
Whitemarsh Information Systems Corporation

WHITEMARSH DATA MANAGEMENT SERIES

1

8/3/2014

Clarion Live Presentation

Generalized
Clarion Application Software

Development
August 1, 2014

Whitemarsh Information Systems Corporation

TOPICS

 BLUF (Bottom line up front)
 Problem to be Solved
 Project Management Data Model by Contained Functional Area

Data Model area
 Identification of the instances of the Problem to be Solved
 Specialized Solution to the Problem
 Down-sides to a Specialized Solution
 Approach to the creation of a Generalized Solution
 Engineering and Implementation of the Generalized Solution
 Follow-on Activities
 BLUF (a reprise)

2

8/3/2014

Whitemarsh Information Systems Corporation

SPECIALIZED VS GENERALIZED

8/3/2014

3

Is this Specialized or Generalized?
What is the level of Coupling and Cohesion?

Elegant architecture & Design or Hackers Paradise?

Whitemarsh Information Systems Corporation

PROBLEM TO BE SOLVED: REALLOCATE “DATA” FROM ONE DATA-BASED TREE-
STRUCTURE TO ANOTHER WITHOUT “LOSS, FALLING, OR BROKEN DEPENDENCIES”

8/3/2014

4

Whitemarsh Information Systems Corporation

BLUF (BOTTOM LINE UP FRONT)

 Coupling is critical to address between “Applications” and “Data Structures”
 Data Structure designs should be able to support many “applications”
 “Applications” should be able to support many “Data Structures”
 The Coupling between “Data Structures” and “Application” should be as

loose as possible
 A Collection of Procedure Routines can be Tightly Coupled (highly cohesive)

collections of 3NF contained “Procedure Routines”
 Identified Procedures that have well-defined data-based interfaces can have

loose coupling
 Clarion supports Loose “Application” and “Data Structure” Coupling through

Reference-Variables and “Any-Variables”
 This talk is about achieving that on a real-world practical situation: Project

Management.

8/3/2014

5

Whitemarsh Information Systems Corporation

COUPLING TIGHT TO LOOSE

8/3/2014

6

Whitemarsh Information Systems Corporation

DEPENDENCY: CLARION AND ULTRA-TREE

8/3/2014

7

 Clarion provides the IDE and code generation
environment. Mandatory that the solution
exists entirely within the management of the
IDE.

 UltraTree provides the fundamental Tree-
Structured Data structures for:
 Hierarchies within a single table (Recursion)
 Networks within a three-table data structure

Whitemarsh Information Systems Corporation

ULTRA TREE – HIERARCHIES

8/3/2014

8

 Single Table within DCT and SQL
 UltraTree provides

 The fundamental Tree-Structured Data
structure specification

 Hierarchical Presentation
 Hierarchy management during updating

and deletion
 Whitemarsh provides:

 Customized Clarion Procedure Routine
collections for Tree Walk (both
Descending and Ascending)

 ReAllocation of Leaf or Collections from
one Hierarchy Collection to another.

Whitemarsh Information Systems Corporation 8/3/2014

9

ULTRA TREE – NETWORKS

 Three Tables within DCT and SQL
 UltraTree provides

 The fundamental Network-Structured Data structure specification. Create once, display in
all relevant Hierarchy Presentations of Network

 Hierarchy Presentation Management of Networks during updating and deletion
 Whitemarsh provides:

 Customized Clarion Procedure Routine collections for Tree Walk (both Descending and
Ascending)

 ReAllocation is not supported as it’s contrary to the fundamental nature of networks

Whitemarsh Information Systems Corporation

DOMAIN OF DATA STRUCTURES

8/3/2014

10

Objective: Create “software” that is flexible enough to be used in
all SIX of the instances of “moving” data from within a branch of
a <table name> tree to the a different branch of the same <table
name> tree.

Task Template Project Template

Deliverable
Template Type

Deliverable Template

Project
Template Type

Task Template
Type

Whitemarsh Information Systems Corporation

CLARION APPLICATION SCREEN-TYPED

8/3/2014

11

Whitemarsh Information Systems Corporation

CLARION APPLICATION SCREEN-UNTYPED

8/3/2014

12

Whitemarsh Information Systems Corporation

SPECIALIZED SOLUTION TO THE PROBLEM

8/3/2014

13

• Multiple Procedure routines with relatively high coupling and
cohesion

• Fundamental process:
• Tag a Move-From leaf or branch within the From-tree
• Tag a Move-To leaf or branch within the To-Tree
• Press the ReAllocate button

• Validates that From and To are both tagged
• Reallocates a “From and all its children” to become the child

and all tagged From-Children of the “To”
• Or, Check the Root-box to makes the From into a Root-

based tree.
• Under either scenario,

• Traverses the From-tree to accomplishing appropriate
ReNumbering and “sort key” modification within the
context of the To-Tree.

Whitemarsh Information Systems Corporation

SIZE OF THE SPECIALIZED CODE

 349 lines of code (including blank lines)
 21 discrete Procedure Routines including set of routines to

manage tagging.
 79 Specific lines of code that have one or more specialized

data-based code assignments. E.g.,
 If A_BusDom:BusinessDomainParentID <> 0 Then break
 StartParentId = A_BusDom:BusinessDomainParentID
 GET(BusiDom, BUD:BusiDomPkey)

8/3/2014

14

Whitemarsh Information Systems Corporation

DOWN-SIDE TO A SPECIALIZED SOLUTION

 21 discrete Procedure Routines that exist in
every place where there is a ReAllocation.

 In Project Management, it’s 6. Across the
Metabase System, probably about 50+.

 79 lines of code from each “copied” code set
that has to be modified to bind the ReAllocate
to the specific table(s).

 Tedious, Boring, and Error Prone.

8/3/2014

15

Whitemarsh Information Systems Corporation

APPROACH TO THE CREATION OF A GENERALIZED SOLUTION

 Fortran II had “Equates” in the early 1960s,
and so it had to be somewhere in Clarion.

 Discover that Clarion has an approach for
generalized coding. CW2 (1996)?

 But Clarion’s “Equates” were sort of but not
really the same.

 Hunt, search, and finally after a bunch of years,
discover. RefVariables and AnyVariables.

8/3/2014

16

Whitemarsh Information Systems Corporation

PROCESS

 Code the whole solution with specialized (data-
bound) variables.

 Debug until completely correct, right, baked,
“done.”

 Print out all the code and “mine” for all data-
binding specifications. That is,
 Objects (tables, keys, columns, and file manager

actions.
 Columns

8/3/2014

17

Whitemarsh Information Systems Corporation

PROCESS (CONTINUED)

 Replace Objects with Reference Variables, and
Columns with Any Variables

 Place the Reference Variables into a specific embed.
 Add all the Any Variables to the Data Pad
 Create a “MasterEquates Procedure Routine that

binds the Reference and Any Variables to the
appropriate Data Structure.

 Find and then substitute the Specialized Code’s
objects and columns with the Reference and Any
Variable Name objects and data names.

8/3/2014

18

Whitemarsh Information Systems Corporation

ENGINEERING AND IMPLEMENTATION OF THE GENERALIZED SOLUTION

Reference Variable:
A reference variable
contains a reference to
another data (its "target").
You declare a reference
variable by prepending an
ampersand (&) to the data
type of its target.

8/3/2014

19

A_SFRTab &File
A2_SFRTab &File
A4_SFRTab &File
SFRTab &File
A_SFRParentKey &Key
A_SFRPkey &Key
A_SFRSeqKey &Key
A2_SFRParentKey &Key
A2_SFRPkey &Key
A2_SFRSeqKey &Key
A4_SFRParentKey &Key
A4_SFRPkey &Key
A4_SFRSeqKey &Key
SFRPkey &Key
SFRSeqKey &Key
MyFileManager &FileManager
A_MyFileManager &FileManager
A2_MyFileManager &FileManager
A4_MyFileManager &FileManager

Whitemarsh Information Systems Corporation

REFERENCE VARIABLE PLACEMENT

The Reference Data Variables are embedded via
the IDE as follows:
Local Data

Generated Declarations
After Window Structure

8/3/2014

20

Whitemarsh Information Systems Corporation

A REFERENCE VARIABLE IS REALLY JUST A “MAGIC” MIRROR

8/3/2014

21

A_SFRTab &File

Get(A_SFRTab, A_SFRPkey)

Get(A_ProjectTemplate, ProjectTemplatePkey)

What the Program “contains”

What the Program “actually does”

A_SFRTab

A_SFRPkey

A_ProjectTemplate

ProjectTemplatePkey&=

&=

MasterEquates Routine

Whitemarsh Information Systems Corporation

REFERENCE VARIABLE PLACEMENT

The Reference Data Variables are embedded via
the IDE as follows:
Local Data

Generated Declarations
After Window Structure

8/3/2014

22

Whitemarsh Information Systems Corporation

ANY VARIABLES

An ANY variable is one that may
contain any value (numeric or
string) or a reference to any
simple data type.

8/3/2014

23

SFRId ANY
SFRParentId ANY
SFRSeq ANY
SFRsortstring ANY
SFRTabName ANY
SFRTId ANY
SFRTypeId ANY
A_SFRId ANY
A_SFRParentId ANY
A_SFRSeq ANY
A_SFRsortstring ANY
A_SFRTabName ANY
A_SFRTId ANY
A2_SFRId ANY
A2_SFRParentId ANY
A2_SFRSeq ANY
A2_SFRsortstring ANY
A2_SFRTabName ANY
A2_SFRTId ANY
A4_SFRId ANY
A4_SFRParentId ANY
A4_SFRSeq ANY
A4_SFRsortstring ANY
A4_SFRTabName ANY
A4_SFRTId ANY

Whitemarsh Information Systems Corporation

ANY VARIABLES ARE REALLY JUST “MAGIC” MIRRORS

8/3/2014

24

A_SFRId Any

A_SFRTabName Any

A_Project TemplateId = 784097
A_ProjectTemplateName = ‘Clarion Intro 101’

What the Program “contains”

What the Program “actually does”

A_SFRId

A_SFRTabName

A_Project TemplateId

A_ProjectTemplateName&=

&=

MasterEquates Routine

Whitemarsh Information Systems Corporation

BUILD THE MASTER EQUATES PROCEDURE ROUTINE

8/3/2014

25

MasterEquates Routine
A_SFRTab &= A_ProjectTemplate
A_SFRParentKey &= A_ProjTempl:ProjectTemplateParentKey
A_SFRPkey &= A_ProjTempl:ProjectTemplatePkey
A_SFRSeqKey &= A_ProjTempl:ProjectTemplateSeqKey
A_MyFileManager &= Access:A_ProjectTemplate

Ditto for: A2_<table and key Stuff>
A4_<table and key Stuff>
<table and key Stuff>

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SFRId &= ProjTempl:ProjectTemplateId
SFRParentId &= ProjTempl:ProjectTemplateParentId
SFRSeq &= ProjTempl:ProjectTemplateSeq
SFRTId &= ProjTempl:ProjectTemplateTypeId
SFRSortString &= ProjTempl:sortstring
SFRTabName &= ProjTempl:ProjectTemplateName

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ditto for A_SFRID et al
Ditto for A2_SFRId et al
Ditto for A4_SFRId et al

Whitemarsh Information Systems Corporation

SUBSTITUTE ALL THE PROCEDURE DIVISION CODE

8/3/2014

26

MakeRoot Routine
StartId = A_SFRId
NewParentID = 0
Do GetMaxSeqNum
primepadLV = maxseqnumLV
Do PrimeandPad
A_SFRSeq = maxseqnumLV
A_SFRParentId = NewParentID
A_SFRSortString = CLIP(LEFT(primepadLV))
If A_MyFileManager.UPDATE()<>Level:Benign then

Message('Could not make root. Resetting...')
MakeRootYN = 'N' !Resetting MakeRoot Flag
Exit

Else
MakeRootYN = 'N' !Resetting MakeRoot Flag
StartId = A_SFRId
Do SequenceSFR

End

MakeRoot Routine
StartId = BUD:BUSIDOMID
NewParentID = 0
Do GetMaxSeqNum
primepadLV = maxseqnumLV
Do PrimeandPad
A_BusDom:BusiDomSeq = (maxseqnumLV
A_BusDom:sortstring = CLIP(LEFT(primepadLV))
A_BusDom:BusinessDomainParentId = NewParentId
If Access:A_BusDom.UPDATE()<>Level:Benign then

Message('Could not make root. Resetting...')
MakeRootYN = 'N' !Resetting MakeRoot Flag
Exit

Else
MakeRootYN = 'N' !Resetting MakeRoot Flag
StartId = A_BuisDomId
Do SequenceSFR

End

Whitemarsh Information Systems Corporation

SUMMARY
 Identify where Same-code is to be used many different places bound to different

data structures
 Create solution for one and test, test, test, and once more, test.
 Identify all database objects (tables, keys and access) and make corresponding

Reference Variables
 Identify all table columns and make corresponding Any Variables
 Install the Reference Variables in a Local Objects Windows Structure Embed
 Install the Any Variables into the Data Pad
 Create a Master Equates procedure Routine and map all Reference and Any

Variables to data structure.
 Install the “Do MasterEquates” into the Open Window embed.
 Change out all the specialized data-based code statements with generalized data-

based code statements.
 Pray for a loving and good God of Infinite Divine Providence.
 Run the thing.

8/3/2014

27

Whitemarsh Information Systems Corporation

FOLLOW-ON ACTIVITIES

 All this works fine.
 However, while I have one generalized set of code for all the 21 discrete Procedure

Routines,
 I now have this generalized code in SIX different procedures.
 So, next step is to create a Metabase Common Code DLL and figure out how to get

that working.
 Things I do not YET know:

 Can I get this working in a generalize way with Ultra Tree (I am thinking, no!)
 Can I re-arrange one of the generalized routines into two parts so that there can

be a Do SpecializedProcess back to the main app with an ending Statement,
which, by definition returns to the next statement after the Do
SpecializedProcess (I am thinking, yes)

 Could all this have been done with Classes? I do not know. Or, if yes,
would it improve readability, maintenance, and performance?

8/3/2014

28

Whitemarsh Information Systems Corporation

BLUF (BOTTOM LINE UP FRONT) — AGAIN
 Coupling is critical to address between “Applications” and “Data Structures”
 Data Structure designs should be able to support many “applications”
 “Applications” should be able to support many “Data Structures”
 The Coupling between “Data Structures” and “Application” should be as

loose as possible
 A Collection of Procedure Routines can be Tightly Coupled (highly cohesive)

collections of 3NF contained “Procedure Routines”
 Identified Procedures that have well-defined data-based interfaces can have

loose coupling
 Clarion supports Loose “Application” and “Data Structure” Coupling through

Reference-Variables and “Any-Variables”
 This talk showed how this can be done

8/3/2014

29

Whitemarsh Information Systems Corporation

QUESTIONS FOR THE GREAT GRAND PA?

8/3/2014

30

	Whitemarsh Data Management Series
	Topics
	Specialized vs Generalized
	Problem to be Solved: Reallocate “data” from one data-based tree-structure to another without “Loss, falling, or Broken Dependencies”
	BLUF (Bottom Line Up Front)
	Coupling Tight to Loose
	Dependency: Clarion and Ultra-Tree
	Ultra Tree – Hierarchies
	Slide Number 9
	Domain of Data Structures
	Clarion Application Screen-Typed
	Clarion Application Screen-Untyped
	Specialized Solution to the Problem
	Size of the Specialized Code
	Down-side to a Specialized Solution�
	Approach to the creation of a Generalized Solution
	Process
	Process (continued)
	Engineering and Implementation of the Generalized Solution
	Reference Variable Placement
	A Reference Variable is really just a “magic” mirror
	Reference Variable Placement
	Any Variables
	Any Variables are really just “magic” mirrors
	Build the Master Equates Procedure Routine
	Substitute all the Procedure Division Code
	Summary
	Follow-on Activities�
	BLUF (Bottom Line Up Front) — again
	Questions for the Great Grand Pa?

