WHITEMARSH DATA MANAGEMENT SERIES

Clarion Live Presentation

Generalized
Clarion Application Software
Development
August 1, 2014

m Whitemarsh Information Systema Corporation

TOPICS

BLUF (Bottom line up front)
Problem to be Solved

ot ot

Project Management Data Model by Contained Functional Area
Data Model area

Identification of the instances of the Problem to be Solved
Specialized Solution to the Problem

Down-sides to a Specialized Solution

Approach to the creation of a Generalized Solution
Engineering and Implementation of the Generalized Solution
Follow-on Activities

BLUF (a reprise)

¢

KO

M Whitemarsh Information Systema Corporation

SPECIALIZED VS GENERALIZED

Is this Specialized or Generalized?
What is the level of Coupling and Cohesion?
Elegant architecture & Design or Hackers Paradise?

m Whitemarsh Information Systema Corporation

PROBLEM TO BE SOLVED: REALLOCATE “DATA” FROM ONE DATA-BASED TREE-
STRUCTURE TO ANOTHER WITHOUT “LOSS, FALLING, OR BROKEN DEPENDENCIES”

m Whitemarsh Information Systema Corporation

BLUF (BOTTOM LINE UP FRONT)

Coupling is critical to address between “Applications” and “Data Structures”
Data Structure designs should be able to support many “applications”
“Applications” should be able to support many “Data Structures”

The Coupling between “Data Structures” and “Application” should be as
loose as possible

A Collection of Procedure Routines can be Tightly Coupled (highly cohesive)
collections of 3NF contained “Procedure Routines”

|dentified Procedures that have well-defined data-based interfaces can have
loose coupling

Clarion supports Loose “Application” and “Data Structure” Coupling through
Reference-Variables and “Any-Variables”

This talk is about achieving that on a real-world practical situation: Project
Management.

M Whitemarsh Information Systema Corporation

COUPLING TIGHT TO LOOSE

-

—,
f i
| |

i) /

o = -

E : 1

®—o—0—0—-@

<

e S ﬂwﬁ_,ﬁ
| 1
F, I- -\-'rll . |

—

Content Common Control Stamp Data
Tight Loose
More interdependency Less interdependency
More coordination Less coordination
More information flow Less information flow

m Whitemarsh Information Systema Corporation

DEPENDENCY: CLARION AND ULTRA-TREE

Clarion provides the IDE and code generation
environment. Mandatory that the solution

exists entirely within the management of the
IDE.

UltraTree provides the fundamental Tree-
Structured Data structures for:

Hierarchies within a single table (Recursion)
Networks within a three-table data structure

m Whitemarsh Information Systema Corporation

ULTRA TREE - HIERARCHIES

Single Table within DCT and SQL
UltraTree provides

The fundamental Tree-Structured Data
structure specification

Hierarchical Presentation

Hierarchy management during updating
and deletion

Whitemarsh provides:

Customized Clarion Procedure Routine
collections for Tree Walk (both
Descending and Ascending)

ReAllocation of Leaf or Collections from
one Hierarchy Collection to another.

Project Template =

m Whitemarsh Information Systema Corporation

ULTRA TREE - NETWORKS

Concept
Concept Structure
Type

Three Tables within DCT and SQL
UltraTree provides

The fundamental Network-Structured Data structure specification. Create once, display in
all relevant Hierarchy Presentations of Network

Hierarchy Presentation Management of Networks during updating and deletion
Whitemarsh provides:

Customized Clarion Procedure Routine collections for Tree Walk (both Descending and
Ascending)

ReAllocation is not supported as it’s contrary to the fundamental nature of networks

M Whitemarsh Information Systema Corporation

DOMAIN OF DATA STRUCTURES

Task Template
Type

VAN

Deliverable

Template Type

Project
Template Type

:

VAN

< Task Template

Deliverable Template

Project Template

Objective: Create “software” that is flexible enough to be used in
all SIX of the instances of “moving” data from within a branch of
a <table name> tree to the a different branch of the same <table

name> tree.

m Whitemarsh Information Systema Corporation

CLARION APPLICATION SCREEN-TYPED

’

\..

) /4 e V'V /]) /4 o VY /]) /4 o V'V
Eﬂ Project Template Reallocation
Explode Branch Project Template Types - Unknown -
— e
Collapse Branch Ie?ﬁ:ﬁnown [
Explode Al 2 Administration and Management Projects
Collapse All 4 Preliminary Analysis Projects

5 Conceptual Specification Projects
& Binding Projects

7 Implementation

8 Conversion and Deployment

1) Tag one From Project Template

Project Templates

1 Enterprise’s Architecture
1 Missions
2 Organizations
3 Functions
4 Positions
2 Database Object Class Architecture
1 Database Objects Data Structures
2 Database Object Table Processes
3 Database Object States
4 Database Object Business Information Systems
3 Data Architecture
|- 1 Data Elements

Explode Branch | Collapse Branch

-

2) Ether Make Roct. or Tag One To-Project Template
™ Make Root?

Project Templ

L 4 Operational Data Models
L 5 View Data Models
LI 6 XML Data Models
L_|| =+ 4 Resource Life Cycle Architecture
L 1 Resources
L 2 Resource Life Cycles

3 Resource Life Cycle Node Networks
5 Business Information 5 Pl

L 1 Information Systems Plans
L 2 Business Information System Architectures
L] 3 Requirements teration Prototyping

Tag Row | Untag Row | Explode Branch | Collapse Branch Tag Row Untag Row
Explode | __ Colapse Al TagAl | Clearal | Bxplods Al | Collapse Al Tag Al Clear Al
a Unknown a
3) After tagging. Presz |to Reallocate Templates
Close
W4 ATV IITHN U/ PN AP T VTHN 77N AT

Whitemarsh Information Systems Corporation

g |

I' SN tae a INEN"" 1] e a T 5SN"T1 Sam el

=
—

8/3/2014

11

CLARION APPLICATION SCREEN-UNTYPED

e, e | el e | dl, e] o

| el |

e

1

Project Template Type Reallocation

1) Tag one From-Project Templates Type

Project Type Templates

1 Unknown

2 Administration and Management Projects
3 Enterprise Architectures

4 Preliminary Analysis Projects

5 Conceptual Specification Projects

& Binding Projects

7 Implementation

8 Conversion and Deployment

5 Production and Administration

Explode Branch | Collapse Branch

2) Either Make Root, or Tag One To-Project Template Type
[Make Root?

Project Type Templates

1 Unknown
2 Administration and Management Projects
3 Enterprise Architectures

4 Preliminary Analysis Projects

5 Conceptual Specification Projects

& Binding Projects

7 Implementation

8 Conversion and Deployment

5 Production and Administration

Whitemarsh Information Systems Corporation

Tag Row | Untag Row | Explode Branch | Collapse Branch Tag Row Untag Row
Explode Al | __ Colapse Al TagAl | Cearal | Explode Al Collapse Al Tag Al Clear Al
- -
3) Aftertagging. Press |to Reallocate Templates
Close
p [/ \ / 3 VYV p [/ / 1 VYV p 7T A /]

8/3/2014

12

SPECIALIZED SOLUTION TO THE PROBLEM

« Multiple Procedure routines with relatively high coupling and
cohesion
 Fundamental process:
 Tag a Move-From leaf or branch within the From-tree
 Tag a Move-To leaf or branch within the To-Tree
e Press the ReAllocate button
» Validates that From and To are both tagged
 Reallocates a “From and all its children” to become the child
and all tagged From-Children of the “To”
e Or, Check the Root-box to makes the From into a Root-
based tree.
* Under either scenario,
e Traverses the From-tree to accomplishing appropriate
ReNumbering and “sort key” modification within the
context of the To-Tree.

m Whitemarsh Information Systema Corporation

SIZE OF THE SPECIALIZED CODE

349 lines of code (including blank lines)

21 discrete Procedure Routines including set of routines to
manage tagging.

79 Specific lines of code that have one or more specialized
data-based code assignments. E.g.,

If A_ BusDom:BusinessDomainParentlD <> O Then break
StartParentld = A_BusDom:BusinessDomainParentl|D
GET(BusiDom, BUD:BusiDomPkey)

m Whitemarsh Information Systema Corporation

DOWN-SIDE TO A SPECIALIZED SOLUTION

21 discrete Procedure Routines that exist in
every place where there is a ReAllocation.

In Project Management, it's 6. Across the
Metabase System, probably about 50+.

79 lines of code from each “copied” code set
that has to be modified to bind the ReAllocate
to the specific table(s).

Tedious, Boring, and Error Prone.

m Whitemarsh Information Systema Corporation

APPROACH TO THE CREATION OF A GENERALIZED SOLUTION

Fortran |l had “Equates” in the early 1960s,
and so it had to be somewhere in Clarion.

Discover that Clarion has an approach for
generalized coding. CW2 (1996)7

But Clarion’s “Equates” were sort of but not
really the same.

Hunt, search, and finally after a bunch of years,
discover. RefVariables and AnyVariables.

m Whitemarsh Information Systema Corporation

PROCESS

Code the whole solution with specialized (data-
bound) variables.

Debug until completely correct, right, baked,
“done.”

Print out all the code and “mine” for all data-
binding specifications. That is,

Objects (tables, keys, columns, and file manager
actions.

Columns

m Whitemarsh Information Systema Corporation

PROCESS (CONTINUED)

Replace Objects with Reference Variables, and
Columns with Any Variables

Place the Reference Variables into a specific embed.
Add all the Any Variables to the Data Pad

Create a “MasterEquates Procedure Routine that
binds the Reference and Any Variables to the
appropriate Data Structure.

Find and then substitute the Specialized Code’s
objects and columns with the Reference and Any
Variable Name objects and data names.

M Whitemarsh Information Systema Corporation

ENGINEERING AND IMPLEMENTATION OF THE GENERALIZED SOLUTION

Reference Variable:
A reference variable
contains a reference to
another data (its "target").
You declare a reference
variable by prepending an
ampersand (&) to the data
type of its target.

A_SFRTab

A2_SFRTab

A4_SFRTab

SFRTab

A_SFRParentkey &Key
A_SFRPkey &Key
A_SFRSegKey &Key
A2_SFRParentKey &Key
A2_SFRPkey &Key
A2_SFRSeqKey &Key
A4_SFRParentKey &Key
A4_SFRPkey &Key
A4_SFRSeqKey &Key

SFRPkey &Key

SFRSeqKey &Key
MyFileManager &FileManager
A_MyFileManager &FileManager
A2_MyFileManager &FileManager
A4_MyFileManager &FileManager

m Whitemarsh Information Systema Corporation

8/3/2014

19

REFERENCE VARIABLE PLACEMENT

The Reference Data Variables are embedded via
the IDE as follows:

Local Data =»
Generated Declarations =»
After Window Structure

M Whitemarsh Information Systema Corporation

A REFERENCE VARIABLE IS REALLY JUST A “MAGIC” MIRROR

/ What the Program “contains”

MasterEquates Routine

A SFRTab &= A_ProjectTemplate

A_SFRTab &File

Get(A_SFRTab, A SFRPkey)

A_SFRPkey &= ProjectTemplatePkey

i

~

/

(" /)

What the Program “actually does”
Get(A_ProjectTemplate, ProjectTemplatePkey)

~

J

M Whitemarsh Information Systema Corporation

REFERENCE VARIABLE PLACEMENT

The Reference Data Variables are embedded via
the IDE as follows:

Local Data =»
Generated Declarations =»
After Window Structure

M Whitemarsh Information Systema Corporation

ANY VARIABLES

An ANY variable is one that may
contain any value (numeric or
string) or a reference to any
simple data type.

m Whitemarsh Information Systems Corporation

SFRId ANY
SFRParentld ANY
SFRSeq ANY

SFRsortstring ANY
SFRTabName ANY
SFRTId ANY
SFRTypeld ANY
A_SFRId ANY
A_SFRParentld ANY
A_SFRSeq ANY
A_SFRsortstring ANY
A_SFRTabName ANY
A_SFRTId ANY
A2_SFRId ANY
A2_SFRParentld ANY
A2_SFRSeq ANY
A2_SFRsortstring ANY
A2_SFRTabName ANY
A2_SFRTId ANY
A4_SFRId ANY
A4_SFRParentld ANY
A4_SFRSeq ANY
A4_SFRsortstring ANY
A4_SFRTabName ANY
A4_SFRTId ANY

78

ANY VARIABLES ARE REALLY JUST “MAGIC” MIRRORS

/ What the Program “contains” \

A_SFRId Any

A_SFRTabName Any

MasterEquates Routine
A SFRId &= A_Project Templateld

K A_SFRTabName &:A_ProjectTempIateNay

What the Program “actually does” D)

(

\ A _Project Templateld = 784097
A_ProjectTemplateName = ‘Clarion Intro 101’

\

J

M Whitemarsh Information Systema Corporation

BUILD THE MASTER EQUATES PROCEDURE ROUTINE

MasterEquates Routine
A SFRTab &= A _ProjectTemplate
A SFRParentKey &= A ProjTempl:ProjectTemplateParentKey
A SFRPkey &= A ProjTempl:ProjectTemplatePkey
A SFRSegKey &= A ProjTempl:ProjectTemplateSegKey
A MyFileManager &= Access:A ProjectTemplate

Ditto for: A2_<table and key Stuff>
A4 <table and key Stuff>
<table and key Stuff>

SFRId &= ProjTempl:ProjectTemplateld

SFRParentld &= ProjTempl:ProjectTemplateParentld
SFRSeq &= ProjTempl:ProjectTemplateSeq

SFRTId &= ProjTempl:ProjectTemplateTypeld
SFRSortString &= ProjTempl:sortstring

SFRTabName &= ProjTempl:ProjectTemplateName

Ditto for A SFRID et al
Ditto for A2 SFRId et al
Ditto for A4 SFRId et al

Whitemarsh Information Systems Corporation

SUBSTITUTE ALL THE PROCEDURE DIVISION CODE

MakeRoot Routine

Startld = A_SFRId

NewParentIlD = 0

Do GetMaxSeqNum

primepadlLV = maxsegnhumLV

Do PrimeandPad

A_SFRSeq = maxsegnumLV

A_SFRParentld = NewParentID

A_SFRSortString = CLIP(LEFT(primepadLV))

If A_MyFileManager.UPDATE()<>Level:Benign then
Message('Could not make root. Resetting...")
MakeRootYN ='N' |Resetting MakeRoot Flag
Exit

Else
MakeRootYN ='N' IResetting MakeRoot Flag
Startld = A_SFRId
Do SequenceSFR

End

Whitemarsh Information Systems Corporation

MakeRoot Routine

Startld = BUD:BUSIDOMID

NewParentIlD = 0

Do GetMaxSeqNum

primepadlLV = maxsegnhumLV

Do PrimeandPad

A_BusDom:BusiDomSeq = (maxseqgnumLV

A_BusDom:sortstring = CLIP(LEFT(primepadLV))

A_BusDom:BusinessDomainParentld = NewParentld

If Access:A_BusDom.UPDATE()<>Level:Benign then
Message('Could not make root. Resetting...")
MakeRootYN ='N' |Resetting MakeRoot Flag
Exit

Else
MakeRootYN ='N' IResetting MakeRoot Flag
Startld = A_BuisDomld
Do SequenceSFR

End

8/3/2014

SUMMARY

|ldentify where Same-code is to be used many different places bound to different
data structures

Create solution for one and test, test, test, and once more, test.

|dentify all database objects (tables, keys and access) and make corresponding
Reference Variables

|ldentify all table columns and make corresponding Any Variables
Install the Reference Variables in a Local Objects Windows Structure Embed
Install the Any Variables into the Data Pad

Create a Master Equates procedure Routine and map all Reference and Any
Variables to data structure.

Install the “Do MasterEquates” into the Open Window embed.

Change out all the specialized data-based code statements with generalized data-
based code statements.

Pray for a loving and good God of Infinite Divine Providence.
Run the thing.

M Whitemarsh Information Systema Corporation

FOLLOW-ON ACTIVITIES

All this works fine.

However, while | have one generalized set of code for all the 21 discrete Procedure
Routines,

| now have this generalized code in SIX different procedures.

So, next step is to create a Metabase Common Code DLL and figure out how to get
that working.

Things | do not YET know:
Can | get this working in a generalize way with Ultra Tree (I am thinking, no!)

Can | re-arrange one of the generalized routines into two parts so that there can
be a Do SpecializedProcess back to the main app with an ending Statement,
which, by definition returns to the next statement after the Do
SpecializedProcess (I am thinking, yes)

Could all this have been done with Classes? | do not know. Or, if yes,

would it improve readability, maintenance, and performance?

m Whitemarsh Information Systema Corporation

BLUF (BOTTOM LINE UP FRONT) — AGAIN

Coupling is critical to address between “Applications” and “Data Structures”
Data Structure designs should be able to support many “applications”
“Applications” should be able to support many “Data Structures”

The Coupling between “Data Structures” and “Application” should be as
loose as possible

A Collection of Procedure Routines can be Tightly Coupled (highly cohesive)
collections of 3NF contained “Procedure Routines”

ldentified Procedures that have well-defined data-based interfaces can have
loose coupling

Clarion supports Loose “Application” and “Data Structure” Coupling through
Reference-Variables and “Any-Variables”

This talk showed how this can be done

M Whitemarsh Information Systema Corporation

QUESTIONS FOR THE GREAT GRAND PA?

M Whitemarsh Information Systema Corporation

	Whitemarsh Data Management Series
	Topics
	Specialized vs Generalized
	Problem to be Solved: Reallocate “data” from one data-based tree-structure to another without “Loss, falling, or Broken Dependencies”
	BLUF (Bottom Line Up Front)
	Coupling Tight to Loose
	Dependency: Clarion and Ultra-Tree
	Ultra Tree – Hierarchies
	Slide Number 9
	Domain of Data Structures
	Clarion Application Screen-Typed
	Clarion Application Screen-Untyped
	Specialized Solution to the Problem
	Size of the Specialized Code
	Down-side to a Specialized Solution�
	Approach to the creation of a Generalized Solution
	Process
	Process (continued)
	Engineering and Implementation of the Generalized Solution
	Reference Variable Placement
	A Reference Variable is really just a “magic” mirror
	Reference Variable Placement
	Any Variables
	Any Variables are really just “magic” mirrors
	Build the Master Equates Procedure Routine
	Substitute all the Procedure Division Code
	Summary
	Follow-on Activities�
	BLUF (Bottom Line Up Front) — again
	Questions for the Great Grand Pa?

