type);

71
70

SQL-invoked RoutinesSQL-invoked Routines

Named persistent code to be invoked from SQL
SQL-invoked procedures
SQL-invoked functions

SQL-invoked methods

Created directly in a schema or in a SQL-server module
schema-level routines
module-level routines

Have schema-qualified 3-part names

Supported DDL
CREATE and DROP statements
ALTER statement -- still limited in functionality
EXECUTE privilege controlled through GRANT and REVOKE statements

Described by corresponding information schema views

72
71

SQL-invoked Routines (cont.)SQL-invoked Routines (cont.)

Have a header and a body
Header consists of a name and a (possibly empty) list of
parameters.

Parameters of procedures may specify parameter mode
IN
OUT
INOUT

Parameters of functions are always IN
Functions return a single value

Header must specify data type of return value via RETURNS
clause

SQL routines
Both header and body specified in SQL

External routines
Header specified in SQL
Bodies written in a host programming language

May contain SQL by embedding SQL statements in host language
programs or using CLI 73

72

SQL-invoked Routines (cont.)SQL-invoked Routines (cont.)

Advantages of external routines:
Can utilize more "compelete" languages
Can take advantage of existing code libraries
Can use widely-accepted languages

Disadvantages of external routines:
Need to learn two different languages (no integrated
programming environment
Need to convert between SQL data types and host language
data types (loss of type behavior and type checking)

Advantages of SQL routines:
Integrated programming language and programming
environment (easier to use)
No need for mapping SQL data types to host lan-guage types
(type behavior and type checking are not lost across the
boundary)

Disadvantages of SQL routines:
Not as complete as host languages
No wide acceptance

74
73

SQL RoutinesSQL Routines
Parameters

Must have a name
Can be of any SQL data type

Routine body
Consists of a single SQL statement

Can be a compound statement: BEGIN ... END
Not allowed to contain

DDL statement
CONNECT or DISCONNECT statement
Dynamic SQL
COMMIT or ROLLBACK statement

CREATE PROCEDURE get_balance(IN acct_id INT, OUT bal
DECIMAL(15,2))

BEGIN
SELECT balance INTO bal

FROM accounts WHERE account_id = acct_id;
IF bal < 100

THEN SIGNAL low_balance
END IF;

END 75
74

SQL Routines (cont.)SQL Routines (cont.)

Routine body
RETURN statement allowed only inside the body of a function

Exception raised if function terminates not by a RETURN

CREATE FUNCTION get_balance(acct_id INT) RETURNS
DECIMAL(15,2))

BEGIN
DECLARE bal DECIMAL(15,2);
SELECT balance INTO bal

FROM accounts
WHERE account_id = acct_id;

IF bal < 100 THEN SIGNAL low_balance
END IF;

RETURN bal;
END

76
75

External RoutinesExternal Routines

Parameters
Names are optional
Cannot be of any SQL data type
Permissible data types depend on the host language of the body

LANGUAGE clause
Identifies the host language in which the body is written

NAME clause
Identifies the host language code, e.g., file path in Unix
If unspecified, it corresponds to the routine name

CREATE PROCEDURE get_balance (IN acct_id INT, OUT bal DECIMAL(15,2))
LANGUAGE C
EXTERNAL NAME 'bank\balance_proc'

CREATE FUNCTION get_balance(IN INTEGER) RETURNS DECIMAL(15,2))
LANGUAGE C
EXTERNAL NAME 'usr/McKnight/banking/balance'

77
76

External Routines (cont.)External Routines (cont.)

RETURNS clause may specify CAST FROM clause

CREATE FUNCTION get_balance(IN INT)
RETURNS DECIMAL(15,2)) CAST FROM REAL
LANGUAGE C

C program returns a REAL value, which is then cast to
DECIMAL(15,2) before returning to the caller.

Special provisions to handle null indicators and the
status of execution (SQLSTATE)

PARAMETER STYLE SQL (is the default)
PARAMETER STYLE GENERAL

78
77

External Routines (cont.)External Routines (cont.)

PARAMETER STYLE SQL
Additional parameters necessary for null indicators, returning
function results, and returning SQLSTATE value
External language program (i.e., the body) has 2n+4
parameters for procedures and 2n+6 parameters for functions
where n is the number of parameters of the external routine

CREATE FUNCTION get_balance(IN INTEGER)
RETURNS DECIMAL(15,2)) CAST FROM REAL
LANGUAGE C
EXTERNAL NAME 'bank\balance'
PARAMETER STYLE SQL

void balance (int* acct_id,
float* rtn_val,
int* acct_id_ind,
int* rtn_ind,
char* sqlstate[6],
char* rtn_name [512],
char* spc_name [512],
char* msg_text[512])
{
...
}

79
78

External Routines (cont.)External Routines (cont.)

PARAMETER STYLE GENERAL
No additional parameters
External language program (i.e., the body) must have exactly
the same number of parameters
Cannot deal with null values

Exception is raised if any of the arguments evaluate to null
Value returned in an implementation-dependent manner

CREATE FUNCTION get_balance(IN INTEGER)
RETURNS DECIMAL(15,2)) CAST FROM REAL
LANGUAGE C
EXTERNAL NAME 'bank\balance'
PARAMETER STYLE GENERAL

float* balance (int* acct_id)
{
...
}

80
79

Routine CharacteristicsRoutine Characteristics

DETERMINISTIC or NOT DETERMINISTIC
DETERMINISTIC (default)

Routine is expected to return the same result/output values for a given
list of input values. (However, no checks are done at run time.)

NOT DETERMINISTIC routines not allowed in
Constraint definitions
Assertions
In the condition part of CASE expressions
CASE statements

RETURNS NULL ON NULL INPUT or CALLED ON NULL
INPUT (default)

RETURNS NULL ON NULL INPUT
An invocation returns null result/output value if any of the input values is
null without executing the routine body

DYNAMIC RESULT SETS <unsigned integer>
Valid on procedures only (SQL or external)
Defined number of result sets that the procedure is allowed to return
If unspecified, DYNAMIC RESULT SETS 0 is implicit

81
80

Routine Characteristics (cont.)Routine Characteristics (cont.)

CONTAINS SQL, READS SQL DATA, or
MODIFIES SQL DATA

External routines may in addition specify NO SQL
CONTAINS SQL (default)
For SQL routines -- check may be done at routine creation time
For both SQL and external routines -- exception raised if a
routine attempts to perform actions that violate the specified
characteristic
Routines with MODIFIES SQL DATA not allowed in

Constraint definitions
Assertions
Query expressions other than table value constructors
Triggered actions of BEFORE triggers
Condition part of CASE expressions
CASE statements
searched delete statements
search condition of searched update statements (are allowed in
SET clause)

82
81

Privilege RequirementsPrivilege Requirements

SQL routine
Creator must have all the privileges required for execution of
the routine body
Creator gets the EXECUTE privilege on the routine
automatically

GRANT OPTION on EXECUTE privilege given if creator has
GRANT OPTION on all the privileges required for execution of the
routine body
Creator loses the GRANT OPTION if at any time he/she loses any
of the privileges required for successful execution of the routine
body

Routine is dropped If at any time the creator loses any of the
privileges required for execution of the routine body (in
CASCADE mode)

External routine
Creator gets the EXECUTE privilege with GRANT OPTION on
the routine automatically

83
82

Routine OverloadingRoutine Overloading

Overloading -- multiple routines with the same unqualified
name

S1.F (p1 INT, p2 REAL)
S1.F (p1 REAL, p2 INT)
S2.F (p1 INT, p2 REAL)

Within the same schema
Every overloaded routine must have a unique signature, i.e., different
number of parameters or different types for the same parameters

S1.F (p1 INT, p2 REAL)
S1.F (p1 REAL, p2 INT)

Across schemas
Overloaded routines may have the same signature

S1.F (p1 INT, p2 REAL)
S2.F (p1 INT, p2 REAL)

Only functions can be overloaded. Procedures cannot be
overloaded.

84
83

Specific NamesSpecific Names

Uniquely identifies each routine in the database
If unspecified, an implementation-dependent name is generated.

CREATE FUNCTION get_balance(acct_id INTEGER)
RETURNS DECIMAL(15,2))
SPECIFIC func1
BEGIN
 ...
RETURN ...;
END

Can only be used to identify the routine in ALTER, DROP,
GRANT, and REVOKE statements
DROP SPECIFIC FUNCTION func1 RESTRICT;

DDL statements can also identify a routine by providing the
name and the list of parameter types
DROP FUNCTION get_balance(INTEGER) CASCADE;

Cannot be used to invoke a routine

85
84

Routine InvocationRoutine Invocation

Procedure -- invoked by a CALL statement:

CALL get_balance (100, bal);

Function -- invoked as part of an expression:

SELECT account_id, get_balance (account_id)
FROM accounts

Requires the invoker to have EXECUTE privilege on the routine --
otherwise no routine will be found for the invocation

It is not an authorization violation!!!

86
85

Subject Routine DeterminationSubject Routine Determination

Decides the function to invoke for a given invocation based
on the

Compile-time data types of all arguments
Type precedence list of the data types of the arguments
SQL path

Always succeeds in finding a unique subject function, if one
exists.

Type precedence list is a list of data type names

Predefined types -- defined by the standard based on increasing precision/length

SMALLINT: SMALLINT, INTEGER, DECIMAL, NUMERIC, REAL, FLOAT,
DOUBLE
CHAR: CHAR, VARCHAR, CLOB

User-defined types is determined by the subtype-supertype relationship
if B is a subtype of A and C is a subtype of B, then the type precedence list for
C is (C, B, A).

87
86

Subject Routine Determination Subject Routine Determination
(cont.)(cont.)

Path is a list of schema names.

Can be specified during the creation of a schema, SQL-client
module, or a SQL-server module

CREATE SCHEMA schema5
PATH schema1,schema3
...;

Every session has a default path, which can be changed using
the SET statement.

SET PATH 'schema1, schema2'

88
87

Subject Routine Determination Subject Routine Determination
(cont.)(cont.)

1. Determine the set of candidate functions for a given function
invocation, F(a1, a2, ..., an):

Every function contained in S1 that has name F and has n parameters if the
function name is fully qualified, i.e., the function invocation is of the form S1.F(a1,
a2, ..., an), where S1 is a schema name.
Every function in every schema of the applicable path that has name F and has n
parameters if the function name is not fully qualified.

2. Eliminate unsuitable candidate functions
a. The invoker has no EXECUTE privilege
b. The data type of i-th parameter of the function is not in the type

precedence list of the static type of the i-th argument (for parameter)
3. Select the best match from the remaining functions

a. Examine the type of the 1st parameter of each function and keep only
those functions such that the type of their 1st parameter matches best the
static type of the 1st argument (i.e., occurs earliest in the type precedence
list of the static type of the argument), and eliminate the rest.

b. Repeat Step b for the 2nd and subsequent parameters. Stop whenever
there is only one function remaining or all parameters are considered.

4. Select the "subject function"
a. From the remaing functions take the one whose schema appears first in

the applicable path (if there is only one function, then it is the "subject
function")

89
88

Subject Routine Determination Subject Routine Determination
(cont.)(cont.)

Assume Y is a subtype of X. Assume the following three
functions (with specific names F1, F2, and F3):

F1: F(p1 X, p2 Y)
F2: F (p1 Y, p2 Y)
F3: F(p1 X, p2 REAL)

The subject function for F(y,y) where the static type of y is Y
is F2.

Now, assume the following three functions (with specific
names F4, F5, and F6):

F4: F(p1 X, p2 Y)
F5: F(p1 X, p2 X)
F6: F(p1 X, p2 REAL)

The subject function for F(y,y) where the static type of y is Y
is F4.

90
89

Dropping RoutinesDropping Routines

Routines can be dropped using DROP statement.

DROP FUNCTION get_balance(INTEGER) CASCADE;
DROP FUNCTION get_balance(INTEGER) RESTRICT;

Normal RESTRICT/CASCADE semantics applies
with respect to dependent objects:

Routines
Views
Constraints
Triggers

91
90

Altering RoutinesAltering Routines

Routines can be altered with ALTER statement.
Allowed only for external routines and for the
following routine characteristics:

Language
Parameter style
SQL data access indication
Null behavior
Dynamic result set specification
NAME clause

ALTER FUNCTION get_balance (INTEGER)
READS SQL DATA
RESTRICT

RESTRICT is the only allowed option, i.e., a routine
cannot be altered if there are any dependent
objects.

92
91

The queries have changed
How many programmers with skills in SQL and
Objects are working on the most profitable
product?
How many accidents happened within 0.2 miles
from highway exits which damaged the front
bumpers of red cars?
Tell me the sales regions in which my top 5
products had a sales drop of more than 10%.
Give me the marketing campaigns that used
images of sunny beaches with white sands.

Object-Relational SupportObject-Relational Support

93
92

Object-Relational Support: Object-Relational Support:
MotivationMotivation

Database systems provide
A set of types used to represent the data in the application
domain

A set of operations (functions) to manipulate these types

Increasing need for extension
New types required to better represent the application
domain
New operations (functions) required to better reflect the
behavior of the types

TYPE FUNCTION
INTEGER +, -, /, *, ...
CHAR SUBSTRING, CONCAT, ...
DATE DAY, MONTH, YEAR, ...

TYPE FUNCTION
MONEY +, -, INTEREST, ...
CHAR CONTAINS, SPELLCHECKING, ...

IMAGE WIDTH, HEIGHT, THUMBNAIL, ...

94
93

Mechanism for "users" to extend the database with
application "objects" (specific types and their behavior -
functions/methods)

User Defined Types (UDTs): Text,Image, CAD/CAM Drawing, Video ...
User Defined Functions (UDFs): Contains, Display, Rotate, Play, ...

Support for storage/manipulation of large data types
Large Object Support (LOBs): Binary, Character

Mechanism to improve the DB integrity and to allow checking
of business rules inside the DBMS

Triggers: Auditing, Cross-Referencing, Alerts ...
Means to express complex data relationships such as
hierarchies, bills-of-material, travel planning ...

Recursion
Update through UNION and JOIN
Common Table Expressions

Major Extensions in SQL99Major Extensions in SQL99

Upward compatible extension of SQL to guarantee
application portability and database independence!

95
94

Large Objects (LOBs)
Binay
Character

User-Defined Data Types
Distinct types
Structured types

Type Constructors
Row types
Reference types

Collection Types
Arrays

User-Defined Methods, Functions, and Procedures

Typed tables and views
Table hiearchies
View hierarchies (object views)

Object-Relational SupportObject-Relational Support

96
95

 LOBs are a new set of data types
LOBs store strings of up to gigabytes

There are 2 new data types
BLOB - Binary Large Object

Useful for Audio, Image data
CLOB - Character Large Object

For character data

What are Large Objects (LOBs)?What are Large Objects (LOBs)?

BLOB
CLOB

Object Size
Check Image 45K
Text 30-40 K/page
Small Image 30-40K
Large Image 200K-3M
Color Image 20-40M
Radiology Image 40-60M
Video 1G/Hour
High Res Video 3G/Hour
High Definition TV 200M/sec

97
96

Maintained directly in the database

Not in "external files"

LOB size can be specified at column definition time
(in terms of KB, MB, or GB)

CREATE TABLE Booktable
(title VARCHAR(200),
book_id INTEGER,
summary CLOB(32K),
book_text CLOB(20M),
movie BLOB(2G))

Large Object Data TypesLarge Object Data Types

summary

book_textmovie

98
97

How do you Use LOBS?How do you Use LOBS?

99
98

How do you Use LOBS?How do you Use LOBS?

LOBs may be retrieved, inserted, updated like any
other type

You must acquire buffers large enough to store the LOBs
This may be difficult for very large LOBs

EXEC SQL
 SELECT summary, book_text, movie

INTO :bigbuf, :biggerbuf, :massivebuf
FROM BOOKTABLE

 WHERE title = 'Moby Dick';

Booktable:
title VARCHAR(200)
book_id INTEGER

 summary CLOB(32K)
book_text CLOB(20M)
movie BLOB(2G)

Hi, my name is

MobyMobyMobyMoby

100
99

LOBs are excluded from some operations:
Greater Than and Less Than operations
Primary, unique, and foreign keys
GROUP BY and ORDER BY
UNION operator, INTERSECT, EXCEPT
Joins (as join columns)

Some operations are supported for LOBs
Retrieve value (or partial value)
Replace value
LIKE predicate
Concatenation
SUBSTRING, POSITION, and LENGTH function
TRIM
OVERLAY

Large Object Data TypesLarge Object Data Types

101
100

LOB FunctionsLOB Functions

Functions that support LOBs
CONCATENATION string1 || string2
SUBSTRING(string FROM start FOR length)
LENGTH(expression)
POSITION(search-string IN source-string)
NULLIF/COALESCE
TRIM
OVERLAY
Cast
User-defined functions
LIKE predicate

EXEC SQL
SELECT position('Chapter 1' IN book_text)
INTO :int_variable
FROM BOOKTABLE
WHERE title = 'Moby Dick';

Chapter 1

Booktable:
title VARCHAR(200)
book_id INTEGER

 summary CLOB(32K)
book_text CLOB(20M)
movie BLOB(2G)

102101

LOBs may be unmanageable
in application programs

Huge amounts of storage may be
needed to buffer their values

It may not be possible to acquire
contiguous buffers of sufficient size

Applications may want to deal with LOBS a piece at a time
In the above example, multiple SELECTs would be required

SQL99 provides locators to make LOB access
manageable

GigaByte Buffers? Get real!GigaByte Buffers? Get real!

EXEC SQL
 SELECT summary, book_text, movie

INTO :bigbuf, :biggerbuf, :massivebuf
FROM BOOKTABLE

 WHERE title = 'Moby Dick';

BOOKTABLE:
title VARCHAR(200)
book_id ROWID

 summary CLOB(32K)
book_text CLOB(20M)
movie BLOB(2G)

103
102

locator: 4-byte value stored in a host variable
that a program can use to refer to a LOB value

Application declares locator variable, and then may set it to
refer to the current value of a particular LOB
A locator may be used anywhere a LOB value can be used

LocatorsLocators

EXEC SQL BEGIN DECLARE
SECTION;
 SQL TYPE IS BLOB_LOCATOR
 movie_loc;
EXEC SQL END DECLARE SECTION;

EXEC SQL
SELECT movie
INTO :movie_loc
FROM BOOKTABLE

 WHERE title = 'Moby Dick'

104
103

Locators may also represent LOB expressions
A LOB expression is any expression that refers to a LOB
column or results in a LOB data type

LOB functions may be part of LOB expressions
LOB expressions may even reference other locators

LOB expressions may be VERY complicated
The above example associates only the first chapter with a
locator

Locators on LOB ExpressionsLocators on LOB Expressions

SELECT
SUBSTRING(book_text,

POSITION('Chapter 1' IN book_text),
POSITION('Chapter 2' IN book_text) -
POSITION('Chapter 1' IN book_text)

)
FROM Booktable
INTO :Chapt1Loc

 WHERE title = 'Moby Dick';

Ch
ap

te
r 1

105
104

HOLD locator
Maintains the LOB value and locator after the commit of a
transaction

FREE locator
Frees a locator and its LOB value

Locators can be holdableLocators can be holdable

SELECTbook_text
INTO :LOB_locator

 FROM Booktable WHERE title =
'Moby Dick';

HOLD LOCATOR :LOB_locator;

COMMIT;

INSERT INTO my_favor_books
VALUES (..., :LOB_locator, ...)

106
105

HOLD LOCATOR StatementHOLD LOCATOR Statement

Locators, when created, are marked valid. A valid
locator normally becomes invalid at the end of
transaction (when COMMIT or ROLLBACK
happens).
HOLD LOCATOR statement marks a host variable
or host parameter locator as holdable:

HOLD LOCATOR :emp;

Holdable locators remain valid across transaction
boundaries that end successfully.
Not allowed for parameters or result of external
routines.

107
106

FREE LOCATOR StatementFREE LOCATOR Statement

FREE LOCATOR statement marks a valid host
variable or host parameter locator as invalid:

FREE LOCATOR :emp;

All valid locators are marked invalid if the
transaction ends with ROLLBACK statement.

108
107

User-defined data types
User-defined, named type representing entities

employee, project, money, polygon, image, text, language, format, ...

User-defined methods and functions (operators)
User-defined operation representing the behavior of entities in the
application domain

hire, appraisal, convert, area, length, contains, ranking, ...

Definition:
User-defined data type

Name
Representation
Relationship to other types

User-defined method (and function)
Name
Signature (i.e., parameter list)
Result
Implementation

User-defined types User-defined types

109
108

New functionality
Users can indefinitely increase the set of provided types
Users can indefinitely increase the set of operations on types
and extend SQL to automate complex operations/calculations

Flexibility
Users can specify any semantics and behavior for a new type

Consistency
Strong typing insures that functions are applied on correct types

Encapsulation
Applications do not depend on the internal representation of the
type

Performance
Potential to integrate types and functions into the DBMS as
"first class citizens"

User-defined Types: Key FeaturesUser-defined Types: Key Features

110
109

Simplified application development

Code Re-use - allows reuse of common code

Overloading and overriding - makes application development
easier -- single function name for a set of operations on
different types, e.g., area of circles, triangles, and rectangles

Consistency
Enables definition of standard, reusable code shared by all
applications (guarantee consistency across all applications
using type/function)

Easier application maintenance
Changes are isolated: if application model changes, only the
corresponding types/functions need to change instead of code
in each application program

User-defined Types: BenefitsUser-defined Types: Benefits

111
110

Before SQL99, columns could only be defined with the existing built-in data types

There was no strong typing

Logically incompatible variables could be assigned to each other

User-defined Distinct TypesUser-defined Distinct Types
CREATE TABLE RoomTable (
RoomID CHAR(10),
RoomLength INTEGER,
RoomWidth INTEGER,
RoomArea INTEGER,
RoomPerimeter INTEGER);

UPDATE RoomTable
SET RoomArea = RoomLength;

No Error Results

112
111

Each UDT is logically incompatible with all other type

User-defined Distinct TypesUser-defined Distinct Types

CREATE TYPE plan.roomtype
AS CHAR(10) FINAL;

CREATE TYPE plan.meters
AS INTEGER FINAL;

CREATE TYPE plan.squaremeters
AS INTEGER FINAL;

CREATE TABLE RoomTable (
RoomID plan.roomtype,
RoomLength plan.meters,
RoomWidth plan.meters,
RoomPerimeter plan.meters,
RoomArea plan.squaremeters);

UPDATE RoomTable
SET RoomArea =
RoomLength;

ERROR
UPDATE RoomTable
SET RoomLength =
RoomWidth;

 NO ERROR RESULTS

113
112

Based on name equivalence (strongly typed)
Renamed type, with different behavior than its source type.

Shares internal representation with its source type
Source and distinct type are not directly comparable

CREATE TYPE US_DOLLAR AS DECIMAL (9,2) FINAL

Operations defined on distinct types (behavior)
Comparison operators

Can be defined based on the comparison of their source type
Casting

Used to explicitly cast instances of the distinct type and instances
of source type to and from one another
Used to obtain "literals"

Methods and functions
No inheritance or subtyping

User-defined Distinct Types User-defined Distinct Types

114
113

User-defined, complex data types
Can be used as column types and/or table types

Column Types
E.g., text, image, audio, video, time series, point, line,...
For modeling new kinds of facts about enterprise entities
Enhanced infrastructure for SQL/MM

Row Types
Types and functions for rows of tables

E.g., employees, departments, universities, students, ...
For modeling entities with relationships & behavior

Enhanced infrastructure for business objects

User-defined Structured Types User-defined Structured Types

id
name

empstuff1 stuff2

... ... Column Type

nameoid id

... Row Type

CREATE TYPE employee
AS
(id INTEGER,
name VARCHAR (20))

115
114

CREATE TYPE address AS
(street CHAR (30),
city CHAR (20),
state CHAR (2),
zip INTEGER) NOT FINAL

CREATE TYPE bitmap AS BLOB FINAL

CREATE TYPE real_estate AS
(owner REF (person),
price money,
rooms INTEGER,
size DECIMAL(8,2),
location address,
text_description text,
front_view_image bitmap,
document doc) NOT FINAL

Structured Types: Example Structured Types: Example

116
115

Wherever other (predefined data) types can be
used in SQL

Type of attributes of other structured types
Type of parameters of functions, methods, and procedures
Type of SQL variables
Type of domains or columns in tables

CREATE TYPE address AS (street CHAR (30), ...) NOT FINAL
CREATE TYPE real_estate AS (... location address, ...) NOT
FINAL

To define tables and views

CREATE TABLE properties OF real_estate ...

Use of Structured TypesUse of Structured Types

117
116

MethodsMethods
What are methods?

SQL-invoked functions "attached" to user-defined
types

How are they different from functions?
Implicit SELF parameter (called subject parameter)
Two-step creation process: signature and body specified separately.
Must be created in the type's schema
Different style of invocation (UDT value.method(...))

CREATE TYPE employee AS
(name CHAR(40),
base_salary DECIMAL(9,2),
bonus DECIMAL(9,2))
INSTANTIABLE NOT FINAL
METHOD salary() RETURNS DECIMAL(9,2);

CREATE METHOD salary() FOR employee
BEGIN
....
END; 118

117

Methods (cont.)Methods (cont.)

Two kinds of methods:
Original methods: methods attached to super type
Overriding methods: methods attached to subtypes

CREATE TYPE employee AS
(name CHAR(40),
base_salary DECIMAL(9,2),
bonus DECIMAL(9,2))
INSTANTIABLE NOT FINAL
METHOD salary() RETURNS DECIMAL(9,2);

CREATE TYPE manager UNDER employee AS
(stock_option INTEGER)
INSTANTIABLE NOT FINAL
OVERRIDING METHOD salary() RETURNS DECIMAL(9,2), -- overriding
METHOD vested() RETURNS INTEGER -- original;

Signature of an overriding method must match with the signature of an
original method, except for the subject parameter.

119
118

Methods (cont.)Methods (cont.)

Invoked using dot syntax (assume dept table has mgr
column):

SELECT mgr.salary() FROM dept;

Subject routine determination picks the "best" method to
invoke.

Same algorithm as used for regular functions
SQL path is temporarily set to a list with the schemas of the supertypes of
the static type of the self argument.

Dynamic dispatch executed at runtime
Overriding methods considered at execution time
Overriding method with the best match for the dynamic type of the self
argument is selected.
Schema evolution affects the actual method that gets invoked. If there is a
new overriding method defined it may be picked for execution.

120
119

Creating Structured TypesCreating Structured Types

System-supplied constructor function
address () -> address or real_estate () -> real_estate

Returns new instance with attributes initialized to their
default

NEW operator
NEW <method name> <list of parameters>

Invokes constructor function before invoking method
INSERT statement against a typed table

CREATE TABLE properties OF real_estate ...

INSERT INTO properties VALUES (:owner, money (350000), 15,
4500, NEW address ('1543 3rd Ave. North, Sacramento, CA
93523') ...)

SELECT owner, price FROM properties
WHERE address = gen_address (address(), '1543 3rd Ave.
North, Sacramento, CA 93523')

121
120

Uninstantiable TypesUninstantiable Types

Structured types can be uninstantiable
Like abstract classes in OO languages

No system-supplied constructor function is
generated
Type does not have instances of its own

Instances can be defined on subtypes

By default, structured types are instantiable

Distinct types are always instantiable

CREATE TYPE person AS
(name VARCHAR (30),
address address,
sex CHAR (1)) NOT INSTANTIABLE NOT FINAL

122
121

Manipulating AttributesManipulating Attributes
Observer and mutator methods are used to access and modify
attributes

Automatically generated when type is defined

CREATE TYPE address AS (street CHAR (30), city CHAR (20), state CHAR
(2), zip INTEGER) NOT FINAL

address_expression.street () -> CHAR (30)
address_expression.city () -> CHAR (20)
address_expression.state () -> CHAR (2)
address_expression.zip () -> INTEGER
address_expression.street (CHAR (30)) -> address
address_expression.city (CHAR (20)) -> address
address_expression.state (CHAR (2)) -> address
address_expression.zip (INTEGER) -> address

SELECT location.street, location.city (), location.state, location.zip ()
FROM properties
WHERE price < 100000

123
122

 Manipulating Attributes Manipulating Attributes

Queries over type tables access attributes (columns)
Update statements on typed tables modify attributes

CREATE TABLE properties OF real_estate ...

SELECT owner, price
FROM properties
WHERE address = NEW address '1543 3rd Ave. North,
Sacramento, CA 93523')

UPDATE properties
SET price = 350000
WHERE address = new address '1543 3rd Ave. North,
Sacramento, CA 93523')

124
123

"Dot'' notation must be used to invoke methods
(e.g., to access attributes)
Methods without parameters do not require use of
"()"

DECLARE r real_estate;
...
SET r.size = 2540.50; -- same as r.size (2540.50)
...
SET ... = r.location.state; -- same as r.location().state()
SET r.location.city = `LA'; -- same as r.location(r.location.city(`LA'))

Support for several `levels' of dot notation
(a.b.c.d.e)
Allow "navigational" access to structured types
Dot notation does not 'reveal' physical
representation (keeps encapsulation)

Dot NotationDot Notation

125
124

Instances are generated by the system-provided
constructor function

Attributes are initialized with their default values

Attributes are modified (further initialized) by
invoking the mutator functions

BEGIN
DECLARE re real_estate;
SET re = real_estate(); -- generation of a new instance
SET re.rooms = 12; -- initialization of attribute rooms
SET re.size = 2500; -- initialization of attribute size

END

BEGIN
DECLARE re real_estate;
SET re = real_estate().rooms (12).size (2500); -- same as above

END

Initializing Instances: ConstructorInitializing Instances: Constructor

126
125

Users can define any number of "initializer"
methods and invoke them with NEW operator

CREATE TYPE real_estate AS (....)
METHOD real_estate (r INTEGER, s DECIMAL(8,2)) RETURNS real_estate

CREATE METHOD real_estate (r INTEGER, s DECIMAL(8,2)) RETURNS
real_estate
BEGIN

SET self.rooms = r;
SET self.size = s;
RETURN re;

END

BEGIN
DECLARE re real_estate;
SET re = NEW real_estate(12, (2500); -- same as previously

END

Initializing Instances: NEWInitializing Instances: NEW
Operator Operator

127
126

Structured types are manipulated by invoking
methods and functions defined on them

May be invoked anywhere scalar values are allowed in SQL

INSERT INTO properties
VALUES (:ownwer, us_dollar (300000), 15, 4650, NEW address
('2225 Coral Drive', 'San Jose', 'CA', 95125), ...);

UPDATE properties
SET price = US_dollar (0.9 x amount (price))
WHERE location.state () = 'CA';

SELECT D_mark (price), owner, location.city ()
FROM properties
WHERE location.zip () = 95453
AND contains (text_description.schools(), 'excellent school
district')
AND contains (front_view_image, 'tree');

Manipulating Structured TypesManipulating Structured Types

128
127

Structured types can be a subtype of another UDT
UDTs inherit structure (attributes) and behavior
(methods) from their supertypes

Single inheritance (multiple inheritance moved to SQL4)
FINAL and NOT FINAL

FINAL types may not have subtypes
In SQL99, structured types must be NOT FINAL and distinct
types must be FINAL
In SQL4, both options will be allowed

CREATE TYPE real_estate ... NOT FINAL
CREATE TYPE condo UNDER real_estate ... NOT FINAL
CREATE TYPE house UNDER real_estate ... NOT FINAL

Subtyping and InheritanceSubtyping and Inheritance

real_estate

condo house cottage
129

128

CREATE TYPE address AS
(street CHAR (30), city CHAR(20), state CHAR (2), zip INTEGER) NOT FINAL

CREATE TYPE german_addr UNDER address
(family_name VARCHAR (30)) NOT FINAL

CREATE TYPE brazilian_addr UNDER address
(neighborhood VARCHAR (30)) NOT FINAL

CREATE TYPE us_addr UNDER address
(area_code INTEGER, phone INTEGER) NOT FINAL

CREATE TYPE us_bus_addr UNDER address
(bus_area_code INTEGER, bus_phone INTEGER) NOT FINAL

Subtyping and InheritanceSubtyping and Inheritance

address

german_addr brazlian_addr us_addr

us_bus_addr
130

129

Value SubstitutabilityValue Substitutability
Each row can have a value a different subtype

INSERT INTO properties (price, owner, location)
VALUES (US_dollar (100000), REF('Mr.S.White'), NEW us_addr
('1654 Heath Road', 'Heath', 'OH', 45394, ...))

INSERT INTO properties (price, owner, location)
VALUES (real (400000), REF('Mr.W.Green'), NEW brazilian_addr ('245
Cons. Xavier da Costa', 'Rio de Janeiro', 'Copacabana'))

INSERT INTO properties (price, owner, location)
VALUES (german_mark (150000), REF('Mrs.D.Black'), NEW
german_addr ('305 Kurt-Schumacher Strasse', 'Kaiserslautern', 'Prof.
Dr. Heuser'))

price owner location
<us_dollar>
amount 100,000

'Mr. S.
White'

<us_addr>
'1654 Heath ...'

<real>
amount 400,000

'Mr. W.
Green'

<brazilian_addr>
'245 Cons. Xavier ...'

<german_mark>
amount 150,000

'Mrs. D.
Black'

<german_addr>
'305 Kurt-Schumacher ...'

type tag

131
130

An instance of a subtype can be found at runtime
(requires dynamic dispatch - late binding)

SELECT owner, price.dollar_amount ()
FROM properties
WHERE price.dollar_amount () < US_dollar (500000)

 Will cause the invocation of a different method, depending on
the type of money stored in the column PRICE (i.e., US_dollar,
CDN_dollar, D_mark, S_frank, real, ...)

Only methods are dynamically dispatched
Functions are statically selected

Value SubstitutabilityValue Substitutability

132
131

Structured Types as Column Structured Types as Column
TypesTypes

CREATE TYPE envelope (
xmin INTEGER,
ymin INTEGER,
xmaxINTEGER,
ymaxINTEGER);

CREATE TYPE point UNDER geometry;
CREATE TYPE line UNDER geometry;
CREATE TYPE polygon UNDER geometry;

1 2

3
CREATE FUNCTION distance
(s1 geometry, s2 geometry)
RETURNS BOOLEAN
EXTERNAL NAME
'/usr/lpp/db2se/gis!shapedist'
...

CREATE FUNCTION within
(s1 geometry, s2 geometry)
RETURNS BOOLEAN
EXTERNAL NAME
'/usr/lpp/db2se/gis!shapewithin'
...

4

CREATE TYPE geometry (
gtype INTEGER,
refsystem INTEGER,
tolerance FLOAT,
area FLOAT,
length FLOAT,
mbr envelope,
numparts INTEGER,
numpoints INTEGER,
points BLOB(1m),
zvalue BLOB(500k),
measure BLOB(500k));

133
132

Structured Types as Column Structured Types as Column
TypesTypes

CREATE TABLE customers (
cid INTEGER,
name VARCHAR(20),
income INTEGER,
addr CHAR(20)
loc point);

CREATE TABLE stores (
sid INTEGER,
name VARCHAR(20),
addr CHAR(20),
loc point,
zone polygon);

CREATE TABLE sales (
sid INTEGER,
cid INTEGER,
amount INTEGER);

CID NAME INCOME ADDR LOC

CUSTOMERS

STORES
 SID NAME ADDR LOC ZONE

SALES
SID CID AMOUNT

5

134
133

Structured Types as Column Structured Types as Column
TypesTypes

6
SELECT * FROM stores s, customers c
WHERE within(c.loc, s.zone)=1
 or distance(c.loc, s.loc)<100
ORDER BY s.name, c.name;

CID NAME INCOME ADDR LOC

CUSTOMERS

STORES
 SID NAME ADDR LOC ZONE

%

%

%

%
%

%

%

%

%

%

%

%

%

%

%

%
%

%

%

%

%

%

%

%

%
%

%

%

%

%

%

%

%

%

%

% %

%

%

%

%

%

%

%

%

%

%

%

%
%

Streets in downtown
Highways

% CustomersGeocd1.shp

"Tell me all the
information I have about

each customer who
either lives within a

stores' zone or within
100 miles of the store."

135
134

Structured types can be used to define typed tables
Attributes of type become columns of table
Plus one column to define REF value for the row (object id)

CREATE TYPE real_estate AS
(owner REF (person),
price money,
rooms INTEGER,
size DECIMAL(8,2),
location address,
text_description text,
front_view_image bitmap,
document doc) NOT FINAL

CREATE TABLE properties OF real_estate
(REF IS oid USER GENERATED)

Structured Types as Row Types: Structured Types as Row Types:
Typed TablesTyped Tables

136
135

Structured types have a corresponding reference
type

Can be used wherever other types can be used

Representation
User generated (REF USING <predefined type>)
System generated (REF IS SYSTEM GENERATED)
Derived from a list of attributes (REF (<list of attributes>)

Default is system generated

CREATE TYPE real_estate AS (owner REF (person), ...)
NOT FINAL REF USING INTEGER

CREATE TYPE person AS (ssn INTEGER, name CHAR(30),...)
NOT FINAL REF (ssn)

Reference TypesReference Types

137
136

Reference values can be scoped

Only scoped ones can be dereferenced

CREATE TYPE person (ssn INTEGER, name ...)NOT FINAL

CREATE TYPE real_estate (owner REF (person), ...) NOT FINAL

CREATE TABLE people OF person (...)

CREATE TABLE properties OF real_estate
(owner WITH OPTIONS SCOPE people)

Reference TypesReference Types

138
137

References do not have the same semantics as
referential constraints

CREATE TABLE T1
(C1 REAL PRIMARY KEY, ...

CREATE TABLE T2
(C2 DECIMAL (7,2) PRIMARY KEY, ...

CREATE TABLE T
(C INTEGER, ...
FOREIGN KEY (C) REFERENCES T1 (C1) NO ACTION,
FOREIGN KEY (C) REFERENCES T2 (C2) NO ACTION)

Referential constraints specify inclusion
dependencies

It is unclear which table to access during
dereferencing

There is no notion of strong typing

Reference TypesReference Types

139
138

Typed tables can have subtables
Inherit columns, contraints, triggers, ... the
supertable

CREATE TYPE person ... NOT FINAL
CREATE TYPE real_estate ... NOT FINAL
CREATE TYPE condo UNDER real_estate ... NOT FINAL
CREATE TYPE house UNDER real_estate ... NOT FINAL

CREATE TABLE people OF person (...)
CREATE TABLE properties OF real_estate
CREATE TABLE condos OF condo UNDER properties
CREATE TABLE houses OF house UNDER properties

Subtables: Table HierarchiesSubtables: Table Hierarchies

condos

people

houses

properties
owner

140
139

Queries on table hierarchies range over the rows of every
subtable

SELECT price, location.city, location.state FROM properties
WHERE contains (text_description, 'excellent school district')

Returns properties, condos, and houses

Queries on a subtable require SELECT privilege on that
subtable
SELECT * FROM condos...

Additional authorization required for queries that involve
ONLY, or DEREF on self-referencing column....

SubstitutabilitySubstitutability

condos houses

properties

141
140

Type predicate can be used to restrict selected rows

SELECT price, location.city, location.state
FROM properties
WHERE contains (text_description, 'excellent school district')
AND DEREF (oid) IS OF (house)

ONLY restricts selected rows to rows whose most specific type is
the type of the typed table

SELECT price, location.city, location.state
FROM ONLY (properties)
WHERE contains (text_description. 'excellent school district')

 Queries on the target typed table that involve the ONLY modifier (or
the DEREF operation on its self-referencing column) require WITH
HIERARCHY OPTION on that target table.

GRANT SELECT WITH HIERARCHY OPTION ON TABLE properties TO PUBLIC

Substitutability: Type Predicate Substitutability: Type Predicate
and ONLY on Typed Tablesand ONLY on Typed Tables

condos houses

properties

142
141

Scoped references can be used in path expressions

SELECT prop.price, prop.owner->name FROM properties.prop

WHERE prop.owner->address.city = "Hollywood"

Authorization checking follows SQL authorization
model

user must have SELECT privilege on name and address

SELECT prop.price, (SELECT name FROM people p WHERE p.oid =
prop.owner)
FROM properties.prop
WHERE (SELECT p.address.city FROM people p WHERE p.oid = owner) =
"Hollywood"

SELECT prop.price, p.name
FROM properties prop LEFT JOIN people p ON (prop.owner = p.oid)

WHERE p.address.city = "Hollywood"

Path Expressions - <dereference Path Expressions - <dereference
operator> operator>

143
142

References can be used to invoked methods on the
corresponding structured type

SELECT prop.price, prop.owner->income (1998)
FROM properties.prop

Invocation of methods given a reference value
require select privilege on the method for the target
typed table

GRANT SELECT (METHOD income FOR person) ON TABLE
people TO PUBLIC

Allows the table owner control who is authorized
to invoked methods on the rows of his/her table

Method ReferenceMethod Reference

144
143

References can be used to obtain the structured
type value that is being referenced

Enables nesting of structured types

SELECT prop.price, DEREF(prop.owner)
FROM properties.prop

Reference resolution requires SELECT privilege
WITH HIERARCHY OPTION on the target typed
table

GRANT SELECT WITH HIERARCHY OPTION ON TABLE
people TO PUBLIC

DEREF nests rows from subtables, respecting
value substitutability

Reference Resolution: NestingReference Resolution: Nesting

145
144

Views have been extended to support
Typed views
View hierarchies
References on base
tables can be mapped
to references on views

Object ViewsObject Views

properties people

propView peopleView
owner

owner

condos

people

houses

properties
owner

table hierarchy

view
hierarchy

condView

people
View

housView

propView
owner

146
145

CREATE TYPE propViewType AS
(owner REF (person),
location address) NOT FINAL

CREATE TYPE condViewType UNDER propVIewType ...
CREATE TYPE housViewType UNDER propViewType ...

CREATE VIEW propView OF propVIewType
REF IS propID USER GENERATED
(owner WITH OPTIONS SCOPE peopleView)
AS (SELECT owner, location FROM ONLY (properties))

CREATE VIEW housView OF housVIewType UNDER propView
AS (SELECT owner, location FROM ONLY (houses))

CREATE VIEW condView OF condVIewType UNDER propView
AS (SELECT owner, location FROM ONLY (condos))

Object Views: ExampleObject Views: Example

condView

people
View

housView

propView
owner

147
146

Comparison of UDT ValuesComparison of UDT Values
CREATE ORDERING statement specifies

Which comparison operations are allowed for a user-defined
type
How such comparisons are to be performed.

CREATE ORDERING FOR employee
EQUALS ONLY BY STATE;

CREATE ORDERING FOR complex
ORDER FULL BY RELATIVE
WITH FUNCTION complex_order (complex,complex);

ORDERING form:

EQUALS ONLY
Only comparison operations allowed are =, <>

ORDER FULL
All comparison operations are allowed

148
147

Comparison of UDT Values (cont.)Comparison of UDT Values (cont.)

Ordering category

STATE
An ordering function is implicitly created with two UDT parameters
and returning Boolean
Compares pairwise the UDT attributes

RELATIVE
User must specify an ordering function with two UDT parameters
and returning INTEGER
0 for equal, positive for >, negative for <

MAP
User must specify an ordering function with one UDT parameter
and returning a value of a predefined type
Comparisons are made based on the value of the predefined type

149
148

Comparison of UDT Values (cont.)Comparison of UDT Values (cont.)

Ordering category - Rules:

STATE cannot be specified for distinct types.

STATE and RELATIVE must be specified for the maximal
supertype in a type hierarchy.

MAP can be specified for more than one type in a type
hierarchy, but all such types must specify MAP and all such
types must have the same ordering form.

STATE is allowed only for EQUALS ONLY.

If ORDER FULL is specified, then RELATIVE or MAP must be
specified.

150
149

Comparison of UDT Values (cont.)Comparison of UDT Values (cont.)

Comparision type of a given type:
The nearest supertype for which a comparison was defined.
Comparison form, comparison category, and comparison
function of a type are the ordering form, ordering category,
ordering function of its comparison type.

A value of type T1 is comparable to a value of type
T2 if

T1 and T2 are in the same subtype family.
Comparison types of T1 and T2 both specify the same
comparison category (i.e., STATE, RELATIVE, or MAP)

Example
Person has subtypes: emp and mgr
Person has an ordering form, ordering category, and an
ordering function
emp and mgr types have none
Person is the comparison type of emp and mgr
Two emp values, two mgr values, or a value of emp and a value
of mgr can be compared.

151
150

Comparison of UDT values (cont.)Comparison of UDT values (cont.)

No comparison operations are allowed on values of
structured types by default.
All comparison operations are allowed on values of
distinct types by default.

Based on the comparison of values of source type.
Whenever a distinct type is created, a CREATE ORDERING
statement is implicitly executed (SDT is the source type).
The ordering function is the system-generated cast function

CREATE ORDERING FOR DT
ORDER FULL BY MAP WITH FUNCTION SDT(DT);

152
151

Comparison of UDT values (cont.)Comparison of UDT values (cont.)

A predicate of the form "V1 = V2" is transformed
into the following expression depending on the
comparison category:

STATE
"SF(V1,V2) = TRUE"
SF is the comparison function

MAP
"MF1(V1) = MF2(V2)"
MF1 and MF2 are comparison functions

RELATIVE
"RF(V1,V2) = 0"
RF is the comparison function

153
152

Comparison of UDT Values (cont.)Comparison of UDT Values (cont.)

DROP ORDERING
Removes the ordering specification for an UDT

DROP ORDERING FOR employee RESTRICT;

RESTRICT implies
There cannot be any

SQL- invoked routine
View
Constraint
Assertion
Trigger

that has a predicate involving employee values or values of
subtypes thereof.

154
153

User-defined CastsUser-defined Casts

Allow a value of one type to be cast into a value of
another type

At least one of the types in an user-defined cast must be a
user-defined type or a reference type.

CREATE CAST(t1 AS t2) WITH FUNCTION foo (t1);

SELECT CAST(c1 AS t2) FROM TAB1;

May optionally be tagged AS ASSIGNMENT

CREATE CAST(t1 AS t2) WITH FUNCTION foo (t1) AS ASSIGNMENT;

Such casts get invoked implicitly during assignment operations.
Above user-defined cast makes the following assignment legal:

DECLARE v1 t1, v2 t2;
SET V2 = V1;

155
154

User-defined Casts (cont.)User-defined Casts (cont.)

DROP CAST
Removes the user-defined cast
Does not delete the corresponding function (only its cast flag is
removed)

DROP CAST (T1 AS T2) RESTRICT;

RESTRICT implies:
There cannot be any

Routine
View
Constraint
Assertion
Trigger

that has
An expression of the form "CAST(V1 AS T2)" where V1 is of type
T1 or any subtype of T1;
A DML statement that implicitly invokes the user-defined cast
function. 156

155

Cast Functions for Distinct TypesCast Functions for Distinct Types

Automatically defines cast functions to and from the source
type for a user-defined distinct type
Casts will also be allowed from any type that is promotable to the
source type of the user-defined type (i.e., that has the source type in
its type precedence list)

Casting from a SMALLINT to a UDT sourced on an integer is OK

CREATE TYPE plan.meters
AS INTEGER FINAL
CAST (SOURCE AS DISTINCT) WITH meters
CAST (DISTINCT AS SOURCE) WITH integer

Implicit Cast Functions created:
 plan.meters(integer) returns meters;
 plan.integer(meters) returns integer;

... SET RoomWidth =
CAST (integerCol AS meters)

or
meters(integerCol)

or
meters(smallintCol)

Example Casting Expressions:

157
156

Cast Functions: Comparison Cast Functions: Comparison
RulesRules

Casts must be used to compare distinct type values
with source-type values.
Constants are always considered to be source type values
You may cast from source type to UDT, or vice-versa

SELECT * FROM RoomTable
 WHERE RoomID = 'Bedroom';

ERROR
SELECT * FROM RoomTable
 WHERE RoomID = roomtype('Bedroom');
 or
SELECT * FROM RoomTable
 WHERE char(RoomID) = 'Bedroom';

No Error Results

158
157

Cast Functions: Assignment Cast Functions: Assignment
RulesRules

In general source-type values may not be assigned to
user-defined type targets
The strong typing associated with UDTs is relaxed for
assignment operations, IF AND ONLY IF

A cast function between source and target type has been defined with the
AS ASSIGNMENT clause

Select RoomLength, RoomWidth
INTO :int_hv1, :int_hv2
FROM RoomTable

Upate RoomTable
Set RoomLength = 10

No Error Results

CREATE TYPE plan.meters
AS INTEGER FINAL
CAST (SOURCE AS DISTINCT) WITH meters
CAST (DISTINCT AS SOURCE) WITH integer

CREATE CAST (plan.meters AS interger) WITH
integer AS ASSIGNMENT

CREATE CAST (integert AS plan.meters) WITH
meters) AS ASSIGNMENT

159
158

Transforms Transforms

Transforms are user-defined functions or methods
that get invoked automatically whenever UDT
values are exchanged between SQL and external
programs.
Each UDT is associated with a collection of
transform groups; each transform group is
associated with:

A from_sql function that maps a UDT value into a value of
predefined type.
A to_sql function that maps a value of a predefined type into a
UDT value.

160
159

Transforms Transforms (cont.)(cont.)

CREATE TRANSFORM statement specifies a
transform for a given UDT

CREATE TRANSFORM FOR point
group1(FROM SQL WITH FUNCTION from_point1(point),

TO SQL WITH FUNCTION to_point1(char(27))
group2(FROM SQL WITH FUNCTION from_point2(point),

TO SQL WITH FUNCTION to_point2(char(50));

A transform group with a given name can be
specified for only one type within a type hierarchy.
 An implicit transform is created for every distinct
type on its creation, based on its cast functions.

161
160

Methods as Transform FunctionsMethods as Transform Functions

Both from_sql and to_sql functions can be specified as
methods:

CREATE TRANSFORM FOR point
group1(FROM SQL WITH METHOD from_point1() FOR point,

TO SQL WITH METHOD to_point1(char(27) FOR point)
group2(FROM SQL WITH METHOD from_point2() FOR point,

TO SQL WITH METHOD to_point2(char(50) FOR point);

Both from_sql and to_sql methods can be overridden to
define subtype-specific transform methods.

162
161

Transforms in Embedded Transforms in Embedded
ProgramsPrograms

An embedded program can specify transform
groups for use during the execution of program:

TRANSFORM GROUP group1
TRANSFORM GROUP group2 FOR TYPE point

A host variable whose data type is a UDT must
specify a predefined type; must be same as the
return type of from_sql function of the transform
group specified for the UDT:

SQL TYPE IS point AS CHAR(50) pointvar

163
162

Transforms in Embedded Transforms in Embedded
Programs (cont.)Programs (cont.)

from_sql function or method is automatically
invoked on the UDT value and the result is passed
to the host variable:
EXEC SQL SELECT center INTO :pointvar FROM circles
WHERE ...

to_sql function or method is automatically invoked on
the host variable value and the result is passed to
SQL:
EXEC SQL UPDATE circles
SET center = :pointvar
WHERE ...

164
163

Transforms in External RoutinesTransforms in External Routines

An external routine can specify transform groups for
use during the execution of routine:

CREATE FUNCTION foo(p1 point)
RETURNS INTEGER
EXTERNAL
TRANSFORM GROUP group1;

The parameter in the external program
corresponding to 'p1' must specify a host language
type that corresponds to CHAR(27).
Transform functions for UDT parameters are picked
during the creation of external routines; once
selected, the transform functions are frozen.

165
164

Transforms in External RoutinesTransforms in External Routines
(cont.)(cont.)

If there is no transform available for a UDT with a
given group name, then a transform defined for one
of its supertypes is picked.

If transform functions are methods, the dynamic
binding rules apply, i.e., if there is an overriding
method available, that method is picked for
execution.

166
165

Transforms in Dynamic SQLTransforms in Dynamic SQL

SET TRANSFORM GROUP statement sets the
transform group for one or more UDTs for use
during execution of dynamic SQL statements:

SET DEFAULT TRANSFORM GROUP group1;
SET TRANSFORM GROUP FOR TYPE point group2;

Two special registers are provided to inquire about
the session defaults:

CURRENT_DEFAULT_TRANSFORM_GROUP;
CURRENT_TRANSFORM_GROUP_FOR_TYPE point;

167
166

Dropping TransformsDropping Transforms

DROP TRANSFORM statement can be used to
drop either a transform group or all transform
groups attached to a UDT:

DROP TRANSFORM group1 FOR point RESTRICT;
DROP TRANSFORM ALL FOR point CASCADE;

Dependencies between a transform group and the
external routines that depend on that transform
group are taken into account during dropping of
transforms.

168
167

ArraysArrays

The only collection type of SQL99
Why arrays?

Tables with collection-valued columns
"repeating groups"
n1NF tables

Important building block for imperative code
Heavily used in Standard Type Libraries

SQL/MM Full-Text
SQL/MM Spatial

169
168

Arrays (cont.)Arrays (cont.)
Array characteristics

Maximal length vs actual length (like CHARACTER
VARYING)
Any element type admissible (except array types)
Substitutability applies at element level
"Arrays anywhere"

Array operations
Element access by ordinal number
Cardinality
Comparison
Constructors
Assignment
Concatenation
CAST
Declarative selection facilities over arrays

170
169

Arrays (cont.)Arrays (cont.)

Tables with array-valued columns
CREATE TABLE reports
(id INTEGER,
 authors VARCHAR(15) ARRAY[20],
 title VARCHAR(100),
 abstract FullText)

Appropriate DML operations

INSERT INTO reports(id, INSERT INTO reports(id, authors,authors, title) title)
 VALUES (10, VALUES (10, ARRAY ['Date', 'Darwen']ARRAY ['Date', 'Darwen'], 'A Guide to the SQL , 'A Guide to the SQL
Standard')Standard')

171
170

Arrays (cont.)Arrays (cont.)
Access to array elements

By ordinal position
Declarative (i.e. query) facility

Implicitly transforms array into table
Selection by element content and/or position
Unnesting

Examples:
SELECT id, authors[1] AS name FROM reports

SELECT r.id, a.name
FROM reports AS r, UNNEST (r.authors) AS a (name)

172
171

 UDT and Array Locators UDT and Array Locators

Similar to large object locators.
A host variable can be specified as a locator
variable for a UDT or an array type:

SQL TYPE IS point AS LOCATOR pointvar;
SQL TYPE IS INTEGER ARRAY[10] AS LOCATOR avar;

An unique implementation-dependent 4-octet
integer locator value is generated and passed to the
host variable:

EXEC SQL SELECT center INTO :pointvar
FROM circles WHERE ...

173
172

 UDT and Array Locators (cont.) UDT and Array Locators (cont.)
When locators are used in assignment statements,
the UDT or the array value corresponding to the
given locator value is first found, and the result is
then used in the assignment:

EXEC SQL UPDATE circles
SET center = :pointvar
WHERE ...

A parameter of an external routine can be specified
as locator parameter if its data type is either a UDT
or an array type, or the returns type of an external
function can specify AS LOCATOR if it is either a
UDT or an array type:

CREATE FUNCTION foo(p1 emp AS LOCATOR)
RETURNS emp AS LOCATOR
EXTERNAL ... 174

173

 UDT and Array Locators UDT and Array Locators (cont.)(cont.)

When the routine is invoked, an unique
implementation-dependent 4-octet integer locator value is
generated for each input locator parameter and passed as
the argument value.

 After the routine finishes execution, for each output locator
parameter or function result, the UDT or the array value
corresponding to the locator value is first found, and the
result is then returned to the caller.

175
174

ExamplesExamples
Some examples used throughout this presentation are based
on the following schema:
CREATE TABLE people(

(Iname CHAR(20),
Fname CHAR(20),
nick CHAR(20)
UNIQUE (lname, fname)
);

CREATE TABLE hobbies
(last CHAR(20),
first CHAR(20),
hobby CHAR(15)
);

SQL>SELECT * FROM hobbies;

LAST FIRST HOBBY
Holland William travel
Smith Roberta sailing
 . . .
 . . .
 . . .
 . . .

176
175

ConstraintsConstraints
Constraints have names
Checking of constraints can be

Performed at the end of SQL statement (SQL/89)
Deferred until the end of transaction

Constraints and assertions can be defined as
Deferrable or not deferrable
Initially deferred or initially immediate

ALTER TABLE people
ADD CONSTRAINT pk UNIQUE (lname, fname)

DEFERRABLE
INITIALLY IMMEDIATE;

SET CONSTRAINTS pk DEFERRED;
...
COMMIT;

At commit time if any constraint is not satisfied, then
An exception is raised
The transaction is rolled back

177
176

Constraints (cont.)Constraints (cont.)

SQL92 has defined several kinds of constraints:

Primary key specification
NOT NULL
UNIQUE constraints
Check constraints - defined at table level
Assertions - defined at schema level
Referential Constraints

CREATE TABLE EMPLOYEES
(ID INTEGER PRIMARY KEY,
NAME VARCHAR (30) NOT NULL,
DEPT SMALLINT REFERENCES DEPTMENTS,
JOB CHAR (5) CHECK (JOB IN (‘SALES’, ‘MGR’, ‘CLERK’)))

178
177

UNIQUE ConstraintUNIQUE Constraint

Columns of a UNIQUE constraint can be nullable (do not
require NOT NULL)
A row with a null value in a column of a UNIQUE constraint is
not a duplicate of any other row

ALTER TABLE hobbies
ADD CONSTRAINT
UNIQUE (last, first, hobby) ;

LAST FIRST HOBBY
Holland William fishing
Holland William NULL
Holland William NULL

Hobbies

179
178

Check ConstraintsCheck Constraints
What they are:

Constraints over the values of columns in tables
Associated with base table or individual columns
Defined and/or altered at any time
Subqueries are allowed in check constraints

Uses:
Define a range of allowable values:

 The values of department number must lie in the range 10 to 100.
Define a list of possible values:

 The job of an employee can only be sales, manager, or clerk.
Keep interdependencies:

Every employee that has been with the company more than 8 years must make more than
$40,500.

CREATE TABLE EMPLOYEES
(ID INTEGER NOT NULL,
NAME VARCHAR (30),
HIREDATE DATE,
DEPT SMALLINT CHECK (DEPT BETWEEN 10 AND 100),
JOB CHAR (5) CHECK (JOB IN (‘SALES’, ‘MGR’, ‘CLERK’)),
SALARY US_DOLLAR CHECK (SALARY > US_DOLLAR (1000))
...
CONSTRAINT YEARSAL CHECK (YEAR (HIREDATE) > 1986 OR

SALARY > US_DOLLAR (40500))) 180
179

AssertionsAssertions

Constraints that can apply to an entire table or to multiple
tables

CREATE ASSERTION max_employee
CHECK ((SELECT COUNT (*)

FROM employee) < 250000);

CREATE ASSERTION max_sal_expense
CHECK ((SELECT SUM (salary)

FROM employee)
 <
 .8*(SELECT SUM (budget)

FROM dept)) ;

181
180

Referential ConstraintsReferential Constraints

Three flavors of referential constraints for handling
nulls

"vanilla" (nulls don't match, since equality requirement not
satisfied)
PARTIAL MATCH
FULL MATCH

182
181

Referential Constraints, VanillaReferential Constraints, Vanilla

LNAME FNAME NICK
Holland William Bill
Zysko William Willy

LAST FIRST HOBBY
Holland William Fishing
Zysko William Dancing
Smith (null) Painting
(null) William Sailing
(null) (null) Garden

People Hobbies

referenced

referencing

matching rows

CREATE TABLE hobbies
(...

FOREIGN KEY (last, first)
REFERENCES people (lname, fname));

Columns of referenced table must be defined in a unique constraint
For each row of the referenced table, the matching rows in the
referencing table are those for which corresponding columns are equal
Null value in any column of foreign key means that row will not be
checked (note: such a row is not a matching row)

183
182

Ref Constraints: MATCH PARTIALRef Constraints: MATCH PARTIAL

All of the values of the FK that are not null must match
corresponding columns of a row in the referenced table
Matching rows for a given row in the referenced table have at
least one non-null key column and are equal to the
corresponding column in the referenced table
Unique matching rows for a given row in the referenced table
are those that are matching rows only to that row of the
referenced table

ALTER TABLE hobbies
ADD FOREIGN KEY (last, first)
REFERENCES people (lname, fname)

MATCH PARTIAL);

LNAME FNAME NICK
Holland William Bill
Zysko William Willy

LAST FIRST HOBBY
Holland William Fishing
Zysko William Dancing
Smith (null) Painting
(null) William Sailing
(null) (null) Garden

People Hobbies

referenced

referencing

matching rows

184
183

Ref Constraints: MATCH FULLRef Constraints: MATCH FULL

LNAME FNAME NICK
Holland William Bill
Zysko William Willy

LAST FIRST HOBBY
Holland William Fishing
Zysko William Dancing
Smith (null) Painting
(null) William Sailing
(null) (null) Garden

People Hobbies

referenced

referencing

matching rows

ALTER TABLE hobbies
ADD FOREIGN KEY (last, first)
REFERENCES people (lname, fname)

MATCH FULL);

Rows of the referencing table must contain either
All null values or all non-null values for the columns of the foreign key

Matching rows are the same as when the match type is not
specified
MATCH FULL or (the default) MATCH SIMPLE differ with
regard to admissible non-matching

185
184

Referential Constraints: ActionsReferential Constraints: Actions
Define actions on update or delete of rows in the
referenced table

NO ACTION
RESTRICT
CASCADE
SET NULL
SET DEFAULT

Rules must be deterministic
Where the result would be order-dependent an exception will be raised

Checked after the execution of an SQL statement
Matching rows are determined before referential
actions take place
A matching row relationship may be dropped during
execution of referential actions (except for restrict)
New relationships will not be recognized until after
the action has completed (PARTIAL MATCH only)

186
185

Ref Constraints: NO ACTION Ref Constraints: NO ACTION
ALTER TABLE hobbies

ADD FOREIGN KEY (last, first)
REFERENCES people (lname, fname)

ON DELETE NO ACTION);

LNAME FNAME NICK
Holland William Bill
Zysko William Willy

LAST FIRST HOBBY
Holland William Fishing
Zysko William Dancing
(null) William Sailing

People Hobbies

referenced referencingmatching rows

DELETE FROM people
 WHERE lname='Zysko'; Exception: integrity constraint violation

LNAME FNAME NICK
Holland William Bill

LAST FIRST HOBBY
Holland William Fishing
Zysko William Dancing
(null) William Sailing

People Hobbies

referenced

referencingmatching rows
?

187
186

Ref Constraints: ON UPDATE NO Ref Constraints: ON UPDATE NO
ACTION ACTION

UPDATE people SET lname=CASE lname
WHEN 'Holland' THEN 'Zysko'
WHEN 'Zysko' THEN 'Holland'

END;

ALTER TABLE hobbies
ADD FOREIGN KEY (last, first)
REFERENCES people (lname, fname)

ON UPDATE NO ACTION);

LNAME FNAME NICK
Holland William Bill
Zysko William Willy

LAST FIRST HOBBY
Holland William Fishing
Zysko William Dancing
(null) William Sailing

People Hobbies

referenced referencingmatching rows

LAST FIRST HOBBY
Holland William Fishing
Zysko William Dancing
(null) William Sailing

People Hobbies

referenced
referencing

LNAME FNAME NICK
Zysko William Bill
Holland William Willy

188
187

Ref Constraints: ON UPDATE Ref Constraints: ON UPDATE
RESTRICT RESTRICT

ALTER TABLE hobbies
ADD FOREIGN KEY (last, first)
REFERENCES people (lname, fname)

ON UPDATE RESTRICT;

LNAME FNAME NICK
Holland William Bill
Zysko William Willy

LAST FIRST HOBBY
Holland William Fishing
Zysko William Dancing
(null) William Sailing

People Hobbies

referenced referencingmatching rows
UPDATE people SET lname=CASE lname

WHEN 'Holland' THEN 'Zysko'
WHEN 'Zysko' THEN 'Holland'

END;

LAST FIRST HOBBY
Holland William Fishing
Zysko William Dancing
(null) William Sailing

People Hobbies

referenced
referencing

LNAME FNAME NICK
Zysko William Bill
Holland William Willy

Exception: integrity constraint
violation

189
188

Ref Constraints: ON DELETE Ref Constraints: ON DELETE
CASCADE CASCADE

ALTER TABLE hobbies
ADD FOREIGN KEY (last, first)
REFERENCES people (lname, fname)

ON DELETE CASCADE);

LNAME FNAME NICK
Holland William Bill
Zysko William Willy

LAST FIRST HOBBY
Holland William Fishing
Zysko William Dancing
(null) William Sailing

People Hobbies

referenced referencingmatching rows

DELETE FROM people
 WHERE lname='Zysko';

LNAME FNAME NICK
Holland William Bill

LAST FIRST HOBBY
Holland William Fishing
(null) William Sailing

People Hobbies

referenced

referencingmatching rows
190

189

Ref Constraints: ON UPDATE SET Ref Constraints: ON UPDATE SET
NULLNULL

ALTER TABLE hobbies
ADD FOREIGN KEY (last, first)
REFERENCES people (lname, fname)

ON UPDATE SET NULL);

LNAME FNAME NICK
Holland William Bill
Zysko William Willy

LAST FIRST HOBBY
Holland William Fishing
Zysko William Dancing
(null) William Sailing

People Hobbies

referenced referencingmatching rows

UPDATE people
 SET fname='John'
 WHERE lname='Holland';

LNAME FNAME NICK
Holland John Bill
Zysko William Willy

LAST FIRST HOBBY
(null) (null) Fishing
Zysko William Dancing
(null) William Sailing

People Hobbies

referenced referencingmatching rows

191
190

Ref Constraints: MATCH PARTIAL Ref Constraints: MATCH PARTIAL
ON UPDATE CASCADE ON UPDATE CASCADE

ALTER TABLE hobbies
ADD FOREIGN KEY (last, first)
REFERENCES people (lname, fname)

MATCH PARTIAL ON UPDATE CASCADE);

LNAME FNAME NICK
Holland William Bill
Zysko William Willy

LAST FIRST HOBBY
Holland William Fishing
Zysko William Dancing
(null) William Sailing

People Hobbies

referenced referencingmatching rows

UPDATE people
 SET fname='John'
 WHERE lname='Holland';

LNAME FNAME NICK
Holland John Bill
Zysko William Willy

LAST FIRST HOBBY
Holland John Fishing
Zysko William Dancing
(null) William Sailing

People Hobbies

referenced
referencingmatching rows

192
191

Ref Constraints: MATCH PARTIAL Ref Constraints: MATCH PARTIAL
ON UPDATE CASCADE ON UPDATE CASCADE

ALTER TABLE hobbies
ADD FOREIGN KEY (last, first)
REFERENCES people (lname, fname)

MATCH PARTIAL ON UPDATE CASCADE);

LNAME FNAME NICK
Holland William Bill
Zysko William Willy

LAST FIRST HOBBY
Holland William Fishing
Zysko William Dancing
(null) William Sailing

People Hobbies

referenced referencingmatching rows

Exception: triggered data change operation
UPDATE people
 SET fname=nick'
 WHERE fname='William';

LNAME FNAME NICK
Holland Bill Bill
Zysko Willy Willy

LAST FIRST HOBBY
Holland Bill Fishing
Zysko Willy Dancing
(null) ??? Sailing

People Hobbies

referenced
referencingmatching rows

193
192

Referential ConstraintsReferential Constraints
More than one action can be applied to a single
row
Both actions are performed to avoid
order-dependent results

DELETE

Table T1

Table T2 Table T3

Table T4

Table T5

ON DELETE
CASCADE

ON DELETE
SET DEFAULT

ON DELETE
CASCADE

ON UPDATE
CASCADE

ON UPDATE
CASCADE

194
193

Ref Integrity between Comparable Ref Integrity between Comparable
TypesTypes

Foreign key does not have to be exact type as
primary key, just comparable. For example:

VARCHAR to CHAR
INTEGER to DECIMAL to REAL
Supertype to subtype (e.g., person to manager)

CREATE TABLE hobbies
(last CHAR(30)
first CHAR(15)
hobby VARCHAR (50)

FOREIGN KEY (last, first)
REFERENCES people (lname, fname));

CREATE TABLE people
(lname VARCHAR(40),
fname VARCHAR(30),
nick CHAR (15),
PRIMARY KEY(lname,fname)
...

195
194

Triggers OverviewTriggers Overview
Triggers provide automatic
execution
of a set of SQL statements when a
 specific data change operation
 (UPDATE, INSERT, DELETE)
occurs

Bring application logic into the
database
Transform a passive to active
DBMS

Benefits of triggers include
Code reuse
Faster application development
Easier Maintenance
Guaranteed enforcements of
business rules

Tr
ig

ge
rs

196
195

Common Uses for TriggersCommon Uses for Triggers

Enforce "transitional" business
rules
Validate input data
Generate new values for inserted
/ updated rows
Cross-reference other tables
Maintain audit, summary or mirror
data in other tables
Support "alerts"

E-mail notification
Initiate external actions

197
196

Trigger FlowTrigger Flow

VIDEO
STORE

Try our
new

on-line
Video

Catalog

Video_Table

Toy Glory C28 14.95
Star Trak S31 14.95
Indiana Bones A07 15.95
Titanic R67 19.95
Z-Files S31 25.95

CodeTitle Price

Category_Table

Adventure A07 1
Comedy C28 1
Romance R67 1
Science Fiction S31 2

CatNoCategory Cat_Total

Insert 'Z-Files' row into Video_Table

Update Category_Table
Set Cat_Total = Cat_Total + 1
Where CatNo = Code

AFTER TRIGGER

198
197

Trigger: complete flowTrigger: complete flow

Henry 44 25400 000

Inserts
Updates
Deletes

Name Age Salary Tax

Jones 23 10040 A03

Smith 56 20435 A05

Fred 23 14500 A04

Johns 12 19700 B11

Henry 44 25400 A05

Case
When Salary <= 10000 Then Tax = A03
When Salary <= 14000 Then Tax = A04
When Salary <= 19000 Then Tax = B11
When Salary <= 20000 Then Tax = A00
Else Tax = A05

End

Before

Update Tax_Table
Set Tax_Count = Tax_Count + 1
Where Tax_Level = Tax

After

Tax_Level Tax_Count
A03 1

A04 1

A05 2

B11 1

integrity
constraint
checking

199
198

Trigger CharacteristicsTrigger Characteristics

Triggering Table: Table on which the trigger is defined
Triggering Event:

An SQL Data Change Operation (INSERT,DELETE,UPDATE)
UPDATE can be qualified by column

ON the triggering table
Trigger Activation Time: BEFORE or AFTER
Trigger Granularity: FOR EACH ROW or FOR EACH
STATEMENT

CREATE TRIGGER Payroll
AFTER UPDATE OF salary ON Paytable
FOR EACH STATEMENT
INSERT INTO PAYROLL_LOG ...;

200
199

Trigger Activation TimeTrigger Activation Time

BEFORE
Evaluated entirely before triggering event
Can be considered an extension of the constraint system

Prevent invalid update operations
Useful for conditioning of input data

Validate or directly modify input values
SET allows you to modify values of affected rows

Only allowed in BEFORE triggers

CREATE TRIGGER update_balance
BEFORE INSERT ON account_history /* event */
REFERENCING NEW AS ta
FOR EACH ROW
WHEN (ta.TA_type = `W') /* condition */
UPDATE accounts /* action */

SET balance = balance - ta.amount
WHERE account_# = ta.account_#;

201
200

Trigger Activation TimeTrigger Activation Time

AFTER
Evaluated entirely after the triggering event
Can be considered an encapsulation of application logic that
normally would be performed by the updating application
Perform audit trail logging or maintain summary data
Perform actions outside the database such as writing to an
external dataset or sending an e-mail message

CREATE TRIGGER take_action
AFTER UPDATE OF balance ON accounts
REFERENCING OLD AS old_value

NEW AS new_value
FOR EACH ROW
WHEN (new_value.balance < 0)
IF account_type = `VIP' THEN INSERT INTO send_letters ...
ELSE INSERT INTO blocked_accounts ...; Beep!

Your video has been

ordered.

202
201

Trigger GranularityTrigger Granularity

Granularity controls how many times the trigger is executed
FOR EACH ROW: Executed once for each row modified by the
triggering event

Referred to as a row trigger or a row-level trigger

FOR EACH STATEMENT: Executed once each time the triggering
SQL statement is issued

Referred to as a statement trigger or a statement-level trigger

CREATE TRIGGER Purchase
AFTER INSERT ON Order
FOR EACH STATEMENT
CALL E-MAIL_CONFIRMATION;

CREATE TRIGGER AddOrder
BEFORE INSERT ON Order
REFERENCING NEW AS NewRow
FOR EACH ROW
SET NewRow.Date = CURRENT_DATE;

203
202

Triggered Action ConditionTriggered Action Condition

Triggered action condition is
optional

Condition can be any SQL condition
(involving complex queries)

In the form of a WHEN clause
(similar syntax to a WHERE clause)
Trigger will not fire if WHEN clause not
satisfied

CREATE TRIGGER ReOrder
AFTER UPDATE OF InStock ON Video_Table
REFERENCING NEW AS N
FOR EACH ROW
WHEN (N.InStock < 0.10 * N.MaxStock)

CALL ORDER_VIDEO(N.MaxStock - N.InStock, N.Video_Num);

204
203

Triggered SQL StatementsTriggered SQL Statements

Triggered SQL statements
One or more SQL statements that are executed if WHEN
clause evaluates true
Multiple statements are enclosed in BEGIN ATOMIC...END
Can include stored procedure call and functions

CREATE TRIGGER AddVideo
AFTER INSERT ON Video_Table
REFERENCING NEW AS Newrow
FOR EACH ROW
BEGIN ATOMIC
 UPDATE Item_Table SET Item_cnt = Item_cnt + 1

 WHERE ItemNo = Newrow.ItemNo;
 CALL E-MAIL_CUSTOMERS;
END;

 B
uy

 Ti
tan

ic

To
da

y

205
204

Transition VariablesTransition Variables

Transition Variables:
Contain column values of row affected by triggering operation
REFERENCING clause enables a correlation name to be assigned
to the before and after states of the row

OLD AS Oldrow: Value of row before triggering SQL operation
NEW AS Newrow: Value of row after triggering SQL operation

CREATE TRIGGER Increase
BEFORE UPDATE OF Salary_Table ON Employee
REFERENCING OLD AS Oldrow
 NEW AS Newrow
FOR EACH ROW
WHEN (Newrow.Salary > Oldrow.Salary * 1.20)
SET Newrow.Salary = Oldrow.Salary * 1.20;

206
205

Transition TablesTransition Tables

Transition Tables
Contains entire set of rows affected by triggering operation
Apply aggregations over the set of affected rows (MAX, MIN, AVG)
REFERENCING clause specifies a table identifier

OLD_TABLE AS identifier: Table of BEFORE values
NEW_TABLE AS identifer: Table of AFTER values

Only valid for AFTER triggers

CREATE TRIGGER Large_Order
 AFTER INSERT ON Invoice
 REFERENCING NEW_TABLE AS N_Table
 FOR EACH STATEMENT
 SELECT
 LARGE_ORDER_ALERT(Cust_No, Total_Price, Delivery_Date)
 FROM N_Table WHERE Total_Price > 10000

207
206

Valid Trigger Characteristic Valid Trigger Characteristic
CombinationsCombinations

Granularity Activation
 Time

Triggering
Operation

Transition
Variables
Allowed

Transition Tables
Allowed

ROW

STATEMENT

BEFORE

AFTER

BEFORE

AFTER

INSERT
UPDATE
DELETE

INSERT
UPDATE

DELETE

INSERT

UPDATE

DELETE

NEW

NEW

OLD

OLD

OLD, NEW

OLD, NEW

NONE

NEW_TABLE
OLD_TABLE, NEW_TABLE
OLD_TABLE

OLD_TABLE, NEW_TABLE

OLD_TABLE

NEW_TABLE

NONE

NONE
INSERT
UPDATE

DELETE

NONE

208207

Statements Allowed as Triggered Statements Allowed as Triggered
SQLSQL

Allowed in BEFORE triggers:
All DML statements except INSERT, UPDATE, and
DELETE statements, invocations of routines that possibly
modify SQL-data, connection and transaction statements
SET new transition variable

Allowed in AFTER triggers:
All DML statements, except connection and transaction
statements

209
208

Invoking UDFs and Stored Invoking UDFs and Stored
ProceduresProcedures

Triggers can only perform SQL operations
Ability to invoke stored procedures and user-defined
functions expands types of possible triggered
actions to include:

Conditional logic and looping
Initiation of external actions
Access to non-database resources

210
209

Raising Error ConditionsRaising Error Conditions

Triggers can be used for stopping invalid updates and for
detecting other invalid conditions.

SIGNAL SQLSTATE - New SQL statement that halts processing and
returns the requested SQLSTATE and message to the application.
Format:
SIGNAL SQLSTATE sqlstate-string-constant
(diagnostic-string-constant)

Only valid in triggered actions

CREATE TRIGGER Creditck
AFTER UPDATE OF Balance ON Customer
REFERENCING NEW AS Newrow
FOR EACH ROW
WHEN (Newrow.Balance > Newrow.CreditLimit)

SIGNAL SQLSTATE '75001' ('Credit Limit Exceeded -
Shred Card');

211
210

Triggers - Misc.Triggers - Misc.

Trigger cascading
 Triggers can cause other triggers to fire

Interaction with RI and other constraints
 Trigger actions can cause checking constraints
 Trigger actions can cause RI checks to be performed
 RI actions can activate triggers

Several triggers per event/activation time
 Ordering: ascending order of creation

212
211

SQL3's Trigger Execution ModelSQL3's Trigger Execution Model
Determine set

of affected
rows (SAR)

Process
BEFORE
triggers

Apply SAR for
Si to the target

table

Apply
RESTRICT

rules

Apply CASCADE
& SET NULL

rules

Apply NO ACTION
rules, CHECK
constraint, and

CHECK OPTION

Process AFTER
triggers from S1

and S2 to Sn

constraints

SQL statement S1

error

error

secondary
SQL stmt
(s2 to Si)

error

error

cascaded
SQL stmt

error

213
212

PredicatesPredicates
From SQL/89
Comparison (=, <, >, <=, >=, <>)
value1 BETWEEN value2 AND value3
value1 IN subquery or (value-list)
column LIKE pattern ESCAPE char
column IS NULL
value comp-op ALL or ANY subquery
EXISTS subquery

Added in SQL/92
row-value IS NULL
row-value comp-op ALL or ANY or SOME subquery
UNIQUE subquery
row-value MATCH options subquery
row-value1 OVERLAPS row-value2
pred IS TRUE or FALSE or UNKNOWN

214
213

New and Extended PredicatesNew and Extended Predicates

Extensions
BETWEEN predicate (syntactic sugar)
LIKE predicate (BLOB support)
Matching rows: SIMPLE match (syntactic salt)

New predicates
DISTINCT predicate (no SIMPLE match)
SIMILAR predicate (GREP facilities)
Type predicate (tests dynamic types)

215
214

Predicate Extensions: BETWEENPredicate Extensions: BETWEEN

A BETWEEN B AND C
 B A C
SQL92: Implicit assumption: B<=C
SQL99: new syntax, same behavior
A BETWEEN B AND C
same as
A BETWEEN ASYMMETRIC B AND C
New in SQL99: Limits may be specified in any
order:
A BETWEEN SYMMETRIC C AND B

216
215

Predicate Extensions: MATCH Predicate Extensions: MATCH
SIMPLESIMPLE

No new functionality (over SQL92)
Better syntactic visibility for testing whether a row has a
matching row in the result of a subquery
Example:

C.ForeignKey MATCH SIMPLE (VALUES (P.PrimaryKey))
Match, if operands NOT DISTINCT

Corresponding MATCH option in foreign key definition

217
216

New in SQL99: DISTINCT PredicateNew in SQL99: DISTINCT Predicate

Tests distinctness of two rows
2 rows DISTINCT, if at least two corresponding
fields distinct

Scalar fields are not distinct if:
One of them NULL or
Both equal

Row-valued fields: recurse
Array-valued fields: Analogously to rows

Note: NOT DISTINCT does not necessarily imply
equality

218
217

New in SQL99: SIMILAR PredicateNew in SQL99: SIMILAR Predicate

Specify character string similarity by regular
expressions
Well-known UNIX feature (e.g. GREP)
Search patterns allow for

Masking symbols (%, _ (like LIKE))
Repetition (*, +)
Enumeration (e.g. [,.; !?])
Negation (e.g. [^02468])

Example:
WHERE T.Name SIMILAR TO 'St[.]*[aA]nford'

219
218

New in SQL99: Type predicate New in SQL99: Type predicate

Allows determination of dynamic type
Purpose

Allows row selection by specific subtypes (e.g. only with EURO
in MONEY column)
Allows to prune off certain subtypes (e.g. French Francs)

Example: Find items from table real_estate_info
table that are priced in EURO (but not in any of its
substitutes, e.g. Dutch guilders):
SELECT * FROM real_estate_info

 WHERE Price IS OF ONLY (EURO)

220
219

SET OperatorsSET Operators
From SQL/89

UNION, but only in cursor declarations
Added in SQL/92

UNION usable “everywhere”
INTERSECT
EXCEPT (“difference”)
CORRESPONDING options

Find all people that do not have hobbies:
(SELECT lname, fname
FROM people)
EXCEPT
(SELECT last, first
FROM hobbies)

221
220

DML OrthogonalityDML Orthogonality
Constructors exist for rows and tables

VALUES (‘Holland’, ‘John’)
VALUES ((‘Bartz’, ‘Mary’), (‘Lindsay’, ‘Bob’))

Special 1-row SELECTs:
VALUES (CURRENT TIME) INTO :hv

Multirow inserts:
INSERT INTO PROVINCE
VALUES ((‘BC’,’British Columbia’),

(‘AB’,’Alberta’), ...
(‘NF’,’Newfoundland’))

In-memory (transient) “tables”:
SELECT NATION, POPULATION
FROM NATIONS
UNION ALL
VALUES (‘Quebec’,6000000),

(‘California,24000000)

222
221

DML Orthogonality (cont.)DML Orthogonality (cont.)

Predicates operate on rows, rather than scalars

(SELECT lname, fname FROM people WHERE ...) -- row subquery
=

(SELECT last, first FROM hobbies WHERE ...) -- row subquery

223
222

DML Orthogonality (cont.)DML Orthogonality (cont.)
Subquery can be used wherever
expressions are allowed

Implicit conversion from row with single column
 to scalar value (problem)

On right hand side of
expressions:

SELECT *
FROM people
WHERE lname = (SELECT last

FROM hobbies
WHERE hobby = ‘travel’)

In the SELECT list:
SELECT AVG(salary),

(SELECT AVG(salary) FROM mgr_employee),
(SELECT AVG(salary) FROM temp_employee)

FROM employee
SELECT last, first, (SELECT description

FROM hobby_description h
WHERE h.name = hobbies.hobby)

FROM hobbies
WHERE ...

UPDATE based on another
table:

UPDATE employee
SET salary = (SELECT MAX(salary)

FROM mgr_employee)
WHERE employee.name = ‘Doe’

224
223

CAST SpecificationCAST Specification

CAST (<expression> AS <data type>)

Converts a value of one data type into a value of another data
type

CAST (salary AS CHAR (10))
CAST (:string AS INTEGER)
CAST (mtg_date AS CHAR (14))

Not all combinations of source and target data type are valid
When particular values cannot be represented in the target data type an
exception is raised

CAST (‘1992-FEBRUARY-29’ AS DATE)
Uses

Force proper data types for UNION and similar operators
Assignment to host variables (e.g., DATE)
Produce printable results

225
224

CASE ExpressionCASE Expression
If/then/else logic in SQL
Powerful way of embedding logic in SELECT
and WHERE clauses

Translation of encoded values
SELECT abbreviation, CASE

WHEN abbreviation = ‘CA’ THEN ‘California’
WHEN abbreviation = ‘SD’ THEN ‘South Dakota’
WHEN ...
ELSE ‘Unknown’
END

FROM states
WHERE ...

Protection against exceptions
SELECT emp_name, deptno
FROM employee
WHERE (CASE bonus + commission

WHEN 0 THEN NULL
ELSE salary / (bonus+commission))

> 10

Used to “implement” COALESCE
SELECT COALESCE (nick, first, last,

‘Unknown’)
FROM people

226
225

Joined TablesJoined Tables
SQL-89 provides only

Cross products
Inner joins

SELECT lname, nick, hobby
FROM people, hobbies
WHERE people.fname = hobbies.first
AND people.lname = hobbies.last

SQL-92 adds 3 types of joined table
Cross join (new syntax)
Inner join (new syntax)
Union join
Outer join - left, right, and full

Variations
Named columns join
Natural join
Cross join

“Old style” join without WHERE clause

SELECT * SELECT *
FROM (people FROM people, hobbies

CROSS JOIN
hobbies) AS result

227
226

Outer JoinOuter Join
Left, Right, and Full
May be nested
Joins two tables in such a way that includes rows from one table that have no
match in the other

LNAME FNAME NICK
Adams John (null)
Holland William Bill
Zysko William Willy

LAST FIRST HOBBY
Holland William Fishing
Zysko William Dancing
(null) William Sailing

People Hobbies

SELECT lname, fname, hobby
 FROM people
 LEFT OUTER JOIN hobbies

ON lname=last;

lname fname hobby
Adams John (null)
Holland William Fishing
Zysko William Dancing

Show people who have
no hobbies

228
227

Table ExpressionsTable Expressions
SQL92 supports the notion of table expressions

View definition bodies placed inside the SQL statement instead of
a view reference! Allows complex queries to be expressed in a
single table-expression (SQL thereby becomes a relationally
complete language).

Correlation name must be specified
Columns may be renamed
SELECT AVG (n_hobbies)
FROM (SELECT last, first, COUNT (*)

 FROM hobbies
 GROUP BY last, first)

AS grouped_hobbies (last, first, n_hobbies)
WHERE grouped_hobbies.last LIKE ‘N%’

Why use them?
To avoid temporary view creation
To enable grouping on expressions
To allow host variables in the "view"

SELECT Source, Destination,
 MIN(New_cost)

FROM (
 SELECT Source, Destination, Carrier,
 Cost * :discount_rate AS New_cost
 FROM Flights
) AS New_price

GROUP BY Source, Destination

Source Destination Carrier Cost

Paris Detroit KLM 7
Paris New York KLM 6
Paris Boston AA 8
New York Chicago AA 2
Boston Chicago AA 6
Detroit San Jose AA 4
Chicago San Jose AA 2

Flights

229
228

Common Table ExpressionsCommon Table Expressions
SQL3 expands SQL/92's notion of table expressions, allowing them
to be defined once and used multiple times

"Reusable" table expressions
Why use them?

To avoid overhead of re-evaluation for each reference
To avoid errors associated with each reference possibly returning
different results.
Enable recursive queries (see later charts)

For each carrier, give its lowest fare between two cities, and all carriers who offer
a lower or equal lowest fare between the same two cities.

WITH New_Price AS (
 SELECT Source, Destination, Carrier,
 Cost * :discount_rate AS New_Cost
 FROM Flights)
SELECT a.Source, a.Destination, a.Carrier, a.New_Cost,
 b.Carrier, b.New_Cost
FROM New_Price a, New_Price b
WHERE a. Source = b.Source AND a.Destination = b.Destination AND
 a.Carrier <> b.Carrier AND a.NewCost >= b.New_Cost

230
229

San
Jose

Detroit New
York

Paris

Chicago
San
Francisco

Recursive SQLRecursive SQL: A First Example: A First Example

SOURCE DESTIN MIN
(Total_ Cost)

Paris San Fran 14

Paris San Jose 10

Find the cheapest flight from Paris to San Jose or San
Francisco.

WITH RECURSIVE Reachable_From (Source, Destin, Total_Cost) AS
 (SELECT Source, Destination, Cost
 FROM Flights
 WHERE Source = 'Paris'
 UNION
 SELECT in.Source, out.Destination, in.Total_Cost + out.Cost
 FROM Reachable_From in, Flights out
 WHERE in.Destin = out.Source
)
SELECT Source, Destin, MIN(Total_Cost)
FROM Reachable_From
WHERE Destin in ('San Jose', 'San Francisco')
GROUP BY Source, Destin

Reachable_From

231
230

Recursive SQL: Rationale and Recursive SQL: Rationale and
ChallengesChallenges

What is recursive SQL?
self-referencing table expressions
self-referencing views

Why use recursion?
Bill of material processing
Network traversals (e.g. airline routing)

Functionality and performance benefits
Challenge: integration into SQL

Syntax in analogy to Datalog
Advanced recursion (e.g. mutual recursion)
Integration with different forms of joins
Allowing for duplicates
Graph traversal in "depth first" or "breadth first"
Cycle control

232
231

Recursive SQL: Advanced Use of Recursive SQL: Advanced Use of
Join FacilitiesJoin Facilities

Find all connections between two cities and the number of risky hops
Table risky_cities contains all the cities with insecure airports

with RECURSIVE reachable_from (source, destin, risk_count) AS
(select source, destin, 0
from flights

union all
select in.source, out.destin,

-- Add one to the risk count for this flight.
risk_count + case when risky_cities.name is null then 0 else 1 end
as risk_count

from reachable_from in
inner join (flights out left outer join risky_cities

on (out.source = risky_cities.name))
on (in.destin = out.source)

)
select * from reachable_from
Because not every flight goes through a risky city, we use an outer
join instead of a regular join

233
232

Bill of Material QueriesBill of Material Queries

Pno Pname Levelcode IsPhantom
P1 Main root no
P2 Rack no
P3 Fitting yes
P4 Cover yes
P5 Brace leaf no
P6 Angle leaf no

PARTMASTER

Major Minor Qty
P1 P2 2
P1 P3 3
P1 P4 2
P2 P3 3
P2 P5 2
P3 P5 4
P3 P6 2
P4 P3 5
P4 P6 2
P7 P8 3
P7 P9 2

PART_PART

P4P3P2

P1

P6P5

2 3
2

3

2 4 2

5

2

P9P8

P7

3 2

234
233

Bill of Material Queries: Quantity Bill of Material Queries: Quantity
CalculationCalculation

Preliminary quantities calculation
WITH RECURSIVE px (Major, Minor, Qty) AS

(SELECT Major, Minor, Qty
FROM Part_Part pp
WHERE pp.Major = `P1'

UNION ALL
SELECT pp.Major, pp.Minor, px.Qty * pp.Qty
from px, Part_Part pp
where pp.Major = px.Minor

)
SELECT Major, Minor, Qty FROM px;
(counts along "paths"; e.g. P1 contains 4 P5 items along path P1->P2->P5)

Summarized quantities calculation
WITH RECURSIVE px (Major, Minor, Qty) AS

(SELECT Major, Minor, Qty
FROM Part_Part pp
WHERE pp.Major = `P1'

UNION ALL
SELECT pp.Major, pp.Minor, px.Qty*pp.Qty
FROM px, Part_Part.pp
WHERE pp.Major = px.Minor

)
SELECT Minor, SUM(Qty)
FROM px
GROUP BY Minor;
(counts total quantity for each part)

235
234

Eliminating intermediate `phantom' parts

WITH RECURSIVE PPX (Major, IsNewArc, Minor, Qty) AS
(SELECT Major, pm.isPhantom, Minor, Qty

from Part_Part pp, Partmaster pm
where pp.Major = `P1' and pp.Major = pm.Pno

 AND pm.isPhantom = `NO'
 UNION ALL

SELECT case pm.isPhantom
 WHEN `YES' THEN ppx.Major ELSE pp.Major END, --- Major
 pm.isPhantom, --- IsNewArc
 pp.Minor, --- Minor

 CASE pm.isPhantom
 WHEN `YES' THEN ppx.Qty * pp.Qty ELSE pp.Qty END,--- Qty

FROM ppx, Part_Part pp, Partmaster pm
WHERE pp.Major = ppx.Minor and pp.Major = pm.Pno

)
SELECT ppx.Major, ppx.Minor, ppx.Qty, ppx.IsNewArc
FROM ppx, Partmaster pm
WHERE ppx.Minor = pm.Pno AND
 pm.isPhantom = `NO'

Bill of Material Queries: Graph Bill of Material Queries: Graph
RestructuringRestructuring

P4P3

P1

P6

3 2

2
5

2

P6

P1

6 20 4

236
235

Bill of Material Queries: Generation of Bill of Material Queries: Generation of
Search Order ColumnsSearch Order Columns

Parts Explosion with generated column for "depth-first" search order (in
essence: concatenated key info)

WITH RECURSIVE px (Major, Minor) AS
(SELECT Major, Minor FROM Part_Part pp WHERE pp.Major = `P1'

UNION ALL
SELECT pp.Major, pp.Minor FROM px, Part_Part pp WHERE pp.Major = px.Minor

) SEARCH DEPTH FIRST BY Major, Minor SET CatenatedKey
SELECT Major, Minor
FROM px
ORDER BY CatenatedKey

Parts Explosion with generated column for "breadth-first" search order (level
and key info)

WITH RECURSIVE px (Major, Minor) AS
(SEELCT Major, Minor FROM Part_Part pp WHERE pp.major = `P1'
UNION ALL

SELECT pp.Major, pp.Minor FROM px, Part_Part pp WHERE pp.Major = px.Minor
) SEARCH BREADTH FIRST BY Major, Minor SET OrderColumn
SELECT Major, Minor
FROM px
ORDER BY OrderColumn;

BREADTH or DEPTH feature only applicable for "simple" recursive queries
Results in query rewrite

237
236

Bill of Material Queries: Bill of Material Queries:
Protection against LoopingProtection against Looping

Duplicate suppression avoids cycles
Use of CYCLE clause for simple recursive queries

Effects rewrite of query s.t. traversed paths are maintained
(column path) using "navigator columns" (here column Minor),
and rows with duplicate paths are marked (see column
CycleMark)
Query techniques used in rewrite process also usable
"manually"

WITH RECURSIVE px (Major, Minor) AS
(SELECT Major, Minor

FROM Part_Part pp
WHERE pp.Major = `P1'

UNION ALL
SELECT pp.Major, pp.Minor,
FROM px, Part_Part pp
WHERE pp.Major = px.Minor

) CYCLE Minor SET CycleMark TO '1' DEFAULT '0' USING Path
SELECT Major, Minor
FROM px
ORDER BY Major, Minor DESC ;

238
237

Bill of Material queries: Graph Bill of Material queries: Graph
Pruning ExamplesPruning Examples
"where-used"

WITH RECURSIVE px (Major, Minor) AS
(SELECT Major, Minor

FROM Part_Part pp
WHERE pp.Minor = `P5'

UNION
SELECT pp.Major, pp.Minor
FROM px, Part_Part pp
WHERE pp.Minor = px.Major)

SELECT Major, Minor FROM px;

Parts explosion excluding base parts
WITH RECURSIVE px (Major, Minor, Pname, Levelcode) AS

(SELECT Major, Minor, pm.pname, pm.Levelcode
FROM Part_Part pp, Partmaster pm
WHERE pp.Major = `P1'
AND pp.Minor = pm.Pno

UNION ALL
SELECT pp.Major, pp.Minor, pm.Pname, pm.Levelcode
FROM px, Part_Part pp, partmaster
WHERE pp.Major = px.Minor
AND pp.Minor = pm.Pno
AND px.Levelcode <> `LEAF')

SELECT Major, Minor, Pname, Levelcode FROM px;

239
238

SQL99 OLAP SQL ExtensionsSQL99 OLAP SQL Extensions
Extension to GROUP BY clause
Produces "super aggregate" rows
ROLLUP equivalent to "control
breaks"
CUBE equivalent to "cross tabulation"
GROUPING SETS equivalent to
multiple GROUP BYs
Provides "data cube" collection
capability

Often used with data visualization
tool

Templates

Product

Store

Month

Product

Month Store

240
239

OLAP SchemaOLAP Schema
Typically uses a "STAR" structure

Dimension tables tend to be small
Fact table tends to be huge

period_desc
description
Per_year
Per_quarter
Per_month
Per_day

Period
dimension table

dimensions

measures

store_id
product_id
period_desc

dollars
units
price
sales_date

Detailed_Sales
fact table

store_id
name
city
region
sales_mgr

Store
dimension table

product_id
brand
size
producer
caselot

Product
dimension table

CREATE VIEW Sales AS
(SELECT ds.*, YEAR (sales_date) AS year, MONTH (sales_date) AS month,
DAY (sales_date) AS day
FROM (Detailed_Sales NATURAL JOIN Store NATURAL JOIN Product
NATURAL JOIN Period) ds 241

240

SELECT month, city, producer, SUM(units) AS sum_units
FROM Sales
WHERE year = 1998
GROUP BY ROLLUP (month, city, producer)

All

NY SF...

Jan Feb

NY SF...

P1 P2... P1 P2... P1 P2... P1 P2...

Month

City w/in Month

Producer w/in Store w/in Month

Result

Drill-D
own

ROLLUPROLLUP
Extends grouping semantics to produce "subtotal" rows

Produces "regular" grouped rows
Produces same groupings reapplied down to grand total

242
241

ROLLUPROLLUP
Find the total sales per region and sales manager during each
month of 1996, with subtotals for each month, and concluding with
the grand total:

SELECT month, region, sales_mgr, SUM (price)
FROM Sales
WHERE year = 1996
GROUP BY ROLLUP (month, region, sales_mgr)

MONTH REGION SALES_MGR SUM(price)
April Central Chow 25 000
April Central Smith 15 000
April Central - 40 000
April NorthWest Smith 15 000
April NorthWest - 15 000
April - - 55 000
May Central Chow 25 000
May Central - 25 000
May NorthWest Smith 15 000
May NorthWest - 15 000
May - - 40 000

- - - 95 000
243242

CUBECUBE
Further extends grouping semantics to produce multidimensional
grouping and "subtotal" rows

Superset of ROLLUP
Produces "regular" grouped rows
Produces same groupings reapplied down to grand total
Produces additional groupings on all variants of the CUBE clause

Month Store Product

All

Store
w/in

Month

Product
w/in

Store
w/in

Month

Product
w/in

Month

Store
w/in

Product
w/in

Month

Month
w/in

Store

Product
w/in

Month
w/in

Store

Month
w/in

Product

Store
w/in

Month
w/in

Product

Product
w/in

Store

Month
w/in

Product
w/in

Store

Store
w/in

Product

Month
w/in

Store
w/in

Product

SELECT month, city, product_id, SUM(units)
FROM Sales
WHERE year = 1998
GROUP BY CUBE (month, city, product.id)

244
243

MONTH REGION SALES_MGR SUM(price)
April Central Chow 25 000
April Central Smith 15 000
April Central - 40 000
April NorthWest Smith 15 000
April NorthWest - 15 000
April - Chow 25 000
April - Smith 30 000
April - - 55 000
May Central Chow 25 000
May Central - 25 000
May NorthWest Smith 15 000
May NorthWest - 15 000
May - Chow 25 000
May - Smith 15 000
May - - 40 000

- Central Chow 50 000
- Central Smith 15 000
- Central - 65 000
- NorthWest Smith 30 000
- NorthWest - 30 000
- - Chow 50 000
- - Smith 45 000
- - - 95 000

SELECT ... GROUP BY CUBESELECT ... GROUP BY CUBE
SELECT month, region, sales_mgr, SUM(price)
FROM Sales
WHERE year = 1996
GROUP BY CUBE (month, region, sales_mgr)

245244

GROUPING SETSGROUPING SETS
Multiple "groupings" in a single pass

Used in conjunction with usual aggregation (MAX, MIN, SUM, AVG,
COUNT, ...)
Allows multiple groups e.g. (month, region) and (month, sales_mgr)
Result can be further restricted via HAVING clause

Find the total sales during each month of 1996, per region and per sales manager:

SELECT month, region, sales_mgr, SUM(price)
FROM Sales
WHERE year = 1996
GROUP BY GROUPING SETS ((month, region),

 (month, sales_mgr))

MONTH REGION SALES_MGR SUM(SALES)
April Central - 40 000
April NorthWest - 15 000
April - Chow 25 000
April - Smith 30 000
May Central - 25 000
May NorthWest - 15 000
May - Chow 25 000
May - Smith 15 000

246
245

Generating Grand Total RowsGenerating Grand Total Rows
Special syntax available to include a "grand total" row in the result

Grand totals are generated implicitly with ROLLUP and CUBE
operations
Syntax allows grand totals to be generated without additional
aggregates

Get total sales by month, region, and sales manager and also the overall total
sales:
SELECT month, region, sales_mgr, SUM (price)
FROM Sales
WHERE year = 1996
GROUP BY GROUPING SETS ((month, region, sales_mgr),

 ())

MONTH REGION SALES_MGR SUM(SALES)
April Central Chow 25 000
April Central Smith 15 000
April NorthWest Smith 15 000
May Central Chow 25 000
May NorthWest Smith 15 000

- - - 95 000
247

246

The GROUPING FunctionThe GROUPING Function
New column function

Allows detection of rows that were generated
during the execution of CUBE and ROLLUP i.e.
generated nulls to be distinguished from
naturally occurring ones

Example:
Run a rollup, and flag the generated rows...

SELECT month, region, sales_mgr, SUM(price), GROUPING(sales_mgr)
FROM Sales
WHERE year = 1996
GROUP BY ROLLUP (month, region, sales_mgr)

248
247

Result...Result...

MONTH REGION SALES_MGR SUM(SALES) GROUPED

April Central Chow 25 000 0
April Central Smith 15 000 0
April Central - 40 000 1
April NorthWest Smith 15 000 0
April NorthWest - 15 000 1
April - - 55 000 1
May Central Chow 25 000 0
May Central - 25 000 1
May NorthWest Smith 15 000 0
May NorthWest - 15 000 1
May - - 40 000 1

- - - 95 000 1

SELECT month, region, sales_mgr, SUM(price), GROUPING(sales_mgr) AS
GROUPED
FROM Sales
WHERE year = 1996
GROUP BY ROLLUP (month, region, sales_mgr)

249248

Selecting Nongrouped ColumnsSelecting Nongrouped Columns

Nongrouped columns can sometimes be
selected based on functional dependencies:

SELECT e.deptno, d.location, AVG (e.salary) AS average
FROM Emp e , Dept d
WHERE e.deptno = d.deptno
GROUP BY e.deptno

SELECT e.deptno, e.name, AVG (e.salary) AS Average
FROM Emp e, Dept d
WHERE e.deptno =d.deptno
GROUP BY e.deptno

e.deptno determines d.deptno (equals in WHERE clause),
and d.deptno determines d.location (deptno is PK of Dept);
therefore, d.deptno and d.location are consistent within any
group. This is functional dependency analysis in action.

ILLEGAL!!!!

LEGAL

250
249

UPDATE through UNIONUPDATE through UNION

CREATE VIEW people_or_hobbies
AS SELECT fname, lname
FROM people
UNION ALL
SELECT first, last
FROM hobbies;

UPDATE people_or_hobbies
SET fname='Wilhemina' ,
lname='Jing'
WHERE fname='Zysko' and
lname='William' ;

LNAME FNAME NICK
Holland William Bill
Zysko William Willy

LAST FIRST HOBBY
Holland William Fishing
Zysko William Dancing
Smith (null) Painting

LNAME FNAME
Smith (null)
Holland William
Holland William
Zysko William
Zysko William

LNAME FNAME NICK
Holland William Bill
Jing Wilhemina Willy

LAST FIRST HOBBY
Holland William Fishing
Jing Wilhemina Dancing
Smith (null) Painting

people_or_hobbies

People Hobbies

People Hobbies

251250

UPDATE through JOINUPDATE through JOIN
People

DECLARE c1 CURSOR FOR
WITH people_and_hobbies AS
(people INNER JOIN hobbies

ON (fname=first AND lname=last))
SELECT *

 FROM people_and_hobbies;

UPDATE person_and_hobbies
SET hobby ='birdwatching'
WHERE CURRENT OF c1;

LNAME FNAME NICK
Holland William Bill
Zysko William Willy

LAST FIRST HOBBY
Holland William Fishing
Zysko William Dancing
Smith (null) Painting

Hobbies

LNAME FNAME NICK LAST FIRST HOBBY
Holland William Bill Holland William Fishing
Zysko William Willy Zysko William Dancing

people_and_hobbies

c1

people_and_hobbies
LNAME FNAME NICK LAST FIRST HOBBY
Holland William Bill Holland William birdwatching

Zysko William Willy Zysko William Dancing 252
251

INSERT through JOININSERT through JOIN

CREATE VIEW Dancers AS
people JOIN hobbies

ON (fname=first AND last=lname)
WHERE hobby='Dancing'
WITH CHECK OPTION;

INSERT INTO dancers
VALUES ('John', 'Harshman', 'John'

 'John', 'Harshman', 'Dancing');

LNAME FNAME NICK
Holland William Bill
Zysko William Willy

LAST FIRST HOBBY
Holland William Fishing
Zysko William Dancing
Smith (null) Painting

People Hobbies

LNAME FNAME NICK LAST FIRST HOBBY
Zysko William Willy Zysko William Dancing

Dancers

LNAME FNAME NICK LAST FIRST HOBBY
Zysko William Willy Zysko William Dancing
Harshman John John Harshman John Dancing

Dancers

253
252

Provide name for column in result table

Can be used in ORDER BY

DECLARE paryroll CURSOR FOR
SELECT name, base_salary + commission AS pay
FROM employees
ORDER BY pay

Named ExpressionsNamed Expressions

254
253

Scrollable CursorsScrollable Cursors
In SQL89, FETCH always retrieves “next” row
In SQL92, cursors are scrollable:

Allows both forward and backward movement of the cursor
Allows skipping of rows

EXEC SQL DECLARE c SCROLL CURSOR FOR SELECT ...;
EXEC SQL OPEN c ;
EXEC SQL FETCH ABSOLUTE 10 FROM c INTO ...;
EXEC SQL FETCH RELATIVE 32 FROM C INTO ...;
EXEC SQL FETCH PRIOR FROM C INTO ...;

FETCH options are:
FIRST
LAST
NEXT
PRIOR
ABSOLUTE n
RELATIVE n

255
254

Scrollable Cursor Example Scrollable Cursor Example

NEXT

PRIOR

FIRST

ABSOLUTE 10

RELATIVE 10

LAST

current position

RELATIVE -3

256
255

READ ONLY and FOR UPDATE
Allows an explicit specification of the columns of a
cursor that may be updated

EXEC SQL DECLARE c1 CURSOR FOR
SELECT lname, fname FROM people
READ ONLY ;

EXEC SQL DECLARE c2 CURSOR FOR
SELECT lname, fname, nick FROM people
FOR UPDATE OF nick;

READ ONLY and FOR UPDATE OF READ ONLY and FOR UPDATE OF
Cursors Cursors

257
256

Cursor SensitivityCursor Sensitivity

SQL92 feature
New in SQL99: ASENSITIVE

Same as SQL92, when neither SENSITIVE nor INSENSITIVE
specified
Effect implementation-defined

Purpose of cursor sensitivity: controls whether cursor Cx can see
changes which have been

Affected in same TX (say TX1)
Not caused by CX itself (e.g. by cursor CY; by INSERT statement)

258
257

Cursor Sensitivity (cont.)Cursor Sensitivity (cont.)
SENSITIVE: changes are visible
INSENSITIVE: changes are invisible

Cursor is READ ONLY
Example:
 EXEC SQL;

 DECLARE C CURSOR SENSITIVE FOR
 SELECT * FROM People;

Note: Visibility of changes from foreign TXs also controlled by
isolation level
If cursor is holdable and kept open:

SENSITIVE: changes of TX1 and subsequent TX2 remain/become
visible
INSENSITIVE: these changes are not visible

259
258

Holdable cursorsHoldable cursors

New in SQL99
Let TXC be the TX in which a cursor C is
created
Classical (non-holdable) cursors are
closed when TXC is terminated (i.e. they
do not survive TXC)
Open holdable cursors

Remain open when TX is committed
Are closed and destroyed when

TXC is rolled back
Session is terminated

260
259

ORDER BY ExtensionsORDER BY Extensions

ORDER BY on columns not in the select list

DECLARE CURSOR FOR
SELECT empno, name
FROM employee

ORDER BY salary DESC

ORDER BY expressions

DECLARE C2 CURSOR FOR
SELECT empno, name
FROM employee

ORDER BY salary + bonus ASC

261
260

Temporary TablesTemporary Tables
Used to increase concurrency and decrease processing costs

May be updated even if the transaction has an access mode of read-only
Created Global Temporary Tables

Table definition is persistent (i.e., exists within a schema)
A new instance of the table is created for each SQL-session
Table may be shared by procedures in multiple modules in a the same session

CREATE GLOBAL TEMPORARY TABLE VIP_accounts
(account_id INTEGER,
balance money,
type account_type)
ON COMMIT PRESERVE ROWS; --- DELETE rows also supported

Created Local Temporary Tables
 Distinct instances are created for each SQL-session/module combination

CREATE LOCAL TEMPORARY TABLE VIP_accounts
(account_id INTEGER,
balance money,
type account_type)
ON COMMIT DELETE ROWS;

262
261

Temporary TablesTemporary Tables
Declared Local Temporary Tables
Table definition is not persistent (i.e., exists only in the module it is defined)
An instance is created for each SQL-session/module combination

MODULE ...
LANGUAGE ...
SCHEMA ... AUTHORIZATION ...
DECLARE LOCAL TEMPORARY TABLE MODULE.t1
(account_id INTEGER,
balance money,
typeaccount_type)
ON COMMIT DELETE ROWS;

Constraints between temporary tables and persistent tables

Source Table Target Table
base may not reference any temporary
any temporary may not reference base
created global may reference created global
created local may reference created global
created local may reference created local
declared local may reference created global
declared local may reference created local
declared local may reference declared local

263
262

RolesRoles
New in SQL99; benefits:

Simplifies definition of complex sets of privileges
Roles are created

Note: definition of users implementation-defined
CREATE ROLE Auditor
CREATE ROLE AuditorGeneral

Roles may be assigned to users & roles
GRANT Auditor TO AuditorGeneral
WITH ADMIN OPTION
GRANTED BY CURRENT ROLE

GRANT Auditor TO Smith
Controllable whether to grant as user or role

264
263

Roles (cont.)Roles (cont.)

Roles (like users) may own objects
As to users, privileges may be granted to roles
Grant INSERT ON TABLE Budget TO Auditor

This privilege also among privileges of
AuditorGeneral

A role R identifies a set of privileges:
Those directly granted to R
Those of the roles granted to R

265
264

Roles (cont.)Roles (cont.)

At any time there is at least either a valid current user or a valid
current role
Current user can be set

Invalidates current role
SET SESSION AUTHORIZATION 'JDOE'

Current role can be set or invalidated
SET ROLE Auditor

Operations (e.g. INSERT) determine the kind of required
privileges

Often: union of user's and role's privileges
Session context maintains stack of user and role identifier pairs

New pair is pushed when externally invoked procedure is executed
Temporarily makes client module identifier the current user
Enables invoker's rights in a limited fashion

266
265

Error Handling: SQLSTATEError Handling: SQLSTATE
In SQL/89

SQLCODE integer value: 0, +100, negative values
deprecated feature
5-character SQLSTATE may be used in place of
SQLCODE

2 characters represent class
3 characters represent subclass

Classes and subclasses reserved for vendor
extensions
SQLSTATE SQLCODE Description

'00000' 0 Successful
completion

'02000' 100 No data

'22001' -n Data exception -
string data, right
truncation

'22012' -n Data exception-
division by zero

267
266

Error Handling: Diagnostics AreaError Handling: Diagnostics Area

Records information about exceptions, warnings, no data, and
successful completion

Can retain information about several exceptions
Execution of a statement may raise multiple exceptions
SQLSTATE, relevant catalog, schema, or table, relevant constraint,
relevant cursor, message text

EXEC SQL BEGIN DECLARE SECTION;
 int n, i;
 char sqlstate [5], s [5];
EXEC SQL END DECLARE SECTION;

report_error ()
{
 EXEC SQL GET DIAGNOSTICS :n = NUMBER;
 for (i = 1, i <=n, i++)
 {
 EXEC SQL GET DIAGNOSTICS EXCEPTION :i
 :s = RETURNED_SQLSTATE, ... ;
 printf (...) ;
 }

268
267

Transactions in SQL92Transactions in SQL92
Transactions start implicitly and end with COMMIT WORK
or ROLLBACK WORK

Attributes
Access mode: READ ONLY and READ WRITE
Isolation level: READ UNCOMMITTED, READ COMMITTED,

REPEATABLE READ, and SERIALIZABLE
Diagnostics area size

Isolation level Dirty read Non-repeat
able read

Phantom

READ UNCOMMITTED possible possible possible

READ COMMITTED not possible possible possible
REPEATABLE READ not possible not possible possible

SERIALIZABLE not possible not possible not possible

269
268

Transactions in SQL92 (cont.)Transactions in SQL92 (cont.)

SET TRANSACTION statement cannot be executed while
a transaction is active

SET TRANSACTION READ WRITE,
READ COMMITTED
DIAGNOSTICS SIZE 20;

An implementation does not have to support DML and
DDL statements mixed within a single transaction

An SQL-transaction may be part of an encompassing
transaction

If an SQL-transaction has been started by a non-SQL
agent, then a COMMIT statement will raise an exception

Keyword WORK is optional

270
269

Transaction Management: New in Transaction Management: New in
SQL99SQL99

New statements for
Explicitly starting TXs

Also sets TX characteristics
Establishing savepoints
Destroying savepoints

Extensions of SQL 92 features
Savepoint processing in commit, rollback
CHAIN option for commit and rollback

Initiates new TX
LOCAL option of set TX statement

If TX served by n>1 servers ("TX branches")
Allows different "branch" characteristics

271
270

Savepoint: ExampleSavepoint: Example

Insert row into table People and establish savepoint
INSERT INTO People

VALUES('Doe', 'John', 'Hans');
SAVEPOINT SP1

Change that row
UPDATE People SET Nick = 'Jean'

 WHERE LName = 'Doe'

Undo the last change
ROLLBACK TO SAVEPOINT SP1

Note: TX remains open; Nickname reset to 'Hans'

272
271

ConnectionsConnections

Association between an SQL-client and an SQL-server.
There is an SQL-session associated with each connection.

env = “IBMSYS” ;
connect = “STLconnection” ;
user = “Todd” ;
EXEC SQL CONNECT TO :env AS :connect USER :user

...
EXEC SQL COMMIT;
env = “IBMSYS2”;
EXEC SQL SET CONNECTION :env;

Transactions that affect more than one SQL-environment do
not have to be supported.

273
272

SQL FlaggerSQL Flagger

Used to flag:
Extensions to the level of SQL/99 chosen
Conforming language that is being processed in a
non-conforming way

Must be provided with an SQL implementation

Provides one or more of the following "levels of
flagging":

Core SQL flagging
Part SQL flagging
Package SQL flagging

Provides one or more of the following "extent"
options:

Syntax only
Catalog lookup

274
273

Module LanguageModule Language
Module definition
module read
Language C
Authorization reader
DECLARE people CURSOR FOR

 SELECT last, first
 FROM hobbies
 WHERE hobbies =:h

PROCEDURE open_people (SQLSTATE, :h CHAR (5));
OPEN people;

PROCEDURE fetch_people (SQLSTATE, :last CHAR(20), :first CHAR(20));
FETCH people INTO :last, :first;

PROCEDURE close_people SQLSTATE;
CLOSE people;

Application program
main()
}
char SQLSTATE[6];
char last [21], first [21];
OPEN_PEOPLE (SQLSTATE, "travel");

while...
FETCH_PEOPLE (SQLSTATE, last, first);
}

275
274

SQL99 PSM OverviewSQL99 PSM Overview

Procedural Extensions
Improve performance in centralized and client/server
environments

Multiple SQL statements in a single EXEC SQL
Multi-statement procedures, functions, and methods

Gives great power to DBMS
Several, new control statements (procedural language extension)
(begin/end block, assignment, call, case, if, loop, for, singal/resignal,
variables, exception handling)

SQL-only implementation of complex functions
Without worrying about security ("firewall")
Without worrying about performance ("local call")

SQL-only implementation of class libraries

276
275

SQL/PSMSQL/PSM
Includes two major aspects:

Procedural extensions (aka control statements) - features from block-structured
languages, including exception handling.
SQL-server modules - groups of SQL-invoked routines managed as named,
persistent objects.

Consider a C program with embedded SQL statements:
void main
EXEC SQL INSERT INTO employee
VALUES (...);
EXEC SQL INSERT INTO department
VALUES (...);
}

Using PSM-96 procedural extensions, the same program can
be written as:
void main
{
EXEC SQL
BEGIN
INSERT INTO employee VALUES (...);
INSERT INTO department VALUES (...);
END;
}

277
276

SQL/PSM (cont.)SQL/PSM (cont.)

If we create a SQL procedure first:
CREATE PROCEDURE proc1 ()
{
BEGIN
INSERT INTO employee VALUES (...);
INSERT INTO department VALUES (...);
END;
}

Then the embedded program can be written as
void main
{
EXEC SQL CALL proc1();
}

278
277

Compound statement
SQL variable declaration
If statement

Case statement

Loop statement

While statement
Repeat statement

For statement

Leave statement
Return statement
Call statement

Assignment statement
Signal/resignal statement

BEGIN ... END;
DECLARE var CHAR (6);
IF subject (var <> 'urgent') THEN
... ELSE ...;
CASE subject (var)
 WHEN 'SQL' THEN ...
 WHEN ...;
LOOP < SQL statement list> END
LOOP;
WHILE i<100 DO END WHILE;
REPEAT ... UNTIL i<100 END
REPEAT;
FOR result AS ... DO ... END
FOR;
LEAVE ...;
RETURN 'urgent';
CALL procedure_x (1,3,5);

SET x = 'abc';
SIGNAL division_by_zero

SQL Procedural Language SQL Procedural Language
ExtensionsExtensions

279
278

Compound StatementCompound Statement

A compound statement is a group of SQL
statements to be executed sequentially.
<compound statement> :: =
[<beginning label> <colon>]
BEGIN [[NOT] ATOMIC]
[<local declaration list>]
[<local cursor declaration list>]
[<local handler declaration list>]
[<SQL statement list>]
END <ending label>
Example:
BEGIN
UPDATE accounts SET balance = balance-100
WHERE ...;
INSERT INTO account_history
(SELECT account#, CURRENT_DATE, 'debit', 100 FROM

accounts WHERE ...);
END

280
279

Compound Statement (cont.)Compound Statement (cont.)

A compound statement may specify ATOMIC or NOT
ATOMIC. (If unspecified, NOT ATOMIC is implicit.)
BEGIN ATOMIC
UPDATE accounts SET balance = balance-100
WHERE ...;
INSERT INTO account_history
(SELECT account#, CURRENT_DATE, 'debit', 100 FROM accounts
WHERE ...);

END
Assume UPDATE statement succeeds, but INSERT statement
fails.
If NOT ATOMIC is specified or implied, effects of UPDATE
statement persist, but effects of INSERT statement are
undone.
If ATOMIC is specified, effects of both UPDATE and INSERT
statement are undone if either of them fail. Does not imply
transaction rollback.

281
280

Compound Statement (cont.)Compound Statement (cont.)

Variables, cursors, conditions, and handlers can be declared
inside a compound statement.
BEGIN ATOMIC
DECLARE account,branch INTEGER DEFAULT 0;
DECLARE curs1 CURSOR FOR ...;
DECLARE too_many_accounts CONDITION FOR SQLSTATE VALUE

'SS000';
DECLARE UNDO HANDLER FOR too_many_accounts BEGIN ... END;
...
END

Variables, cursors, conditions, and condition handlers
declared inside a compound statement have the scope and
lifetime of the containing compound statement.
A variable declaration must declare the name and data type.
It can optionally specify a default value.
If a condition declaration explicitly specifies a SQLSTATE
value, it associates a condition name with that SQLSTATE
value; otherwise, it associates a condition name with a
predefined SQLSTATE value (45000).

282
281

Compound Statement (cont.)Compound Statement (cont.)

Compound statements can be nested.
Normal scope rules apply, i.e., declarations in an inner
compound statement occludes the declarations with the
same name in an outer compound statement.
A variable can be of any SQL data type. NULL is a valid
value for a variable.
A compound statement is associated with a label; if
unspecified, an implementation-dependent label is implicit.
The body of a compound statement may contain:
DDL statements
DML statements
Control statements
COMMIT and ROLLBACK statements (not allowed inside an ATOMIC

compound statement)
Session and connection management statements
GET DIAGNOSTICS statements
Dynamic SQL statements

283
282

Assignment StatementAssignment Statement

A variable can be assigned a value either by a
SELECT ... INTO or an assignment statement.
An assignment statement uses the SET keyword.
DECLARE bal DECIMAL(15,2);
SELECT balance INTO bal FROM accounts WHERE ...;
SET bal = 0.00;
SET bal = (SELECT balance FROM accounts WHERE ...);

284
283

LEAVE StatementLEAVE Statement

Terminates the execution of labelled statements.
outer: BEGIN
DECLARE bal DECIMAL(15,2);
SELECT balance INTO bal FROM accounts WHERE ...;
IF (bal -10.0) < 0 THEN
BEGIN
CALL print_message(...);
LEAVE outer;
END;
...
END;

285
284

IF StatementIF Statement

Conditional execution of statements.
BEGIN
DECLARE bal DECIMAL(15,2);
SELECT balance INTO bal FROM accounts WHERE ...;
IF bal BETWEEN 0 AND 1000
THEN ...
ELSEIF bal BETWEEN 1001 AND 2500
THEN...
ELSE ...
END IF;
END;

286
285

CASE StatementCASE Statement

Simple CASE statement: selects an execution path based on
the result of an expression.
CASE (SELECT status FROM accounts WHERE ...)
WHEN 'VIP' THEN ...
WHEN 'BUSINESS' THEN ...
ELSE ...
END CASE;

Searched CASE statement: selects an execution path based
on the truth value of a predicate.
SELECT balance INTO bal FROM accounts WHERE ...;
CASE
WHEN bal BETWEEN 0 AND 1000 THEN ...
WHEN bal BETWEEN 1001 AND 2500 THEN ...
ELSE ...
END CASE;

In both forms, specification of ELSE case is optional. If ELSE
case is unspecified, and none of the branches evaluates to
TRUE, then an exception is raised.

287
286

LOOP StatementLOOP Statement

 Executes a group of statements repeatedly.
 LOOP statement is a labelled statement.
 Does not allow termination test; LEAVE statement
is used to exit the LOOP statement.

DECLARE X INTEGER DEFAULT 0;
L1: LOOP
IF X > 10 THEN LEAVE L1;
SET X = X + 1;
END LOOP;

288
287

WHILE StatementWHILE Statement

Executes a group of statements repeatedly.
WHILE statement is a labelled statement.
Allows termination test; terminates when the
termination test evaluates to FALSE or UNKNOWN.
DECLARE X INTEGER DEFAULT 0;
WHILE X <= 10 DO
SET X = X + 1;
END WHILE;

289
288

REPEAT StatementREPEAT Statement

Executes a group of statements repeatedly.
REPEAT statement is a labelled statement.
Allows termination test; terminates when the
termination test evaluates to TRUE.
DECLARE X INTEGER DEFAULT 0;
REPEAT
SET X = X + 1;
UNTIL X = 10
END REPEAT;

290
289

FOR StatementFOR Statement
Executes a group of statements repeatedly.
FOR statement is a labelled statement.
Must be associated with a query expression; terminates after
the group of statements is executed for every row in the
result of query expression.
DECLARE X INTEGER DEFAULT 0;
FOR L1 AS SELECT balance FROM accounts DO
SET X = X + balance;
END FOR;

Body of a FOR statement is not allowed to contain a LEAVE
statement that refers to L1.
A cursor is implicitly opened at the beginning of execution;
closed automatically at the end of execution.
It is possible to specify a name for the implicit cursor:
FOR L1 AS curs1 CURSOR FOR
SELECT * FROM accounts WHERE balance = 0 DO
DELETE FROM accounts WHERE CURRENT OF curs1;
END FOR;

The body of FOR statement is not allowed to contain a
OPEN, FETCH, or CLOSE statement that refers to curs1.

291
290

ITERATE Statement ITERATE Statement

Allowed inside a LOOP, WHILE, REPEAT and FOR
statement only.
Terminates the current iteration through the loop.

292
291

Condition HandlingCondition Handling

A compound statement may contain any number of condition
handlers.

A condition handler must specify
A set of conditions it is prepared to handle
Action to perform to handle the condition
Where to resume the execution after handling the condition

Action specified in a condition handler can be any SQL
statement, including a compound statement.

BEGIN
DECLARE low_balance CONDITION;
DECLARE CONTINUE HANDLER FOR low_balance
BEGIN
...
END;
...
END

A condition handler gets executed automatically when a
condition it is prepared to handle is detected anytime during
the execution of the containing compound statement.

293
292

Condition HandlingCondition Handling (cont.)(cont.)

Conditions specified in a condition handler can be:
SQLSTATE value
Condition name
SQLEXCEPTION (all SQLSTATE values with class other than 00, 01, or

02)
SQLWARNING (all SQLSTATE values with class 01)
NOT FOUND (all SQLSTATE values with class 02)

A condition handler may specify:
CONTINUE: resume the execution with the statement following the one
that raised the condition.
EXIT: resume the execution with the statement following the compound
statement.
UNDO: (allowed inside ATOMIC compound statements only) undo the
effects of the compound statement and resume the execution with the
statement following the compound statement.

Conditions can be raised implicitly by the system or explicitly
by means of SIGNAL or RESIGNAL statements.

294
293

Condition HandlingCondition Handling (cont.) (cont.)
BEGIN
DECLARE CONTINUE HANDLER FOR low_balance
BEGIN
...
IF ... THEN RESIGNAL db_inconsistency END IF;
END;
...
END

If the RESIGNAL statement specifies a condition name, then
a new condition is pushed onto the diagnostics area, which
becomes the active condition; otherwise, the condition that
caused the handler to execute continues to be the active
condition.
The condition handler and the compound statement
terminate their execution and execution resumes with the
condition handler associated with the outer compound
statement.
An implicit RESIGNAL statement gets executed if a
compound statement or a handler action completes with a
condition other than successful completion.

295
294

Embedding of Control StatementsEmbedding of Control Statements

All control statements can be embedded in a host
language program.
Only CALL statement is allowed to be dynamically
prepared and executed.

296
295

SQL99 Bindings OverviewSQL99 Bindings Overview

Embedded SQL
ADA
C
Cobol
Fortran
Mumps
Pascal
PL/I

Dynamic SQL
Direct SQL

297
296

Embedded SQLEmbedded SQL

An embedded host language program is transformed into a
pure host language program and an "abstract" SQL module

SQL modules are the way used for the standards to
describe the semantics of embedded SQL (don't need to
be implemented this way)

embedded
SQL

preprocessor

host language SQL module

298
297

Dynamic SQLDynamic SQL
Needed when the tables, columns, or predicates are not
known when the application is written
Execute statement immediately (once)
s = “INSERT INTO people VALUES (‘Harris’ , ...)”;
EXEC SQL EXECUTE IMMEDIATE :s;

Execute statement more than once
EXEC SQL PREPARE stmt FROM :s;
EXEC SQL EXECUTE stmt;
EXEC SQL EXECUTE stmt;

Dynamic parameter makers
s = “INSERT INTO people VALUES (?, ?, ...)” ;
EXEC SQL PREPARE stmt FROM :s ;
lname = “Harris” ;
fname = “Todd” ;
EXEC SQL EXECUTE stmt USING :lname, :fname, ... :

299
298

Dynamic SQLDynamic SQL
Descriptor area can be used if the number of dynamic parameters is not
known.
Descriptor area is an encapsulated structure managed by the DBMS
Different from commercial practice (where application allocates a SQLDA)
s = “INSERT INTO people VALUES (?, ?, ...)”;
EXEC SQL PREPARE stmt FROM :s ;
EXEC SQL ALLOCATE DESCRIPTOR ’input_params’;
EXEC SQL DESCRIBE INPUT stmt

INTO SQL DESCRIPTOR ’input_params’;
EXEC SQL GET DESCRIPTOR ’input_params’

:n = COUNT;
for (i = 1; i< n; i++)

{
EXEC SQL GET DESCRIPTOR ’input_params’

VALUE :i,
:t = TYPE, ... ;

EXEC SQL SET DESCRIPTOR ’input_params’
VALUE :i
DATA = :d, INDICATOR = :ind;

}
EXEC SQL EXECUTE stmt

USING SQL DESCRIPTOR ’input_params’;
Implicit conversions from database to descriptor area (and vice versa) and
from descriptor area to application program (and vice versa)
Descriptor area can be used as intermediate location for data

300
299

Dynamic SQLDynamic SQL
Extended dynamic statement names, cursor names, and
descriptor area names may be used when the number of
dynamic statements is not known at the time the application is
written

s = “...”;
s_stmt = “my_stmt”;
s_desc = “my_descriptor”;
s_cursor = “my_cursor”;

EXEC SQL PREPARE :s_stmt FROM :s;
EXEC SQL ALLOCATE DESCRIPTOR :s_desc;
EXEC SQL ALLOCATE :s_cursor CURSOR FOR :s_stmt;
EXEC SQL OPEN :s_cursor;

Extended names
may be LOCAL or GLOBAL (referring to the scope of a module or session)

PROCEDURE (..., :s_cursor, ...);

ALLOCATE GLOBAL :s_cursor CURSOR FOR ...;

300
300

Direct SQLDirect SQL

Implementation-defined mechanism for executing
direct SQL statements

In effect, prepared immediately before execution
Cannot issue dynamic SQL using direct SQL

Invocation, method of raising error conditions,
method of accessing diagnostics information, and
the method of returning results are all
implementation-defined

302
301

Call Level Interface OverviewCall Level Interface Overview
An alternative mechanism for invoking SQL from
application programs

Similar to dynamic SQL
Provided for vendors of truly portable "shrink wrapped"
software

CLI does not require pre-compilation of the application program
Application program can be delivered in "shrink wrapped",
object-code form

It is not:
Some new way of achieving interoperability
An alternative to distributed database protocols such as ISO's RDA

Based on
CLI from SQL Access Group (SAG) and X/Open
OBDC (Open DataBase connection)

303
302

Call Level InterfaceCall Level Interface (cont.) (cont.)
Functional interface to database
Consists of over 40 routine specifications

Control connections to SQL-servers
Allocate and deallocate resources
Execute SQL statements
Control transaction termination
Obtain information about the implementation

application

CLI call handler
(sometimes called CLI driver)

Database Manager - Run Time
Support

call return

dynamic SQL return client

server
304

303

Call Level InterfaceCall Level Interface

Uses handles to "manage" resources
Environment is the root of all capabilities
Other handles exist in the context of an environment
Connection handles manage connections to "servers"
Statement handles manage SQL statements and cursors

SQL/CLI behaves much like dynamic SQL
Uses "CLI Descriptor Area"

Analogous to dynamic SQL's system descriptor area, but ...
CLI has four descriptors

Application parameter descriptor (APD)
Application row descriptor (ARD)
Implementation parameter descriptor (IPD)
Implementation row descriptor (IRD)

305
304

C Example (page 1)C Example (page 1)
#include "sqlci.h"
#include <string.h>

#ifndef NULL
#define NULL 0

int print_err(HDBC hdbc, HSTMT hstmt);
int example1 (server, uid, pwd)
SQLCHAR *server;
SQLCHAR * uid;
SQLCHAR * pwd;
}
HENV henv;
HDBC hdbc;
HSTMT hstmt;
SQLINTEGER id;
SQLCHAR name [51];
SQLINTEGER namelen;
SQLSMALLINT scale;
scale = 0

306
305

C Example (page 2)C Example (page 2)
/* connect to database */
/* EXEC SQL CONNECT TO :server USER :uid using :auth_string; */

SQLAllocENV(&henv); /*allocate an environment handle*/
SQLAllocConnect(henv, &hdbc); /*allocate a connection handle*/
if (SQLConnect(hdbc, server, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS)

!=SQL_SUCCESS
return(print_err(hdbc, SQL_NULL_HSTMT));

/*create a table*/
/* EXEC SQL CREATE TABLE NAMEID (ID integer, NAME Varchar(50));*/
SQLAllocStmt(hdbc, &hstmt); /*allocate a statement handle */
}
SQLCHAR create [] = "CREATE TABLE NAMEID (ID integer, NAME varchar(50))':
if SQLExecDirect(hstmt, create, SQL_NTS) != SQL_SUCCESS)

return(print_err(hdbc, hstmt));
}
/*commit the created table */
/*EXEC SQL COMMIT WORK;*/
SQLEndTran(henv, hdbc, SQL_COMMIT):

307
306

C Example (page 3)C Example (page 3)
/* insert a row into the table */
/*EXEC SQL INSERT INTO NAMEID VALUES (:id, :name);*/
/*EXEC SQL COMMIT WORK ;*/

{
SQLCHAR insert [] = "INSERT INTO NAMEID VALUES (?, ?)";

/*prepare the insert */

if (SQLPrepare(hstmt, insert, SQL_NTS) !=SQL_SUCCESS)
return(print_err(hdbc, hstmt));

SQLBindParam(hstmt, 1, SQLBUF_LONG, SQL_INTEGER,
(SQLINTEGER)sizeof(SQLINTEGER), scale, (SQLPOINTER)&id,
(SQLINTEGER*)NULL);

SQLBindParam(hstmt, 2, SQLBUF_CHAR, SQL_VARCHAR,
(SQLINTEGER)sizeof(name), scale,
(SQLPOINTER)name, (SQLINTEGER*)NULL);

/*now assign parameter values and execute the insert*/

id=500
(void)strcpy(name, "Babbage");
if(SQLExecute(hstmt) !=SQL_SUCCESS)

return(print_err(hdbc, hstmt));
}
SQLEndTran(henv, hdbc, SQL_COMMIT); /*commit inserts */

308
307

C Example (page 4)C Example (page 4)

/* fetch a row from the table */
/*EXEC SQL DECLARE c1 CURSOR FOR SELECT ID, NAME FROM NAMEID;*/
/*EXEC SQL OPEN c1; */

{
SQLCHAR Select[] ="select ID, NAME from NAMEID",
if(SQLExecDirect(hstmt, select, SQL_NTS) !=SQL_SUCESS)

return(print_err(hdbc, hstmt));
}
/*EXEC SQL FETCH c1 INTO ;id, :name,*/
/*use column binding */
SQLBindCol(hstmt, 1, SQLBUF_LONG, (SQLPOINTER)&id,

(SQLINTEGER)sizeof(SQLINTEGER), (SQLINTEGER *)NULL);
SQLBindCol(hstmt,2,SQLBUF_CHAR, (SQLPOINTER)name,

(SQLINTEGER)sizeof(name), &namelen);

/*now execute the fetch*/
SQLFetch(hstmt);

309
308

/* commit, discard hstmt, disconnect*/
/*EXEC SQL COMMIT WORK;*/
/*EXEC SQL CLOSE c1; */
/*EXEC SQL DISCONNECT; */
SQLEndTran(henv, hbdc, SQL_COMMIT); /*commit the transaction */
SQLFreeStmt(hstmt, SQL_DROP); /* free the statement handle*/
SQLDisconnect(hdbc)' /*disconnect from the database*/
SQLFreeConnect(hdbc)' /* free the connection handle*/
SQLFreeEnv(henv)' /*free the environment handel*/
return(0);
}

C Example (page 5) C Example (page 5)

310
309

New CLI99 FeaturesNew CLI99 Features
SQL99 data type support

BOOLEAN

LOBs with optional locators and helper routines (GetLength,
GetPosition, GetSubstr)

UDTs with locators and transformation functions

Arrays with locators only

Reference types with table scope

Can retrieve/store unnamed ROW types

311
310

New CLI99 FeaturesNew CLI99 Features
CLI descriptor model aligned with ODBC 3.x (defaults,
Get/Set restrictions, etc.)

JDBC 2.0 support for user-defined types

Multi-row fetch a la ODBC

Catalog routines aligned with SQL99 and ODBC

Parallel result set processing after CALL statement

SQL99 savepoints

General SQL99 alignment (roles, user-defined casts,
SQLSTATEs, etc.)

312
311

ConformanceConformance

SQL-92 used incremental levels of conformance
(Entry, Intermediate, Full)
SQL99 consists of a large number of small
"features", each identifed and precisely specified as
to its content

Each feature is specified either to be a constituent
of "Core SQL", or not a constituent of Core SQL.

A non-core feature might be specified as a
constituent of one of the named and defined
"Packages", each of which require conformance to
Core.

313
312

Overview of SQL99 Overview of SQL99
Core FeaturesCore Features

All of SQL-92 Entry level
Some Transitional SQL-92 features
Some Intermediate SQL-92 features
Some Full SQL-92 features
The following new features of SQL3

Distinct data types, including USER_DEFINED_TYPES view
WITH HOLD cursors
 SQL-invoked routines, but not the ability to explicitly specify a PATH:

 CALL statement (with the extension to dynamic SQL to support CALL)
 RETURN statement
 ROUTINES and PARAMETERS view
 SQL-invoked routines written in both SQL and an external language (one can
conform by supporting only one)

Value expression in order by clause

314
313

Core SQL99 Features Core SQL99 Features
Numeric data types

All spellings of INTEGER and
SMALLINT
REAL, DOUBLE PRECISION,
FLOAT
DECIMAL and NUMERIC
Arithmetic operators
Numeric comparison
Implicit casting among numeric
data types

Character data types
CHARACTER (all spellings)
CHARACTER VARYING (all
spellings)
Character literals
Functions

CHARACTER_LENGTH
OCTET_LENGTH
SUBSTRING
UPPER
LOWER
TRIM
POSITION

Character concatentation
Implicit casting among character
data types
Character comparison

Identifiers
Delimited identifiers
Lower case identifiers
Trailing underscore

Basic query specification
SELECT distinct
GROUP BY clause
GROUP BY with columns not in column list
AS clause
HAVING clause
Qualified * in select list
Correlation names in FROM
AS in FROM clause (rename columns)

Basic predicates and search conditions
Comparison predicate
BETWEEN opredicate
IN predicate with list of values
LIKE predicate
LIKE predicate with ESCAPE clause
NULL predicate
Quantified comparsion predicate
EXISTS predicate
Subqueries in comparision predicate
Subqueries in IN predicate
Subqueries in quantified comparison
predicate
Correlated subqueries
Search condition

Basic query expressions
UNION ALL
EXCEPT DISTINCT
Columns combined via UNION and
EXCEPT do not have to be exact same
data types
Table subquery can specify UNION and
EXCEPT 315

314

Basic privileges
SELECT, DELETE
INSERT at table level
UPDATE at table and column levels
REFERENCES at table and column levels
WITH GRANT OPTION

SET functions
AVG, COUNT, MAX, MIN, SUM
ALL and DISTINCT quantifiers

Basic data manipulation
INSERT statement
Searched UPDATE, DELETE
Single-row SELECT statements

Basic cursor support
DECLARE CURSOR
ORDER BY columns need not be in SELECT
list
Value expressions in ORDER BY clause
OPEN, CLOSE, FETCH (implicit NEXT)
Positioned UPDATE and DELETE
WITH HOLD cursors

Null value support

Basic integrity constraints
NOT NULL constraints
UNIQUE constraints of NOT NULL columns
PRIMARY KEY constraints
Basic FOREIGN KEY constraints with the NO
ACTION default for both referential delete
and referential update action
CHECK constraints
Column defaults
NOT NULL inferred on PRIMARY KEY
Names in a foreign key can be specified in
any order

Transaction support
COMMIT and ROLLBACK

Basic SET TRANSACTION statement
with ISOLATION LEVEL SERIALIZABLE
clause
with READ ONLY and READ WRITE clauses
with DIAGNOSTIC SIZE clause

Updateable queries with subqueries
SQL comments using leading double minus
SQLSTATE support
Module language (at least one binding to a
standard host language using either module
language, embedded SQL, or both)
Basic information schema views

COLUMNS, TABLES, VIEWS,
TABLE_CONSTRAINTS,
REFERENTIAL_CONSTRAINTS,
CHECK_CONSTRAINTS

 Core SQLCore SQL (cont.)(cont.)

316
315

Core SQLCore SQL (cont.)(cont.)
Basic schema manipulation

CREATE TABLE for persistent
base tables
CREATE VIEW
GRANT
ALTER TABLE ADD COLUMN
DROP TABLE, DROP VIEW, and
REVOKE, all with RESTRICT
clause

Basic joined table
Inner join (but not necessarily
INNER keyword)
LEFT and RIGHT OUTER JOIN
Nested outer joins
The inner table in a left or right
outer join can also be used in an
inner join
All comparison operators are
supported

Basic date and time
DATE data type and DATE literal
TIME data type with fractional
seconds precision of at least 0
(also literal)
TIMESTAMP data type (and
literal) with fractional seconds
precision of at least 0 and 6
Comparisoin predicate on DATE,
TIME, and TIMESTAMP data
types
Explicit CAST between datetime
types and character types

CURRENT_DATE, LOCALTIME, and
LOCALTIMESTAMP functions

UNION and EXCEPT in views
Grouped operations

Multiple tables supported in queries with
grouped views
Set functions supported in queries with
grouped views
Subqueries with GROUP BY and HAVING
clauses and grouped views
Single row SELECT with GROUP BY and
HAVING clauses and grouped views

The ability to associate multiple host compilation
units with a single SQL-session at one time
CAST function where relevant for all supported
data types
Explicit defaults including its use in UPDATE and
INSERT statements
CASE expressions

Simple and searched
NULLIF
COALESCE

Schema defintion statement
CREATE SCHEMA
CREATE TABLE for persistent base tables
CREATE VIEW
CREATE VIEW: WITH CHECK OPTION
GRANT statemtn

Scalar subquery values
Expanded NULL predicate (the <row value
expression> can be something other than a
<column reference> 317

316

 Core SQL (cont.)Core SQL (cont.)
Features and conformance views

SQL_FEATURES, SQL_SIZING, and
SQL_LANGUAGE views

Basic flagging
Core SQL level
Syntax Only extent

Distinct data types
USER_DEFINED_TYPES view

Basic SQL-invoked routines
"Routine" is the collective term for functions,
methods, and procedures
Overloading for functions and procedures is
not part of Core
Function invocation
CALL and RETURN statements
ROUTINES and PARAMETERS views

318
317

PackagesPackages

PKG001 Enhanced Datetime Facilities
PKG002 Enhanced Integrity Management
PKG003 OLAP Features
PKG004 PSM (i.e., Part 4)
PKG005 CLI (i.e., Part 3)
PKG006 Basic Object Support
PKG007 Enhanced Object Support
PKG008 Active Database (Triggers - row-level
only)
PKG009 SQL/MM Support

Others might be defined, not necessarily in the SQL
standard itself.

319
318

PKG001 - Enhanced DATETIME PKG001 - Enhanced DATETIME
FacilitiesFacilities

Intervals and datetime arithmetic
Time zones
Enhanced seconds precision
(sub-microsecond)

320
319

PKG002 - Enhanced Integrity PKG002 - Enhanced Integrity
ManagementManagement

ON DELETE
ON UPDATE ...
CREATE ASSERTION

Constraint Management
via constraint names
Subqueries in CHECK constraints
Triggers
row-level and statement-level

321
320

PKG003 - OLAP FacilitiesPKG003 - OLAP Facilities

CUBE, ROLLUP
INTERSECT, EXCEPT ALL
FULL JOIN

Derived tables in the FROM clause

More than one row in VALUES

322
321

PKG006 - Basic Object SupportPKG006 - Basic Object Support

Structured types with restrictions on use
Reference types, with restrictions
Typed base tables
Predicate to test most specific type of a value
Basic LOB support including locators

323
322

PKG007 - Enhanced Object PKG007 - Enhanced Object
SupportSupport

ALTER TYPE
Static methods
Structured types without restrictions
Reference types without restrictions
Schema paths
Subtables
TREAT
User-defined casts and transforms
Locators for structured type values

324
323

PKG009 - SQL/MM SupportPKG009 - SQL/MM Support

Structured types without restriction
Arrays/incl. arrays of structured types
User-defined cast
Overloading (routines with same name in same
schema

325
324

SQL/MM MotivationSQL/MM Motivation

Enabling functionality
SQL3 provides ...

Definition of user-defined, application specific data types
Implementation of user-defined functions to support application
specific operations on the data types
Storage of large objects (BLOBs and CLOBs)
Powerful trigger and constraint mechanisms to maintain the
integrity and semantics of the new data types
Storage and execution of user-defined stored procedures in
the server

This enables ...
Development of application specific collections of user-defined
types, user-defined functions, triggers, constraints, and stored
procedures (i.e. libraries) "tight" to the DBMS engine

326
325

SQLMM OverviewSQLMM Overview
Multipart standard:

SQL/MM Framework (Part 1)
Overview and conformance

SQL/MM Full-text (Part 2)
Information about construction of text and search patterns,
and for the searching of text

SQL/MM Spatial (Part 3)
Information about storing, managing, and retrieving
information related to spatial data such as geometry and
topography

SQL/MM Still-image (Part 5)
Information about searching large collections of still images

327
326

SQL/MM Full-TextSQL/MM Full-Text

Why Full-Text standard library?
Built-in search facilities (LIKE, SIMILAR) not
powerful enough (text viewed as string of
characters).
Need higher level notion of text

Structural units in Full-Text:
Words
Sentences
Paragraphs

Operations in Full-Text:
Boolean Search
Ranking
Conceptual Search

328
327

SQL/MM Full-Text: Boolean SQL/MM Full-Text: Boolean
SearchSearch

Full-Text sample:
Every text value is associated with a

specific language.

Full-Text items have language attribute
Boolean query facilities

Single word search
Phrase search
Context based search
Linguistic search
Stopword processing
Masking facilities
Search pattern expansion, e.g.:

Sound expansion
Broader/narrower term expansion
Synonym expansion

329
328

SQL/MM Full-Text: Boolean SQL/MM Full-Text: Boolean
search examplessearch examples

Single word search:
SELECT * FROM myDocs
WHERE 1 = CONTAINS(TextBody, '"specific"')

every text value is associated with a specific language.

Phrase search:
SELECT * FROM myDocs WHERE 1 =
WHERE 1 = CONTAINS(TextBody, '"specific language"')

every text value is associated with a specific language.

Context search:
SELECT * FROM myDocs WHERE 1 = CONTAINS(TextBody,

'"text IN SAME SENTENCE AS language"')

every text value is associated with a specific language.

Stopwords:
SELECT * FROM myDocs WHERE CONTAINS(TextBody,

'"value was associated"')

every text value is associated with a specific language.

Linguistic search:
SELECT * FROM myDocs WHERE CONTAINS(TextBody,
'STEMMED FORM OF "values are associated"')

every text value is associated with a specific language. 330
329

SQL/MM Full-TextSQL/MM Full-Text

Ranking
SELECT * FROM myDocs
WHERE 1.2 < RANK(TextBody, '"specific"')

Ranks according to implementation - defined criteria (e.g.
frequency of "specific")

Conceptual search
SELECT * FROM myDocs
WHERE 1 = CONTAINS(TextBody,
'IS ABOUT "every text value is associated
with a specific language" ')
Identifies Full-Text items which are pertinent to rhs of "IS
ABOUT" operator

331
330

SQL/MM Spatial: Goals, SQL/MM Spatial: Goals,
Motivation Motivation

Goals
Support for "flat world" (2-d) geometric objects and operations
Coverage of important application areas
Simple features

Motivation
Breaking ground for standard type library
Promote efficient access methods on relational platforms

332
331

SQL/MM Spatial: PlayersSQL/MM Spatial: Players

JTC1 SC32 WG4: SQL/MM Spatial
ISO TC211: Geomatics
Open GIS Consortium:

OpenGIS Simple Feature Specification
SQL2 Bindings
CORBA Binding
OLE Binding
SQL3 Bindings: SQL/MM Spatial

Guarantees implementations
Established verification procedures

333
332

Spatial Objects Spatial Objects

o-dim. objects: points
1-dim. objects: (planar)
curves; sub- types differ by
interpolation betw. points

ST_LineString: linear interpolation
ST_CircularSting (opt): circular arcs
ST_CompoundString (opt): mixed

2-dim. objects: (planar)
surfaces

ST_Polygon: ST_LineString
boundaries
ST_CurvePolyon (opt):
ST_CompoundString boundaries

334
333

Spatial Objects (cont.)Spatial Objects (cont.)

Collection valued objects:
ST_Geometry

Reference system: same for all elements
Any geometry type admissible
Subtypes of ST_Geometry with restrictions on
element types

ST_MultiPoint

ST_MultiCurve

ST_MultiPolygon

335
334

SQL/MM Spatial: OperationsSQL/MM Spatial: Operations

Usual observers and mutators
Transform routines

Transform objects into binary or textual representations (and
vice versa)
Enables implementation by 3GL functions using minimal SQL3
machinery

Important topical operations, e.g.
Constructors (controlling wellformedness)
Distance
Tests (contains, overlaps, touches, crosses, ...)
Intersection, difference, union
Find referencing system
Length, area, perimeter

336
335

SQL/MM Spatial: ExampleSQL/MM Spatial: Example

SELECT * FROM stores s, customers c
WHERE within(c.loc, s.zone)
 or distance(c.loc, s.loc)<100
ORDER BY s.name, c.name;

CID NAME INCOME ADDR LOC

CUSTOMERS

STORES
 SID NAME ADDR LOC ZONE

%

%

%

%
%

%

%

%

%

%

%

%

%

%

%

%
%

%

%

%

%

%

%

%

%
%

%

%

%

%

%

%

%

%

%

% %

%

%

%

%

%

%

%

%

%

%

%

%
%

Streets in downtown
Highways

% CustomersGeocd1.shp

"Tell me all the
information I have about

each customer who
either lives within a

stores' zone or within
100 miles of the store."

337
336

SQL/MM Spatial: Type HierarchySQL/MM Spatial: Type Hierarchy
ST_Geometry

ST_MultiPolygonST_MultiLineString

ST_MultiSurfaceST_MultiPoint ST_MultiCurve

ST_CompoundCurveST_CircularString

ST_GeomCollectionST_CurveST_Point

ST_Polygon

ST_CurvePolygon

ST_Surface

ST_LineString

338
337

Spatial Reference SystemSpatial Reference System

Controls aspects like units, prime meridian,
coordinate system etc.
Relies on reference systems defined by other
authorities.
Defined representation of reference system values
One common spatial reference system value:

For elements of ST_Geometry values
Within column of type ST_Geometry

339
338

SQL/MM Still-Image: GoalsSQL/MM Still-Image: Goals

Enable screening of large imagebases
Support for proven set of image features
Type structure adaptable to evolving image
processing technology
Example: Find all possibly infringed logos by
scoring them against a new logo.
SELECT * FROM RegLogos
WHERE 1.2 <
SI_findTexture(newLogo).SI_Score(Logo)

340
339

SQL/MM Still-Image Objects SQL/MM Still-Image Objects

SI_StillImage:raster images
Abstract SI_Feature with subtypes

SI_AverageColor
SI_ColorHistogram
SI_PositionalColor: average colors of n*m
image segments
 SI_Texture: coarseness, contrast, directionality

SI_FeatureList: weighted list of SI_Feature items

341
340

SI_StillImage: OperationsSI_StillImage: Operations

Constructor function
Observer Methods for

Raw picture data
Image format (e.g. JPEG)
Pixel properties (bits per color, per pixel)
Size ..
Generation time, last update time

Mutator for (raw) image content

342
341

SI_Feature, SI_FeatureList: SI_Feature, SI_FeatureList:
OperationsOperations

All: scoring method (SI_Score)
Scores image w.r.t. a given feature

All subtypes of SI_Feature
function extracting feature from images

SI_AverageColor, SI_ColorHistogram
function for "manual" feature construction

SI_FeatureList: feature/weight pairs lists
Constructor function for list header
Append method to extend feature list by another feature/weight
pair

343
342

SQL/MM Still-Image: Final SQL/MM Still-Image: Final
ExampleExample

Screen all logos in table RegLogos against a given
logo (newLogo); use the texture and average colors
of a standard grid of image segments ("posi-
tional color") for scoring; give these features of
newLogo the weights 80% and 20%, resp.

SELECT * FROM RegLogos
WHERE 1.2 <
SI_InitFeatureList
(SI_findTexture(newLogo),0.8).SI_Append
(SI_findPositionalColor(newLogo), 0.2)
.SI_Score(Logo)

344
343

SQLJ Part 0
Embedded SQL in Java
Currently based on SQL-92, JDBC 1.2
Accepted ANSI standard "Database Language - SQL, Part 10
Object Language Bindings (SQL/OLB)", ANSI X3.135.10:1998
Currently being processed by ISO, (SQL-99 alignment)

SQLJ Part 1
Java static methods as SQL UDFs and stored procedures SQL
routines (stored procedures, user-defined functions)
Currently a working draft, being prepared for submission to
ANSI

SQLJ Part 2
Use of Java classes to define SQL types

Potential for wide DBMS vendor acceptance
Cloudscape, Compaq (Tandem), IBM, Informix, MicroFocus,
Oracle, Sun, Sybase

Tremendous possibilities
Baan, PeopleSoft, SAP exploitation?
the "next ODBC"?

SQLJSQLJ

345
344

Static SQL syntax for Java
INSERT, UPDATE, DELETE,
CREATE, GRANT, etc.
Singleton SELECT and
cursor-based SELECT
Calls to stored procedures
(including result sets)
COMMIT, ROLLBACK
Methods for CONNECT,
DISCONNECT

Similar tradeoffs
Static vs. dynamic
SQLJ vs. JDBC

Less flexible at run-time
Allows error checking at
development time
Static SQL is faster!!!

SQLJ Part 0: OverviewSQLJ Part 0: Overview

dynamic SQL static SQL
check authorization

for package

parse SQL
statement

check table/view
authorization

check authorization
for package

calculate access path

execute
statement

execute
statement

346
345

SQLJ Part 0: Overview (cont.)SQLJ Part 0: Overview (cont.)

Static SQL authorization
Static SQL is associated with "program"

Plans/packages identify "programs" to DB
Program author's table privileges are used
Users are granted EXECUTE on program

Dynamic SQL is associated with "user"
No notion of "program"
End users must have table privileges
BIG PROBLEM FOR A LARGE ENTERPRISE !!!

SQLJ programs are smaller than JDBC applications
Can be used in client code and stored procedures

Easier than JDBC, better performance too!
Binary portability

347
346

SQLJ SyntaxSQLJ Syntax

SQLJ clauses are statements or declarations
Clause begins with "#sql" token

An SQL statement appears as an SQLJ statement
clause

May contain host-variable references (e.g., :x) or host
expressions (e.g., :(x + y))
Can span multiple lines
May specify explicit connection or use default connection

#sql [[<context>]] { <statement spec clause> }

348
347

SQLJ
#sql [con] { SELECT ADDRESS INTO :addr FROM EMP

WHERE NAME=:name };

JDBC
java.sql.PreparedStatement ps =
con.prepareStatement("SELECT ADDRESS FROM EMP
WHERE NAME=?");

ps.setString(1, name);
java.sql.ResultSet names = ps.executeQuery();
names.next();
name = names.getString(1);
names.close();

SQLJ vs. JDBC: Retrieve Single SQLJ vs. JDBC: Retrieve Single
RowRow

349
348

SQLJ
#sql [con] {INSERT INTO T1 VALUES(:hv1, :hv2, :hv3) };

JDBC
CallableStatement mystmt =

con.prepareCall("INSERT INTO T1 VALUES(?,?,?)");
mystmt.setString(1,hv1);
mystmt.setString(2,hv2);
mystmt.setInt(3,hv3);
mystmt.executeUpdate();

SQLJ vs. JDBC: Insert One RowSQLJ vs. JDBC: Insert One Row

350
349

SQLJ
#sql [con] {CALL PROC1(:IN hv1, :OUT hv2) };

JDBC
CallableStatement mystmt =

con.prepareCall("CALL PROC1(?,?)");
mystmt.setString(1,hv1);
mystmt.registerOutParameter(2, java.sql.Types.VARCHAR);
mystmt.executeUpdate();
hv2 = mystmt.getString(2);

SQLJ vs. JDBC: Call Stored SQLJ vs. JDBC: Call Stored
ProcedureProcedure

351
350

Result Set IteratorsResult Set Iterators

Mechanism for accessing the rows returned by a
query

Comparable to an SQL cursor
SQLJ Iterator declaration clause results in
generated iterator class

Iterator is a Java object
Iterators are strongly typed
Generic methods for advancing to next row

SQLJ assignment clause assigns query result to
iterator
Two types of iterators

Named iterator
Psitioned iterator

352
351

Named IteratorNamed Iterator

Generated iterator class has accessor methods for
each result column

#sql iterator Honors (String name, float grade);
 Honors honor;

#sql [recs] honor =
 { SELECT SCORE AS "grade", STUDENT AS "name"
 FROM GRADE_REPORTS
 WHERE SCORE >= :limit AND ATTENDED >= :days AND
 DEMERITS <= :offences
 ORDER BY SCORE DESCENDING };
 while (honor.next()) {
 System.out.println(honor.name() + " has grade "
 + honor.grade());
 }

353
352

Positioned IteratorPositioned Iterator

Use FETCH statement to retrieve result columns
into host variables based on position

#sql iterator Honors (String, float);
 Honors honor;

String name;
float grade;

 #sql [recs] honor =
 { SELECT STUDENT, SCORE FROM GRADE_REPORTS
 WHERE SCORE >= :limit AND ATTENDED >= :days AND
 DEMERITS <= :offences
 ORDER BY SCORE DESCENDING };
 while (true) {
 #sql {FETCH :honor INTO :name, :grade };
 if (honor.endFetch()) break;
 System.out.println(name + " has grade " + grade);
 }

354
353

Connection ContextsConnection Contexts

Used to associate execution of SQL statements with a
database connection
Explicit connection context

Declare connection context class
#sql context DB1con;
Create connection context object
String url = "jdbc:.....";
DB1con con = new DB1con(url, "user", "password", false);
Use connection context in SQLJ statement clause
#sql [con] {SELECT c INTO :x FROM mytable};

Default connection context
Used if no explicit connection context is specified in SQLJ clause
Important usage: stored procedures written in SQLJ

Default context provided by database environment
Application can use multiple connections to the same or
different databases at the same time
Connections can be shared across threads in a
multi-threaded application

355
354

Execution ContextsExecution Contexts

Describes execution semantics of SQL operations
Control execution environment

MaxRows, MaxFieldSize, QueryTimeout
Get description of results of SQL statement execution

UpdateCount, SQLWarnings
Example

Create new execution context
ExecutionContext exec = new ExecutionContext();
Set execution context attribute
exec.setQueryTimeout(3); // wait only 3 seconds
Use execution context in SQLJ statement clause
#sql [con, exec] { DELETE FROM mytable WHERE ...};
Get execution information
System.out.println

("deleted " + exec.getUpdateCount() + " rows");

356
355

Advanced FeaturesAdvanced Features

Multiple result sets from stored procedures
Side-channel result sets
Use method "getNextResultSet" on execution context to
navigate through results

SQLJ and JDBC interoperability
Mixing SQLJ (static SQL) and JDBC (dynamic SQL) in the
same application
SQLJ and JDBC can share the same connections
JDBC result sets can be turned into SQLJ iterators, and vice
versa

357
356

Compiling an SQLJ ApplicationCompiling an SQLJ Application

SQLJ source

class ABC {

 #sql
SELECT ...

}

Generic
SQLJ
translator

Most vendors use
default JDBC "stub"

Optional step:
DBMS-specific
customizer

Java
Compiler

Java
byte
codes

Extracted SQL

 SELECT ...
 host var data

JDBC "stub"

DBMS-specific
"stub"

Java
byte
codes

Extracted SQL

 SELECT ...
 host var data

JDBC "stub"
Extracted SQL

 SELECT ...
 host var data

SQLJ source

class ABC {
 call "stub"

}

JDBC default
"stub"

358
357

Binary PortabilityBinary Portability

Static SQL portability problems
3GL language not 100% portable
Each DBMS has unique precompiler output

No binary portability across DBMSs
SQLJ advantages

Java is platform-independent
Compiled SQLJ applications are pure Java

Generic SQLJ translator (works for all DBMSs)
SQLJ application binaries (Java bytecodes) are portable across
DBMSs
Vendor-specific customizations can be performed after
compilation

Performance optimizations, ...

359
358

Java static methods as SQL UDFs and stored
procedures

Can contain JDBC or SQLJ calls

Many advantages
Processing power on database server
Reduce volume of data transfer by sending final answer sets
Centralize the administration of the business logic
Access operations not available on client/gateway tier
Direct use of pre-written Java libraries
Portable across DBMSs and platforms
Deployable across different tiers

Invocation
Can be called by any Java or non-Java client code
DBMS invokes the JVM to run the Java application
DBMS handles type conversions between Java and SQL

SQLJ Part 1: OverviewSQLJ Part 1: Overview

360
359

 JAR file
class 1
method 11 (...)
method 12 (...)
class 2
method 21 (...)
method 22 (...)

class 3
method 31
method 32
class 4
method 41
class 5
class 6
method 61 (...)

Installation
New install_jar procedure
sqlj.install_jar ('file:~/classes/routines.jar', 'routines_jar')
Parameters: URL of JAR file with Java class and string to
identify the JAR in SQL
Install all classes in the JAR file
Uses Java reflection to determine
names, methods, signatures
Optionally uses deployment
descriptor file found in JAR to
create SQL routines

Removal
sqlj.remove_jar ('routines_jar')

Replacement
sqlj.replace_jar

('file:~/classes/routines.jar', 'routines_jar')

Installing Java Classes in the DBInstalling Java Classes in the DB

361
360

routines.jarpublic class addr{
public static void
modifyaddr (...)

public static integer zip (string s) ...

 sqlj.install_jar ('file:~/classes/routines.jar', 'routines_jar')

Java return type 'void' -> stored procedure
otherwise -> user-defined function

CREATE PROCEDURE modify_address (ssn INTEGER, addr CHAR (40))
MODIFIES SQL DATA
EXTERNAL NAME 'routines_jar:addr.modifyaddr'
LANGUAGE JAVA
PARAMETER STYLE JAVA

CREATE FUNCTION zip (addr CHAR (40)) RETURNS INTEGER
NO SQL
DETERMINISTIC
EXTERNAL NAME 'routines_jar:addr.zip'
LANGUAGE JAVA
PARAMETER STYLE JAVA

Creating Procedures and UDFsCreating Procedures and UDFs

362
361

Privileges
Usage privilege on installedJAR file is grantable
GRANT USAGE ON JAR routines_jar TO bryan

Execute privilege on routines is grantable
GRANT EXECUTE ON modify_address TO bryan
GRANT EXECUTE ON zipTO bryan

Invocation
User-defined function
SELECT zip (home_addr) FROM employees

Stored procedure
CALL modify_address (64148342, '1664 Tunis Rd, San
Bruno, CA')

Invoking SQLJ RoutinesInvoking SQLJ Routines

363
362

SQLJ Stored ProceduresSQLJ Stored Procedures

OUT and INOUT parameters
CREATE PROCEDURE

avgSal (IN dept VARCHAR(30), OUT avg DECIMAL(10, 2))
...
Java method declares them as arrays
Array acts as container that can filled/replaced by the method
implementation to return a value
public static void averageSalary (String dept, BigDecimal[]
avg) ...

Returning result set(s)
CREATE PROCEDURE ranked_emps (region INTEGER)

DYNAMIC RESULT SETS 1
Java method declares explicit parameters for returned result
sets of type

array of (JDBC) ResultSet
array of (SQLJ) iterator class, prev. declared in "#sql iterator ..."
public static void ranked_emps (int region, ResultSet[] rs) ...

Java method body assigns (open) result sets as array elements
of result set parameters
Multiple result sets can be returned 364

363

Error HandlingError Handling

Java method throws an SQLException to indicate
error to the SQL engine

... throws new SQLException ("Invalid input parameter",
"38001");
SQLSTATE value provided has to be in the "38xxx" range

Any other uncaught Java exception is turned into a
SQLException "Uncaught Java exception" with
SQLSTATE "38000" by the SQL engine
Java exceptions that are caught within an SQLJ
routine are internal and do not affect SQL
processing

365
364

Additional FeaturesAdditional Features

Java "main" methods
Java signature has to have single parameter of type String[]
Corresponding SQL routine has

Either 0 or more CHAR/VARCHAR parameters,
or a single parameter of type array of CHAR/VARCHAR

NULL value treatment
Use Java object types as parameters (see JDBC)

SQL NULL turned into Java null
Specify SQL routine to return NULL if an input parameter is NULL

CREATE FUNCTION foo(integer p) RETURNS INTEGER
RETURNS NULL ON NULL INPUT

Otherwise run-time exception will be thrown
Static Java variables

Can be read inside SQL routine
Should not be modified (result is implementation-defined)

Overloading
SQL rules may be more restrictive
Map Java methods with same name to different SQL routine names

366
365

ConformanceConformance

For SQLJ Part 1 Core compliance, a lot of features
are optional, such as

DDL vs. deploy/undeploy descriptors in SQLJ JAR files
Either DDL or descriptors for CREATE PROCEDURE/FUNCTION
has to be supported

SQLJ Paths
INOUT, OUT parameters for stored procedures
support for returning result sets in stored procedures
SQL array dataype for support Java 'main' arguments
GRANT statement, WITH GRANT OPTION
REVOKE statement

367
366

JDBC 2.0 Extensions for JDBC 2.0 Extensions for
SQL99 TypesSQL99 Types

Added support for object-relational data types
User-defined types (UDTs)

Structured types
Distinct types

References
Arrays (collection types)

Supports mappings of DB structured types to/from
Java classes

Focus on object state, not on interface (behavior)
Provides sufficient basis for mapping tools
Allows application to provide mapping information to JDBC
driver

Capabilities for handling LOBs
Work with character LOBs and binary LOBs
LOB locator support

368
367

"Native" Java Objects in the database as
"BLOBs"

Based on Java Serialization

Support built into the JVM
Too restrictive

persistence for Java objects
DB sees Java object as a black-box
Based on Java type system, not SQL
Object state cannot be introspected at the DB server side

Private attributes
Not usable for row objects/typed tables

Client applications written in other progr. language not
supported
Performance implications

DB attribute accessors and functions/methods need to
de-serialize the Java object state for execution

"Native" Java Object Support"Native" Java Object Support

blob

public class Residence {

public int door;
public String street;

public String city; }

blob

369
368

Mapping Java Objects to Mapping Java Objects to
Structured TypesStructured Types

Support built into the
DBMS
Very flexible

DB understands internal
structure of type
Based on SQL type system
Client applications written in
other programming languages
are supported
Can be used to define row
types/typed tables
DB functions/methods can be
implemented in other
programming language

Potential for better
performance
Requires conversion
(Java <-> SQL)

 residence (
door INTEGER,
street
VARCHARr(100),
city VARCHAR(50))

public class Residence {

public int door;

public String street;

public String city; }

 residence (
door INTEGER,
street VARCHAR(100),
city VARCHARr(50))

370
369

Materializing SQL99 types as Java objects
SQL99 types manipulated using existing result set or
prepared statement interfaces
get/setObject(<column>) simply "works" for structured
types
Example:
ResultSet rs = stmt.executeQuery(
"SELECT e.addr FROM Employee e");

rs.next();
Residence addr =
(Residence)rs.getObject(1);

JDBC 2.0 Structured Type JDBC 2.0 Structured Type
SupportSupport

CREATE TYPE residence (
 door INTEGER,
 street VARCHAR(100),
 city VARCHAR(50))

public class Residence {
public int door;
public String street;
public String city; }

Java SQL

371
370

Mapping table for recording correspondence of DB UDT and
Java class

JDBC driver automatically generates client object, invokes method to
'internalize' state.
Can be attached to a DB connection object
Can be used as additional parameter in get/setObject() calls

Java class implements interface SQLData
readSQL() reads attributes from an SQLInput data stream
writeSQL() writes attributes to an SQLOutput data stream
Ordering of attributes has to be preserved during read/write
Includes handling of nested objects, type conversions, NULL attributes

SQLInput, SQLOutput interfaces
Generic 'stream-based' API for implementing the customized mapping
Used by programmers and mapping tools
Vendor-specific implementation details of object bind-out are hidden

CRATE TYPE residence (
 door INTEGER,
 street VARCHAR(100),
 city VARCHAR(50))

public class Residence {
public int door;
public String street;
public String city; }

Java SQL

Mapping InfrastructureMapping Infrastructure

372
371

Java class
public class Residence implements SQLData {

public int door;
public String street;
public String city;
public void readSQL(SQLInput stream, ...) throws SQLException {

door = stream.readInt();
street = stream.readString();
city = stream.readString(); }

public void writeSQL(SQLOutput stream, ...) throws SQLException {
stream.writeInt(door);
stream.writeString(street);
stream.writeString(city); } }

SQL99 type
CREATE TYPE residence (

door INTEGER,
street VARCHAR(100),
city VARCHARr(50))

JDBC driver (SQLJ) automatically
generates client object
invokes method to 'internalize' state.Java class
Mapping table
records correspondence DB2 type/Java class
Server-side SQL99
transformation
defines how UDT is passed to/from the client

Mapping (Example)Mapping (Example)

373
372

Structured Types: Default Structured Types: Default
MappingMapping

Uses new JDBC interface 'Struct'
Struct st = (Struct)resultset.getObject(1)
public interface Struct extends SQLData {
 SQLType getSQLType();
 Object[] getAttributes();
}
ResultSet.getObject() will now return an object implementing
the Struct interface

JDBC driver includes a new Java class
implementing the Struct interface
Generic way of handling a structured object as an
array of Java objects that represent the individual
attribute values

Useful for generic applications/tools

374
373

Object ReferencesObject References

New methods on ResultSet, PreparedStatement
Ref ref = rs.getRef(1);

Ref interface
Has method for determining the (static) type of the referenced
object

Hides the underlying data type of the reference
A Ref object can be used as a parameter in other
SQL statements

Dereference
Path expressions
Updates
...

375
374

Manipulating Large ObjectsManipulating Large Objects

Existing approach: treat them as LONG VARCHAR,
LONG VARBINARY types
Adding support that allows for LOB locators

Introducing type code for BLOB, CLOB
Additional methods on ResultSet, PreparedStatement

Blob blob = rs.getBlob(1);
Clob clob = rs.getClob(2);

Additional interfaces Blob, Clob for manipulating LOB data
Operations for piecemeal access to LOB data, finding substrings,
etc.
Targeted to locator-based implementation as a default

JDBC permits mechanisms to tell the driver that
LOB should be retrieved as locator or as LOB value

Vendor-specific extension of JDBC

376
375

ArraysArrays

Retrieving/storing arrays
get/setArray() methods on ResultSet, PreparedStatement
Array interface supports methods to:

Determine the element type
Retrieve an array as a Java array, list of Java objects
Open a result set on an array (i.e., turn array into a table)

Implementation based on array locators

377
376

SQLJ Part 2: SQLJ Part 2:
Java Classes as SQL TypesJava Classes as SQL Types

Use of Java classes to define SQL types
Can be mapped to structured types or "native" Java types (blobs)
Can be used to define columns in tables
Can be used to define SQL99 tables (structured types)

Mapping of object state and behavior
Java methods become SQL99 methods on SQL type
Java methods can be invoked in SQL statements

Automatic mapping to Java object on fetch and method
invocation

Java Serialization
JDBC 2.0 SQLData interface

Includes handling of USAGE privilege on SQL type
Use the procedures introduced in SQLJ Part 1 to install,
remove, and replace SQLJ JAR files

378
377

Described using extended CREATE TYPE syntax
DDL statement, or
Mapping description in the deployment descriptor

Supported Mapping

SQL initializer methods
Have the same name as the type for which they are defined
Are invoked using the NEW operator (just like in Java)

SQL does not know static member variables
Mapped to a static SQL method that returns the value of the static variable
No support for modifying the static variable

Mapping Java Classes to SQLMapping Java Classes to SQL

Java SQL
class user-defined (structured) type
member variable attribute
method method
constructor initializer method
static method static method
static variable static observer method

379
378

Mapping ExampleMapping Example

Java class
public class Residence implements SQLData {

public int door;
public String street;
public String city;
public static String country = "USA";
public String printAddress() { ...};
public void changeResidence(String adr) { ... // parse and update fields

...}
 }

SQL DDL/descriptor statement
CREATE TYPE Address EXTERNAL NAME 'Residence' language java (

number INTEGER EXTERNAL NAME 'door',
street VARCHAR(100),
city VARCHAR(50),
STATIC METHOD country() RETURNS CHAR(3) EXTERNAL

VARIABLE NAME 'country',
METHOD print() RETURNS VARCHAR(200) EXTERNAL NAME

'printAddress',
METHOD changeAddress (varchar(200)) RETURNS Address

SELF AS RESULT EXTERNAL NAME 'changeResidence'
) 380

379

Instance Update MethodsInstance Update Methods

Java and SQL have different object update models
Java model is object-based

 Object method updates object member variables, usually returns void
SQL model is value-based

Object method returns a modified copy of the object
UPDATE statement is required to make object modifcation permanent

SQLJ permits mapping without requiring modification of Java
methods

SELF AS RESULT in deployment descriptor identifies an instance update
method
Java class
public class Residence implements SQLData {

...
public void changeResidence(String adr) { ... // parse and update fields ...}

 }
SQL type
 CREATE TYPE Address EXTERNAL NAME 'Residence' LANGUAGE JAVA (

...
METHOD changeAddress(varchar(200)) RETURNS Address SELF AS RESULT

EXTERNAL NAME 'changeResidence'
)
At runtime, the SQL system

Invokes the original Java method (returning void) on (a copy of) the object
Is responsible for returning the modified object

381
380

Usage ExamplesUsage Examples

Use type as column type
CREATE TABLE employees (

name VARCHAR(40),
addr Address)

Insert object
INSERT INTO employees VALUES('John Doe', NEW
Address())

Update object
UPDATE employees
SET addr =

addr.changeAddress('1234 Parkway Dr., San Leandro')
WHERE name = 'John Doe'

Select object information
SELECT addr.print()
FROM employees
WHERE addr.city = 'San Leandro'

382
381

SQL/MED (Management of SQL/MED (Management of
External Data)External Data)

Still undergoing revisions
Purpose is to tie SQL with the management of data
outside of the database (files)

Adds new data type: datalink
Link type
scheme (http or file)
file server
file path
comment

Abstract LOB type: used to define routines that are allowed on
a LOB
Abstract tables: Allows for definition of access routines
(user-defined routines) such as iterate, update, delete, etc.

383
382

DatalinksDatalinks

Employee Table
Ted 1956

Applications

Sharon 1961
Abby 1950
John 1948

SQL API requestsSQL API requestsSQL API requestsSQL API requests File API requestsFile API requestsFile API requestsFile API requests

 File Manager

Datalinks

Helps maintain integrity of links from "database"
attributes to data in files.

The standardized part is datalink data type itself,
not the file manager piece.

384
383

SQL/MED SQL/MED

Abstract tables
Lets users write SQL queries on data that is stored in another
file system
Routines manipulate the data

CREATE ABSTRACT TABLE XRAY
STATE <routine-name>
ITERATE <routine-name>
COMMIT <commit-routine-name>

Abstract LOBs
Like Abstract tables, but for LOBs
Routines for locators, concatenation, overlay,
substring, etc

385
384

What of the Future? (SQL4) What of the Future? (SQL4)

OLAP stuff
Additional functions, like RANK moving sum, average, ratio,
additional aggregation functions
Summary tables

More collection data types
set (unordered, no duplicates)
list (ordered, may contain duplicates)
multiset (unordered, may contain duplicates)

Type migration
How do you make an employee a manager in a table
hierarchy?

BIGINT data type
...

Our efforts need to align with product efforts:

In some cases, function is already delivered.
Not the ideal model.

386
385

Further InformationFurther Information

SLQ/92 can be ordered form ANSI (approx. US
$225)
Sales Department, American National Standards Association
1430 Broadway
 New York, NY 10018
 USA

 phone: 1(212) 642-4900
 fax: 1(212) 302-1286

Document titles
NASI X3.135-1992: Database Language - SQL
ISO/IEC 9075: 1992, Information Technology - Database Language - SQL

May also be ordered from
Global Engineering Documents
2805 McGraw Ave.
Irvine, CA 92714
USA

phone: 1 (714) 261-1455

388
386

Further InformationFurther Information (cont.) (cont.)
FIPS SQL can be ordered form NIST

National Technical Information Service
U.S. Department of Commerce
Springfield, VA 22161

Document titles
FIPS PUB 127-2, Database Language SQL

389
387

Further InformationFurther Information (cont.) (cont.)
SQL and SQL/MM FTP server

ftp:://jerry.ece.umassd.edu

SQL: change to directory "isowg3/dbl/BASEdocs"
SQL/MM: change to directory "isowg3/sqlmm/BASEdocs"
give the following password:

quote site group isowg3
quote site gpass yow92

SQLJ website
http://www.sqlj.org
SQLJ specifications
Downloadable reference implementation
Information about SQLJ support of participating vendors

JDBC 2.0 Core API
http://java.sun.com/products/jdbc/

390
388

