
Whitemarsh Information Systems Corporation

WHITEMARSH DATA MANAGEMENT SERIES

1

8/3/2014

Clarion Live Presentation

Generalized
Clarion Application Software

Development
August 1, 2014

Whitemarsh Information Systems Corporation

TOPICS

 BLUF (Bottom line up front)
 Problem to be Solved
 Project Management Data Model by Contained Functional Area

Data Model area
 Identification of the instances of the Problem to be Solved
 Specialized Solution to the Problem
 Down-sides to a Specialized Solution
 Approach to the creation of a Generalized Solution
 Engineering and Implementation of the Generalized Solution
 Follow-on Activities
 BLUF (a reprise)

2

8/3/2014

Whitemarsh Information Systems Corporation

SPECIALIZED VS GENERALIZED

8/3/2014

3

Is this Specialized or Generalized?
What is the level of Coupling and Cohesion?

Elegant architecture & Design or Hackers Paradise?

Whitemarsh Information Systems Corporation

PROBLEM TO BE SOLVED: REALLOCATE “DATA” FROM ONE DATA-BASED TREE-
STRUCTURE TO ANOTHER WITHOUT “LOSS, FALLING, OR BROKEN DEPENDENCIES”

8/3/2014

4

Whitemarsh Information Systems Corporation

BLUF (BOTTOM LINE UP FRONT)

 Coupling is critical to address between “Applications” and “Data Structures”
 Data Structure designs should be able to support many “applications”
 “Applications” should be able to support many “Data Structures”
 The Coupling between “Data Structures” and “Application” should be as

loose as possible
 A Collection of Procedure Routines can be Tightly Coupled (highly cohesive)

collections of 3NF contained “Procedure Routines”
 Identified Procedures that have well-defined data-based interfaces can have

loose coupling
 Clarion supports Loose “Application” and “Data Structure” Coupling through

Reference-Variables and “Any-Variables”
 This talk is about achieving that on a real-world practical situation: Project

Management.

8/3/2014

5

Whitemarsh Information Systems Corporation

COUPLING TIGHT TO LOOSE

8/3/2014

6

Whitemarsh Information Systems Corporation

DEPENDENCY: CLARION AND ULTRA-TREE

8/3/2014

7

 Clarion provides the IDE and code generation
environment. Mandatory that the solution
exists entirely within the management of the
IDE.

 UltraTree provides the fundamental Tree-
Structured Data structures for:
 Hierarchies within a single table (Recursion)
 Networks within a three-table data structure

Whitemarsh Information Systems Corporation

ULTRA TREE – HIERARCHIES

8/3/2014

8

 Single Table within DCT and SQL
 UltraTree provides

 The fundamental Tree-Structured Data
structure specification

 Hierarchical Presentation
 Hierarchy management during updating

and deletion
 Whitemarsh provides:

 Customized Clarion Procedure Routine
collections for Tree Walk (both
Descending and Ascending)

 ReAllocation of Leaf or Collections from
one Hierarchy Collection to another.

Whitemarsh Information Systems Corporation 8/3/2014

9

ULTRA TREE – NETWORKS

 Three Tables within DCT and SQL
 UltraTree provides

 The fundamental Network-Structured Data structure specification. Create once, display in
all relevant Hierarchy Presentations of Network

 Hierarchy Presentation Management of Networks during updating and deletion
 Whitemarsh provides:

 Customized Clarion Procedure Routine collections for Tree Walk (both Descending and
Ascending)

 ReAllocation is not supported as it’s contrary to the fundamental nature of networks

Whitemarsh Information Systems Corporation

DOMAIN OF DATA STRUCTURES

8/3/2014

10

Objective: Create “software” that is flexible enough to be used in
all SIX of the instances of “moving” data from within a branch of
a <table name> tree to the a different branch of the same <table
name> tree.

Task Template Project Template

Deliverable
Template Type

Deliverable Template

Project
Template Type

Task Template
Type

Whitemarsh Information Systems Corporation

CLARION APPLICATION SCREEN-TYPED

8/3/2014

11

Whitemarsh Information Systems Corporation

CLARION APPLICATION SCREEN-UNTYPED

8/3/2014

12

Whitemarsh Information Systems Corporation

SPECIALIZED SOLUTION TO THE PROBLEM

8/3/2014

13

• Multiple Procedure routines with relatively high coupling and
cohesion

• Fundamental process:
• Tag a Move-From leaf or branch within the From-tree
• Tag a Move-To leaf or branch within the To-Tree
• Press the ReAllocate button

• Validates that From and To are both tagged
• Reallocates a “From and all its children” to become the child

and all tagged From-Children of the “To”
• Or, Check the Root-box to makes the From into a Root-

based tree.
• Under either scenario,

• Traverses the From-tree to accomplishing appropriate
ReNumbering and “sort key” modification within the
context of the To-Tree.

Whitemarsh Information Systems Corporation

SIZE OF THE SPECIALIZED CODE

 349 lines of code (including blank lines)
 21 discrete Procedure Routines including set of routines to

manage tagging.
 79 Specific lines of code that have one or more specialized

data-based code assignments. E.g.,
 If A_BusDom:BusinessDomainParentID <> 0 Then break
 StartParentId = A_BusDom:BusinessDomainParentID
 GET(BusiDom, BUD:BusiDomPkey)

8/3/2014

14

Whitemarsh Information Systems Corporation

DOWN-SIDE TO A SPECIALIZED SOLUTION

 21 discrete Procedure Routines that exist in
every place where there is a ReAllocation.

 In Project Management, it’s 6. Across the
Metabase System, probably about 50+.

 79 lines of code from each “copied” code set
that has to be modified to bind the ReAllocate
to the specific table(s).

 Tedious, Boring, and Error Prone.

8/3/2014

15

Whitemarsh Information Systems Corporation

APPROACH TO THE CREATION OF A GENERALIZED SOLUTION

 Fortran II had “Equates” in the early 1960s,
and so it had to be somewhere in Clarion.

 Discover that Clarion has an approach for
generalized coding. CW2 (1996)?

 But Clarion’s “Equates” were sort of but not
really the same.

 Hunt, search, and finally after a bunch of years,
discover. RefVariables and AnyVariables.

8/3/2014

16

Whitemarsh Information Systems Corporation

PROCESS

 Code the whole solution with specialized (data-
bound) variables.

 Debug until completely correct, right, baked,
“done.”

 Print out all the code and “mine” for all data-
binding specifications. That is,
 Objects (tables, keys, columns, and file manager

actions.
 Columns

8/3/2014

17

Whitemarsh Information Systems Corporation

PROCESS (CONTINUED)

 Replace Objects with Reference Variables, and
Columns with Any Variables

 Place the Reference Variables into a specific embed.
 Add all the Any Variables to the Data Pad
 Create a “MasterEquates Procedure Routine that

binds the Reference and Any Variables to the
appropriate Data Structure.

 Find and then substitute the Specialized Code’s
objects and columns with the Reference and Any
Variable Name objects and data names.

8/3/2014

18

Whitemarsh Information Systems Corporation

ENGINEERING AND IMPLEMENTATION OF THE GENERALIZED SOLUTION

Reference Variable:
A reference variable
contains a reference to
another data (its "target").
You declare a reference
variable by prepending an
ampersand (&) to the data
type of its target.

8/3/2014

19

A_SFRTab &File
A2_SFRTab &File
A4_SFRTab &File
SFRTab &File
A_SFRParentKey &Key
A_SFRPkey &Key
A_SFRSeqKey &Key
A2_SFRParentKey &Key
A2_SFRPkey &Key
A2_SFRSeqKey &Key
A4_SFRParentKey &Key
A4_SFRPkey &Key
A4_SFRSeqKey &Key
SFRPkey &Key
SFRSeqKey &Key
MyFileManager &FileManager
A_MyFileManager &FileManager
A2_MyFileManager &FileManager
A4_MyFileManager &FileManager

Whitemarsh Information Systems Corporation

REFERENCE VARIABLE PLACEMENT

The Reference Data Variables are embedded via
the IDE as follows:
Local Data 

Generated Declarations 
After Window Structure

8/3/2014

20

Whitemarsh Information Systems Corporation

A REFERENCE VARIABLE IS REALLY JUST A “MAGIC” MIRROR

8/3/2014

21

A_SFRTab &File

Get(A_SFRTab, A_SFRPkey)

Get(A_ProjectTemplate, ProjectTemplatePkey)

What the Program “contains”

What the Program “actually does”

A_SFRTab

A_SFRPkey

A_ProjectTemplate

ProjectTemplatePkey&=

&=

MasterEquates Routine

Whitemarsh Information Systems Corporation

REFERENCE VARIABLE PLACEMENT

The Reference Data Variables are embedded via
the IDE as follows:
Local Data 

Generated Declarations 
After Window Structure

8/3/2014

22

Whitemarsh Information Systems Corporation

ANY VARIABLES

An ANY variable is one that may
contain any value (numeric or
string) or a reference to any
simple data type.

8/3/2014

23

SFRId ANY
SFRParentId ANY
SFRSeq ANY
SFRsortstring ANY
SFRTabName ANY
SFRTId ANY
SFRTypeId ANY
A_SFRId ANY
A_SFRParentId ANY
A_SFRSeq ANY
A_SFRsortstring ANY
A_SFRTabName ANY
A_SFRTId ANY
A2_SFRId ANY
A2_SFRParentId ANY
A2_SFRSeq ANY
A2_SFRsortstring ANY
A2_SFRTabName ANY
A2_SFRTId ANY
A4_SFRId ANY
A4_SFRParentId ANY
A4_SFRSeq ANY
A4_SFRsortstring ANY
A4_SFRTabName ANY
A4_SFRTId ANY

Whitemarsh Information Systems Corporation

ANY VARIABLES ARE REALLY JUST “MAGIC” MIRRORS

8/3/2014

24

A_SFRId Any

A_SFRTabName Any

A_Project TemplateId = 784097
A_ProjectTemplateName = ‘Clarion Intro 101’

What the Program “contains”

What the Program “actually does”

A_SFRId

A_SFRTabName

A_Project TemplateId

A_ProjectTemplateName&=

&=

MasterEquates Routine

Whitemarsh Information Systems Corporation

BUILD THE MASTER EQUATES PROCEDURE ROUTINE

8/3/2014

25

MasterEquates Routine
A_SFRTab &= A_ProjectTemplate
A_SFRParentKey &= A_ProjTempl:ProjectTemplateParentKey
A_SFRPkey &= A_ProjTempl:ProjectTemplatePkey
A_SFRSeqKey &= A_ProjTempl:ProjectTemplateSeqKey
A_MyFileManager &= Access:A_ProjectTemplate

Ditto for: A2_<table and key Stuff>
A4_<table and key Stuff>
<table and key Stuff>

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SFRId &= ProjTempl:ProjectTemplateId
SFRParentId &= ProjTempl:ProjectTemplateParentId
SFRSeq &= ProjTempl:ProjectTemplateSeq
SFRTId &= ProjTempl:ProjectTemplateTypeId
SFRSortString &= ProjTempl:sortstring
SFRTabName &= ProjTempl:ProjectTemplateName

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ditto for A_SFRID et al
Ditto for A2_SFRId et al
Ditto for A4_SFRId et al

Whitemarsh Information Systems Corporation

SUBSTITUTE ALL THE PROCEDURE DIVISION CODE

8/3/2014

26

MakeRoot Routine
StartId = A_SFRId
NewParentID = 0
Do GetMaxSeqNum
primepadLV = maxseqnumLV
Do PrimeandPad
A_SFRSeq = maxseqnumLV
A_SFRParentId = NewParentID
A_SFRSortString = CLIP(LEFT(primepadLV))
If A_MyFileManager.UPDATE()<>Level:Benign then

Message('Could not make root. Resetting...')
MakeRootYN = 'N' !Resetting MakeRoot Flag
Exit

Else
MakeRootYN = 'N' !Resetting MakeRoot Flag
StartId = A_SFRId
Do SequenceSFR

End

MakeRoot Routine
StartId = BUD:BUSIDOMID
NewParentID = 0
Do GetMaxSeqNum
primepadLV = maxseqnumLV
Do PrimeandPad
A_BusDom:BusiDomSeq = (maxseqnumLV
A_BusDom:sortstring = CLIP(LEFT(primepadLV))
A_BusDom:BusinessDomainParentId = NewParentId
If Access:A_BusDom.UPDATE()<>Level:Benign then

Message('Could not make root. Resetting...')
MakeRootYN = 'N' !Resetting MakeRoot Flag
Exit

Else
MakeRootYN = 'N' !Resetting MakeRoot Flag
StartId = A_BuisDomId
Do SequenceSFR

End

Whitemarsh Information Systems Corporation

SUMMARY
 Identify where Same-code is to be used many different places bound to different

data structures
 Create solution for one and test, test, test, and once more, test.
 Identify all database objects (tables, keys and access) and make corresponding

Reference Variables
 Identify all table columns and make corresponding Any Variables
 Install the Reference Variables in a Local Objects Windows Structure Embed
 Install the Any Variables into the Data Pad
 Create a Master Equates procedure Routine and map all Reference and Any

Variables to data structure.
 Install the “Do MasterEquates” into the Open Window embed.
 Change out all the specialized data-based code statements with generalized data-

based code statements.
 Pray for a loving and good God of Infinite Divine Providence.
 Run the thing.

8/3/2014

27

Whitemarsh Information Systems Corporation

FOLLOW-ON ACTIVITIES

 All this works fine.
 However, while I have one generalized set of code for all the 21 discrete Procedure

Routines,
 I now have this generalized code in SIX different procedures.
 So, next step is to create a Metabase Common Code DLL and figure out how to get

that working.
 Things I do not YET know:

 Can I get this working in a generalize way with Ultra Tree (I am thinking, no!)
 Can I re-arrange one of the generalized routines into two parts so that there can

be a Do SpecializedProcess back to the main app with an ending Statement,
which, by definition returns to the next statement after the Do
SpecializedProcess (I am thinking, yes)

 Could all this have been done with Classes? I do not know. Or, if yes,
would it improve readability, maintenance, and performance?

8/3/2014

28

Whitemarsh Information Systems Corporation

BLUF (BOTTOM LINE UP FRONT) — AGAIN
 Coupling is critical to address between “Applications” and “Data Structures”
 Data Structure designs should be able to support many “applications”
 “Applications” should be able to support many “Data Structures”
 The Coupling between “Data Structures” and “Application” should be as

loose as possible
 A Collection of Procedure Routines can be Tightly Coupled (highly cohesive)

collections of 3NF contained “Procedure Routines”
 Identified Procedures that have well-defined data-based interfaces can have

loose coupling
 Clarion supports Loose “Application” and “Data Structure” Coupling through

Reference-Variables and “Any-Variables”
 This talk showed how this can be done

8/3/2014

29

Whitemarsh Information Systems Corporation

QUESTIONS FOR THE GREAT GRAND PA?

8/3/2014

30

	Whitemarsh Data Management Series
	Topics
	Specialized vs Generalized
	Problem to be Solved: Reallocate “data” from one data-based tree-structure to another without “Loss, falling, or Broken Dependencies”
	BLUF (Bottom Line Up Front)
	Coupling Tight to Loose
	Dependency: Clarion and Ultra-Tree
	Ultra Tree – Hierarchies
	Slide Number 9
	Domain of Data Structures
	Clarion Application Screen-Typed
	Clarion Application Screen-Untyped
	Specialized Solution to the Problem
	Size of the Specialized Code
	Down-side to a Specialized Solution�
	Approach to the creation of a Generalized Solution
	Process
	Process (continued)
	Engineering and Implementation of the Generalized Solution
	Reference Variable Placement
	A Reference Variable is really just a “magic” mirror
	Reference Variable Placement
	Any Variables
	Any Variables are really just “magic” mirrors
	Build the Master Equates Procedure Routine
	Substitute all the Procedure Division Code
	Summary
	Follow-on Activities�
	BLUF (Bottom Line Up Front) — again
	Questions for the Great Grand Pa?

