Whitemarsh

Information Systems Corporation

Whitemarsh Metabage:
Data Modeler Architecture
cx
Concept of Operationa

February 2006

Whitemarsh Information Systema Corporation
2008 Althea Lone
Bowie, Marylond 20716
Tele: 301-249-1142.
Emuail: Whitemarsh@wiscorp.com
Web: www.wiscorp.com

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Table of Contents

LISt Of FIQUIES . .ot e v
FOrWard . . vii
1.0 Why Data Standardization Is Important i 1
1.1 Areasof Data Standardization 4
1.2 Data Architecture Classest e 6
13 ISO and ANSI Data Management Activitiescoviinn.., 8
1.4 Bulk Data Loading or Importingc.uuuuiiiinenn 8
1.5 Business Fact Standardization Problems and Solution Approach 9
1.6 Data Modeling Problems and Solution Approach 10
1.7 View Data Model Problems and Solution Approach 12
1.8 Integration with Database Objects 13
1.9 Whitemarsh Data Modeler Graphics, 13
1.10 Whitemarsh Data Modeler, a Difference inKind 13
2.0 Whitemarsh Data Modeler Architecture & Concept of Operations 15
3.0 Data SeMaANTICS . . . ot 17
3.1 Semantic Modifier Hierarchies 17
3.2 Data Use Modifier Hierarchies 21
3.3 Meta Category Value Types and Meta Category Value Hierarchies Summary
... 21
40 DataElement Model 24
4.1 CONCEPt . o e 24
4.2 Conceptual Value DOmainst 25
4.3 DataElement CONCePtSottt 26
44 Value DOmainst 27
45 DataElements 29
4.6 Data Element Classifications i, 31
4.7 Compound Data Elements 31
4.8 Derived DataElements 33
4.9 Data Element Model ProcessModel i 34
410 Data Element Model Summaryc. i 35
5.0 Specified Data Model e 37
5.1 Subject Area, Entities and Attributes oo 39
5.1.1 SUDJECES .o 39
5.1.2 ENHILIES ..ot 40
5.1.3 AWNDULES . . o 42
5.2 KeY SUPPOI o 45

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
W

\

Iﬁ!

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

521 Primary Keys 46

522 Foreign KeYsS ...t 48

5.2.3 Referential Integrity i 50

524 Referential Integrity 51

5.3 Attribute Value DOMaiNsot 51
5.4 Reverse ENgINEEringttt 52
5.5 Specified Data Model Maintenance i, 53
5.6 Specified Data Model DDL and Graphics, 54
5.7 Specified Data Model Summary 54
6.0 Implemented Data Model 56
6.1 Forward ENgiNeeringt 59
6.1.1 SchemaCreationouiiiiiiii i 59

6.1.2 Tableand ColumnCreation i, 60

6.1.3 Table Maintenance 61

6.1.4 Column MaintenanCeottt 62

6.1.5 Relationship Maintenance 65

6.2 Original Creation 65
6.2.1 Schema Creationt 66

6.2.2 Table Creationot 66

6.2.3 Column Creationot 66

6.2.4 Mapping Columns of Tables to Attributes of Entities 70

6.2.5 Key SUPPOIt . .. 72
6.2.5.1Primary Keys 73

6.2.5.2 Foreign Keyso 75

6.2.5.3 Referential Integrity i 77

6.3 ReVerse ENQINEEriNgttt 78
6.4 ColumnValue DOmainsottt 79
6.5 Implemented Data Model DDL and Graphics 79
6.6 Implemented Data Model Summary 80
7.0 Operational Data Model 82
7.1 Forward ENginNeeringottt 85
7.1.1 DBMS Schema Creationouiiiiiiiiinenn.. 85

7.1.2 DBMSTableCreationcoiiiii i, 85

7.1.3 DBMS Table Maintenanceuuiniininninnnnann.. 87

7.1.4 DBMS Column Maintenance, 88

7.1.5 Key SUPPOIT . ..o 88

7.2 0riginal Creation 89
7.21 DBMS Table Creationo 89

7.22 DBMSColumn Creationc.iiiiiiiiiiiiiiann.. 89

7.2.3 KeY SUPPOIT . . .o 90
7.25.1Primary KeYS 91
7.25.2Foreign KeysS ... 91

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved
i

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

7.25.3 Referential Integrity 91

7.3 Reverse ENgINEeringttt 91

7.3.1 DBMSidentification 92

7.3.2 Database Identification i 92

7.3.3 External File Identification i ... 92

7.3.3 DBMS Schema Creation through Relationship Creation 93

7.3.4 Mapping DBMS Columns of DBMS tables to Columns of Tables 93

7.4 DBMS ColumnValue DOmainso, 94

7.5 Operational Data Model DDL and Graphics 95

7.5 Operational Data Model Summary 95

7.6 ViewDataModel 96

8.0 Summary and ConClUSIONS i 98
8.1 Semantic Hierarchies and Data Element Model 100

8.2 SpecifiedDataModels 100

8.3 Implemented DataModels i 101

8.4 Operational DataModels i 102

85 ViewDataModels 103

8.6 Approach Summary 103
Appendix 1 Referential Integrity Actions 105
IO 109

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved
WY

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

List of Figures
Figure 1. Typical metadata statistics for databases. 1
Figure 2. Costs and Benefits from Data Standardization Alternatives 2

Figure 3. Enumerated code values for a collection of healthcare tables for Yes|No columns .. .3
Figure 4. Areas of the Knowledge Worker Framework Affected by Data Standardization

and DataModeling e 5
Figure 5. Data Architecture Classest e 7
Figure 6. Meta Attributes for Context Independent and Dependent Business Facts 10
Figure 7. Interrelationship among the six models that comprise data modeling. 15
Figure 8. Meta Category Value Type and Meta Category Value Hierarchies 17
Figure 9. Meta Category Value Types and Meta Category Value Hierarchies 19
Figure 10. Meta Category Value Types and Meta Category Value Hierarchies 20
Figure 11. Two Methods of Binding Semantics into Tables and Columns of Operational

DaAtabASES . ..t 20
Figure 12. Meta Category Value Type and Meta Category Values 22
Figure 13. Meta Category Value Type and Meta Category Value Hierarchies 22
Figure 14. Dataelementmetamodel. 25
Figure 15. Data element concept, personal compensation.c.cvuuin.. 26
Figure 16. Value domains, associated values and assignment to data element. 27

Figure 17. Context Independent Data Element Salary with Associated Meta Category Value
Types, Meta Category Values, Data Element Domain, Business Domain, and Common

BUSINESS NAIM. . . . ot 30
Figure 18. Meta data records required to represent the compound data element, part number
... 32
Figure 19. Data elements involved in derived data element, Age at Death 33
Figure 20. Specified data model metamodel. 39
Figure 21. Subject Area and Associated Entities i, 40
Figure 22. Fully Selected Semantics for Hourly Wage Attribute of Employee Entity 43
Figure 23. Full Associated Semantics for Hourly Wage Semantics with Employee Entity 44
Figure 24. Meta data records that define primary key for Project Assignment Entity 47
Figure 25. Data Model for Employee, Project, Role, and Project Assignments 49
Figure 26. Meta data records required to support primary and foreign key relationships among
Employee, Project, Project Assignment,andRole. 50
Figure 27. Value Domain for Hourly Wage Attribute of the Salary Entity 52
Figure 28. Implemented data model metamode. i, 58
Figure 29. “Pruning” cases for table maintenance 61
Figure 30. Entities that are transformed into tables of an implemented data model 61
Figure 31. Stand alone, Primary, and Foreign Key Columns. 63
Figure 32 Primary and Foreign Keys inWork. i, 64
Figure 33. Associatinga columntoadataelement. 67
. Additional semantics associated with the hourly wage column. 68
Figure 35. Project Assignment table with surrogate primary key 73

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

Iﬁ! v

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Figure 36. Meta category value type and meta category values allocated to Identifier data

BlEMENt. . 75
Figure 37. Metadata required to support surrogate primary and foreign key relationships among
Employee, Project, Project Assignment,andRole. 76
Figure 38. Hierarchy of value domains s 80
Figure 39. Meta model for the operational datamodel. 82
Figure 40. Relationship among Specified, Implemented and Operational Data Models 84
Figure 41. Multiple versions for a particular operational data model DBMS schema and
supporting metadata within the domain of a particular database and DBMS. 86
Figure 42. SQL:1999 DBMS Column transformations that may be required to accommodate
SQL:I1992 DBIMSS. ottt 88
Figure 43. Hierarchy of value domains from data element value domain through DBMS column
value domain. 94
Figure 44. View meta model datamodel. i 97
Figure 45. Integration of semantics and data element model with other essential to enterprise-
wide data standardization models. 99

Proprietary Data, All Rights Reserved

Copyright 2006, Whitemarsh Information Systems Corporation
\
\&
YV Vi

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Forward

This book introduces the architecture and concept of operations for the Whitemarsh Metabase
module: Data Modeler. This book coupled with the various Data Modeler user guides enable
users to effectively design and evolve enterprise wide data semantics and data models.

The data modeler module “lives” within the Database and Database Objects component
of the Metabase Domain diagram below. As seen through this diagram, persons through their
role within an organization perform functions in the accomplishment of enterprise missions.
They both employ and need information. These information needs reflect the state of certain
enterprise resources such as finance, people, and products that are known to the enterprises. The
states are created through business information systems and databases. Databases in turn are
known to the enterprise through database objects and data models. This book is all about the
architecture of the data models within and among databases and database objects.

gf:fighﬁon Information Needs

an(% Function and Characteristics

M y Management
anagement

Database
Objects
Management

Resource Life Cycle
Specification
Management

Business
Information
Systems
Management

Proprietary Data, All Rights Reserved
vii

m Copyright 2006, Whitemarsh Information Systems Corporation
W

\

Iﬂ!

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

1.0 Why Data Standardization Is Important

From the information technology perspective, it is commonly felt that data standardization
affects only information technology. That cannot be farther from the truth. While certainly data
standardization affects data element definitions and their specifications that are employed as
semantic templates for business facts contained in a myriad of data files, data models, databases’,
and information systems, the domain of data standardization is much pervasive. Because data
standardization is so pervasive, the lack of data standardization is very expensive. Four examples
serve to illustrate the “value” in achieving enterprise-wide data standardization.

First, there are generally common statistics about database environments with a typical
state government, or multiple business line enterprise. These are provided in the Figure 1.

Unit Components
1 database 100 tables
1 table 15 columns
Each agency 100 databases
Each state 40 agencies

Figure 1. Typical metadata statistics for databases.

The total count of columns for each database is thus 1500. The total columns for an agency is
15,000 columns, and the total for the state, for example, like Washington, New York, or
Maryland would be 6,000,000. It is Michael Brackett’s assertion that, for example, the State of
Washington only has about 20,000 data elements. Given that this is approximately true, which is
likely because of Brackett’s long association with the State Government of Washington, then
each of the asserted 20,000 data elements is reused about 300 times. For sure many are used
hundreds of times and some are used only once. Clearly then, a key benefit is that there is
significantly reduced effort in specification, implementation and maintenance.

In a second example of the benefits of achieving enterprise wide data standardization, an
agency within the United States Department of Defense, tasked a contractor (bordering on a
sentence of eternal damnation, some would suggest) to synthesize the unique set of data elements
from among the complete set of columns. The result is presented in Figure 2.

In this book and in all Whitemarsh materials, database means database. That is, a well organization collection
of data that may be defined through and controlled by a database management system (DBMS). When the
term database is used it means database. When DBMS is used it means database management system.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 1

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Data Standardization Final Quantity of defined
Alternative components Cost

Traditional (prime + modifer + | 19,000 (at the columns, cells, fields, | $6.75 million
classword) across all systems and attributes level)

Accomplished by standardizing | 3,000 (still at the columns, cells, $1.06 million
closely named columns and fields, and attributes)

fields

Accomplished through 560 (at the data element level and $450,000
standardization techniques in then generation of automatically

this paper. defined columns, fields and cells

Figure 2. Costs and Benefits from Data Standardization Alternatives

In this particular example of determining data elements from columns, the ratio was 34 to 1.
While this ratio is smaller than the first example, it was for only one database application. The
third column in this table clearly shows the effect on cost incurred to define the original 19,000
columns. The effect is dramatic, simply dramatic.

A third example comes from another United States Department of Defense agency. A
study was undertake to determine the cost of Extract-Transform-Load (ETL) efforts. Each effort
is characterized by a requirement, design, software implementation and maintenance. Each such
ETL represents a failure in data standardization. Columns that were supposed to be the same
were represented through different names, semantics, data types, levels of granularity, time-
sequencing, and the like. While an enterprise-wide data element standardization approach would
not solve all these problems, it would clearly affect different names, semantics, data types. The
agency spends about $175,000,000 each and every year on such ETL activities. In case that
doesn’t seem like much money, it represents about six hundred $300,000 houses every year. If
the data element approach resolved 50% then that would represent savings of about $90 million
per year. Extended to the U.S. DoD as a whole the savings would be about $450 million, and to
the U.S. Government as a whole, about $1.5 Billion. Given that the U.S. Government spending
represents about 10% of the total economy, then the savings to the economy as a whole is about
$15 Billion. These savings are not small.

A fourth and final example was provided by a reviewer of the data element meta model
that is part of the data modeler component of the Whitemarsh metabase. He reports that an effort
was mounted to bring together sets of rows from a large number of different SQL tables within a
health care environment. The columns, whose actual data values were “mined” were all expected
to have values of Yes or No. Figure 3 speaks for itself.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 2

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Yes|No Code values

Column

Frequency

1296 1=yes.....0=no.....

899 Y =vyes.....N =no.....

740 1=yes........

75 Y =yes..........

17 0=yes....1=no.....

2 1 =yes.....0 =no.....2= error

104 Y =yes.....N =no U = unknown

1 Y =vyes.....N =no.....D = does not apply
3 0 =false.....1 =true.....

5 Y =yes.....N =no.....N/A = not applicable
90 1=yes....2=no.....

6 1 =yes.....2=no0.....3 = not applicable

1 1=yes.....2=no.....N = none

2 1 =yes.....2 =no.....0 = do not use default
88 1 =yes.....0 =no.....99 = unknown

1 1 =yes.....0 = no/negative.....99 = unknown
1 1 =yes.....0 =no.....2 = unknown

24 Y =yes.....N =no.....NA = not applicable
17 Y/N items to be deciphered.....

11 1 =yes.....0 =no.....2 = not applicable

1 1 =yes.....0 =no.....U = undetermined

1 1 =yes.....2 =n0.....3 = unknown

2 Y =yes.....N =no.....blank = no

1 0 =yes.....1 =no.....2 = not applicable

1 2=yes....1=no.....

1 1 =yes.....0 =no.....U = unknown

1 Y =yes N =no A = ask

1 Y =yes N =no R = restricted

1 yes = yes no = no

1 1=yes0=no2=ask

3394 Total Columns

Figure 3. Enumerated code values for a collection of healthcare tables for Yes|No columns

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 3

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

All of these examples and savings that result from an enterprise-wide approach to data elements
are just for database applications. What are the savings for other types of access methods like
spread-sheets, non-database file access such as COBOL and ISAM, and non-automated
“systems” such as form, person-to-person communications? What about savings in
documentation, training, systems analysis, and design? What about the probably uncountable
calls to technical support to ask, “What does that field mean?”” Those costs are probably
incalculable by any reasonably defendable means.

Situated within the context of the Knowledge Worker Framework?, attention to data
standardization starts on a high row and its effects spread across all columns. Figure 4 presents
the Knowledge Worker Framework and the cells directly affected by data standardization are
shaded.

1.1 Areas of Data Standardization

Data exists within various databases in a variety of formats and under a variety of names.
Because there are seldom enterprise-wide standards that control these formats and names, the
same business data is often represented differently: hence conflicting semantics.

The six distinct functions within the Whitemarsh metabase data modeler broadly
accomplish:

Data Semantics

Data elements

Specified data models
Implemented data models
Operational data models
View data models

Data semantics, created within the data element module are employed in the data standardization
effort to regularize the rules and meanings of the data represented by the data values associated
with either a context dependent or context independent business fact. These are then applicable
to business fact representations, that is, data elements, attributes of entities, columns of tables,
DBMS columns of DBMS tables, and view columns of views.

Data elements are employed as semantic templates for the creation of context dependent
collections of business facts. Each collection is commonly referred to as a data model. In the
most general terms, four of the functions support the creation of four data models:

Specified
Implemented
Operational
View

N

The book, Knowledge Worker Framework (significantly different from the Zachman Framework),
can be downloaded from the website, www.wiscorp.com.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
W

\

lﬁ! 4

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Whitemarsh Knowledge Worker Framework
Man-Machine Interface
Machine Interface Man
Business
Deliver- Information Business
ables Mission Database Object System Business Event Function Organization
Scope List of List of major List of business List of interface List of major List of
business business information events business organizations
missions resources Systems scenarios
Business | Mission Resource life Information Event Business Organization
hier- cycles sequencing and sequencing and scenario charts, jobs and
archies hierarchies hierarchies sequencing and descriptions
hierarchies
System Policy Semantics, Data | Information Invocation Best practices, Job roles,
hiera- Elements, and system designs protocols, input quality responsibilities,
rchies Specified Data and output data, measures and and activity
Model and messages accomplish- schedules
ment
assessments
Tech- Policy Implemented Information Presentation Activity Procedure
nology execution Data Model and systems layer information | sequences to manuals, task
enforce- Detailed application system accomplish lists, quality
ment Database designs instigators business measures and
Objects scenarios assessments
Deploy- Installed Operational Implemented Client & server Office policies Daily schedules,
ment business Data Model information windows and/or and procedures shift and
policy and systems batch execution to accomplish personnel
pro- mechanisms activities assignments
cedures
Oper- Operating | Application view | Operating Start, stop, and Detailed Daily activity
ations business Data Models information messages procedure based | executions, and
systems instructions assessments
Figure 4. Areas of the Knowledge Worker Framework Affected by Data Standardization

W

and Data Modeling

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

5

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

All four of these models are critical to achieve enterprise-wide data standardization. If
one or more models are missing enterprise-wide data standardization failure is assured.

A specified data model is one that is technology independent and thus not bound by any
particular database management system or computing implementation, for example, a data
structure modeling the needs of human resources (HR). The specified data model triple is:
subject, entity and attribute.

An implemented data model is one that is technology dependent and is bound by a
particular linguistic expression of a data model’s semantics, but has not been implemented
through a particular DBMS, nor particular computing environment. For example, a HR database
expressed in the ANSI SQL:1999 language. The implemented data model triple is: schema,
table, column.

An operational data model is one that is technology dependent, is bound by a particular
linguistic expression through a specific DBMS and is implemented on a specific computing
environment to serve the needs of one or more data processing applications. For example, an HR
database under Oracle/10g on a Compaq Proliant Unix server in Cleveland, Ohio. The
operational data model triple is: DBMS schema, DBMS table, and DBMS column.

Finally, the view model is the application-side data model expressed as SQL views. Thus,
the application view model is technology dependent, is bound by a particular linguistic
expression through a specific DBMS, and is implemented on a specific computing environment
to serve the needs of one or more data processing applications.

Section 1.5 of this book identifies a summary of the problems associated with managing
enterprise-wide data models. A more detailed presentation of these data element problems is
contained in the paper, An Olde Saw that Just Won’t Cut, and in other Whitemarsh materials that
address data standardization. The Whitemarsh paper, Data Architectures, presents the
characteristics of the five data architecture classes. Finally, the paper, A Column by Any Other
Name is Not a Data Element, are all described on the Whitemarsh website, www.wiscorp.com.
Full versions of these papers are available for Whitemarsh website members.

Collectively, if the six functions (data semantics through view data models) are
accomplished in roughly that order, enterprises will achieve a significant boost in data
standardization. Enterprises will additionally notice that:

° Data quality will rise because there will be fewer unnecessary semantic conflicts
for the same data

° Inherent project risks will decrease because fewer abstract concepts will be
unknown as projects proceed

° Computing efficiency will increase because computers will not be spending
wasted time extracting, transforming and then loading data into downstream
databases and file structures

° Staff productivity will increase because projects will require less work for the
same scope

1.2 Data Architecture Classes

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 6

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

In addition to the four classes of data models there are also data architecture classes. A data
architecture class is a particular style of data model that serves a particular class of database
applications. The five most widely recognized data architecture classes are:

Transac
Subject

Referen

Original data capture

tion data staging area
area database

Data warehouse

ce data

Figure 5 illustrates these five data architecture classes and shows the flow of data from the
original data capture to data warehouses. Reference data is employed by which ever data
architecture class is appropriate. These data architecture classes are fully described in other

Whitemarsh materials.

Reference Data

-

%
M
=—
——
=

B
\@/

=

{7
o

Wholesale

=
=
==

000 O]

Operational TDSA Operational Warehouses Databases,
Application Database Datastore Wholesale & Retail
Data Tables
Original business data Business transaction data Integrated business data End-user business data
Captured at source Transformed to common format | Broad and comprehensive Specific needs design
Application specific Application specific Subject area coverage Application specific

Vendor package if possible
Ex: Order Processing

Custom, but simple applications
Ex: MPS

Figure 5. Data Architecture Classes

Custom, but simple
Ex: InMarket Reporting

Vendor package if possible
Ex: Improved Sales Reporting

Copyright 2006, Whitemarsh Information Systems Corporation

Proprietary Data, All Rights Reserved

7

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

1.3 1SO and ANSI Data Management Activities

The ANSI (American National Standards Institute) and ISO (International Standards
Organization) data management standards efforts are roughly divided along the same lines as the
major components of the Whitemarsh data modeler. The ISO SC32 (Standing Committee) Data
Management and Interchange committee has a number of working groups. Working Group 2
(WG2) addresses data semantic classification hierarchies, data element model, and the specified
data model, and metadata repositories on the whole. The Whitemarsh data element submodel
claims conformance to the requirements of the 1SO standard, 11179, created by WG2, Data
Element Metadata.

WG3, the “SQL” committee addresses the implemented data model effort and all the
metadata appropriate for “SQL databases” within the SQL:1999 standard’s schema information
tables. Finally, all the SQL vendors such as Oracle, Sybase, IBM, CA, Informix and Microsoft
address the operational data model efforts. WG4 is a committee that specified standard uses of
SQL through the creation of SQL methods libraries for spatial and full text.

In the ANSI INCITS (International Committee for Information Technology Standards)
technical committees, L8 (the ANSI committee that is associated with 1SO’s WG2) addresses
data semantics classification hierarchies and data elements, T2 addresses conceptual schemas as
is appropriate for specified data models, and H2 (the ANSI committee associated with 1SO’s
WG3 and WG4) addresses implemented data models and the metadata for implemented data
models through the schema information tables. Finally, the SQL vendors such as Oracle, Sybase,
IBM, CA, Informix and Microsoft address the operational data model efforts.

1.4 Bulk Data Loading or Importing

Because most-if not all-organizations have already expended significant funds on data models
or have large collections of data file definitions, the Whitemarsh data modeler supports the
importing of:

° Data element metadata
° Data models

Whenever data is imported, the required foreign key linkages to the appropriate “upstream”
semantics (DBMS column must be related to table column (which in turn is related to data
element)) cannot, of course, already be present. To overcome this lack of mandatory foreign key
values, the Whitemarsh bulk data loading or import functions will default the foreign key values
to a special value that means “unknown semantics.”

This special “unknown semantics” value is created through a special administrative
function when the data modeler is first installed. Then, as these imported data are integrated into
the overall set of enterprise wide semantics the “unknown semantics” can be updated to the
appropriate “known semantics” by choosing the appropriate foreign key value.

For example, suppose there is a data file to be loaded that contains 50 new DBMS tables
and 15-40 DBMS columns for each of the new DBMS tables. Given that one of the new DBMS

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 8

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

columns for a new DBMS table, Salesman, is FN, then, if there isn’t an already loaded default
“unknown semantics” foreign key value default, then the DBMS column, FN, would not be
successfully loaded because of a referential integrity error between the DBMS column and the
table column. To resolve this “problem” the implemented data model is preloaded an “unknown”
schema that has a table called Unknown Table with a column called Unknown Column. But
because of the “unknown semantics” default foreign key value, FN, is automatically related to
the “unknown column” within the “unknown table,” that represents “unknown semantics.” Once
properly analyzed FN can then be related to the appropriate table column, Employee First Name,
within an appropriate table, Employee. The table column should already be related to the data
element, First Name within the Business Domain, Person. This then means that while FN is a
DBMS column name within the DBMS table Salesman, its real semantics are that it is really the
first name of a person.

1.5 Business Fact Standardization Problems and Solution Approach

The traditional approach to business fact standardization, that is, the three-part paradigm of
prime word, modifier[s], and class word was introduced in the middle 1970s to satisfy the needs
of naming fields within the contained data structures of COBOL programs. While quite suitable
for COBOL, once this three-part paradigm was brought into the database world, five distinct
problems immediately arose. These were:

° That data elements were mistakenly seen as synonyms for table columns, screen
cells, entity attributes, or report fields.

o That data elements don’t have names

° That prime word, modifier[s] and class word are part of the data element’s name
° That modifiers are from a single homogeneous set

° That there is only a choice of one class word

These problems are presented and analyzed at length in data standardization materials from the
Whitemarsh website (www.wiscorp.com). Collectively, these errors have cost hundreds of
millions of dollars in wasted data standardization efforts. The Whitemarsh approach to a solution
is a business fact standardization strategy that is based on a meta attribute classification scheme
that both supports a business domain, common business name, modifier classes and subclasses,
multiple class word classes and subclasses, and is also preserved within the metadata repository
so the relevant semantics are immediately retrievable.

Data elements, are thus context independent business fact semantic templates. Context
dependent business facts are cells in a screen, fields in a file, columns in a table, or variables in a
program. While most of the meta attributes necessary to describe the context independent and

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 9

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Meta Attributes for Context Independent and Dependent Business Facts
Context Dependent: Table
Associated Meta Attribute or Context Independent Data | Column, Screen Cell, Entity
Semantic Part Element Attribute, Report Field, etc
Business Domain Yes No (but yes by inheritance)
Common Business Name Yes Yes
Entity or Table No Yes
Semantic Modifiers No Yes
Data Use Modifiers Yes Yes
Generated Policy Basis Description | Yes Yes
Computer Data Type No Yes
Data Structure Yes Yes
Required Unigqueness No Yes
Relationship Function No Yes

Figure 6. Meta Attributes for Context Independent and Dependent Business Facts

dependent business facts are the same, there are some differences. Figure 6 identifies these
differences.

1.6 Data Modeling Problems and Solution Approach

Many data modeling software tools are founded on graphics. That is, entity-relationship
diagrams of one style or the other. While pictures are nice, they do not compile and they are
seldom sufficient or complete. There are so many different types of metadata necessary for a
complete data model that a “picture” seldom represents more than a small percentage of what is
necessary. Finally, if it was all graphically represented then these graphics would just be a
semantic blizzard.

In addition to having a pretty picture of a single data model, there are actually three
different kinds of models that must remain in synchronization. These are: specified,
implemented, and operational. The specified model is the province of the functional data
modeler and/or data administration (DA). The implemented model is the province of the
database administrator (DBA). The operational model is commonly the responsibility of a

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 10

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

DBMS administrator which may also be someone in the Database Administration group. A
comprehensive solution to data modeling must therefore provide:

° Full control over context independent data elements that are then employed, for
example, as attributes of entities or columns of tables.

° A clear demarcation between data models that serve different purposes and stages
in the database design and implementation process with the ability to evolve these
different models and to maintain the mapping between the models, possibly
through SQL view-like language commands.

° Fully definable meta-attributes for all components of the data model (e.g., entities,
data elements, columns, primary and foreign keys) including the ability to have
meta-attribute value set definitions that can in turn be used for automatic

definitions.

° The ability to express sophisticated integrity constraints for individual columns,
groups of columns, inter-table constraints, rows, sets of rows within and across
tables, etc.

° Fully definable reporting capability against the data modeling metadata database.

° The ability to have data model meta components fully integrated with other IT

components such as views, reports, screens, systems, "programs," user guides,
and other forms of documentation.

° Graphical support with the ability to re-size the icons that represent "entities," the
ability to have multiple levels to any diagram to then expose the underlying
substructures within represented “entities."

The approach provided by Whitemarsh addresses all these needs except for the last, graphical
support. Graphical support is already provided within by diagraming packages (e.g., Dezine by
Datanamics (www.datanamic.com)) that can create, read and write SQL DDL streams and create
diagrams. The Whitemarsh data modeler produces SQL DDL streams as ASCII output files or
reports. To have diagrams that support more semantics than ANSI SQL can implement is a waste
of analysis and design efforts because it gives a false impression of what can be accomplished
through an ANSI SQL DBMS. The Whitemarsh data modeler, in contrast, has one and only one
target: The ANSI SQL DBMS. If it can be created in the Whitemarsh Data Modeler then it can
be implemented in an ANSI SQL DBMS. While this strategy may be an affront to data model
diagram purists, it must then be stated that the Whitemarsh Data Modeler was not created for
them. Rather, it was created for the data administrators and database administrators who actually
have to implement, operate and maintain what they “devine.”

The terms, logical and physical are purposefully not used by Whitemarsh because they
are ambiguous. For example, the physical model to a data modeler is SQL schema data definition

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 11

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

language (DDL). To a database designer (i.e., DBA) the schema DDL is the logical model,
especially if it’s in third normal form. The DBA then transforms the schema DDL to one or more
different schema DDL implemented designs to conform to different DBMSs, operating systems,
database sizes, query characteristics and volumes. Some DBAs consider each one of these
physical schemas while other DBAs consider them still to be logical schemas. Some also hold
that the logical schema is the input side of a transformation and the physical schema is the output
side of the transformation.

Whitemarsh therefore uses the terms specified, implemented, and operational rather than
conceptual, logical and physical as there may be many transformations that occur for different
reasons within the specified database design activities and within the implemented database
design activities. As to where the metadata are stored, the answer is quite simple: the metadata
repository. The key characteristic is that they both be stored in the same metadata repository.
The specified model MUST always be in at least third normal form as that is the most precise.

The Whitemarsh data modeler allows [human] data modelers and database designers to
create models by entering data through a panels interface. Reports from data modeler can be
exported to SQL and read into an entity relationship graphics package that can import SQL
DDL. Whitemarsh already uses such a package.

1.7 View Data Model Problems and Solution Approach

The third area addressed by the Whitemarsh data modeler is the interface between applications
and operational data models. With the advent of the ANSI SQL standard for Call Level Interface
(CLI), which Microsoft has implemented as its ODBC, application programs are able to interact
with multiple DBMSs. This means that shrink-wrapped software can be purchased that employs
the ANSI CLI to access data without having to have the application software specially created
for the particular DBMS.

Because of these two layers of independence between application programs and
databases through vendor specific DBMSs, enterprises cannot safely depend on the DBMS’s
internal metadata administration facilities to manage all SQL views. These views, if they are to
be centrally managed must be defined within the metabase and then issued as data definition
language command files to the DBMSs that are in turn accessed by the application programs for
accessing data.

An additional feature of ANSI SQL views is that significant procedure logic can be
installed into the view. This additionally allows more and more of the application independent
data integrity rules to be defined within the purview of the DBMS and to be managed by the
enterprises’s data and database administration groups. This decreases risk, increases quality, and
generally increases the overall effectiveness of critical staff.

The Whitemarsh metabase data modeler module enables the central definition and
administration of ANSI SQL views. These views can be printed as command files that can be
sent to DBMSs for compiling and storage within the DBMS’s schema information tables.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 12

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

1.8 Integration with Database Objects

With the standardization of SQL:1999, two dimensional data structures are an anachronism.
SQL:1999 tables can contain many layers of substructures and each defined data unit can be
supported by sophisticated processes. This enables the creation of database object classes with
the scope the ANSI SQL language. The Whitemarsh metabase module, data modeler directly
supports these SQL database objects.

1.9 Whitemarsh Data Modeler Graphics

The Whitemarsh data modeler creates graphics in two ways: dynamically and indirectly. First, it
dynamically generate graphically oriented data model trees for the specified, implemented, and
operational data models. In these graphic trees, the targeted root entity upon which the
dynamically created tree is based, is colored black, descendent entities are colored blue, ancestor
entities are red, and subtyped entities are colored cyan. As each entity is highlighted in the data
model tree, all the attributes and keys are presented in “surrounding” list windows.

The Whitemarsh data modeler generates an output file that can be fed to an optionally
purchased product that creates both entity-relationship diagrams for the specified, implemented,
and operational data models, and also full SQL streams for the operational data model. This
output file may also be fed to the Clarion development environment in the support of completely
operational client-side applications.

Notwithstanding, these “pretty pictures” serve only as graphical representation reports of
some aspects of the underlying metadata that must be stored and interrelated in a comprehensive
enterprise-wide metabase of semantics.

From Whitemarsh’s point of view, graphics are like a few deck chairs on the Titanic.
Having all the deck chairs but missing the completely water tight hull is like trying to say that
these lashed-down deck chairs will keep the Titanic afloat after it hit iceberg. Clearly it sank,
deck chairs and all. So too has sank many enterprise-wide data standardization efforts that were
based almost exclusively on pretty pictures.

1.10 Whitemarsh Data Modeler, a Difference in Kind

The Whitemarsh data modeler is different from many data modeling packages because it
approaches data modeling from the vantage point of the entire enterprise rather than from the
viewpoint of a single database. Furthermore, a key goal of the Whitemarsh data modeler is to
generate ANSI SQL DDL command files for ANSI SQL-based databases. Enterprise database is
real only if it exists as enterprise-wide operational databases across all the data architecture
classes. Otherwise, enterprise database is just a set of pretty pictures representing the nirvana
that will never be.

Whitemarsh’s design presumes that there will be many different databases that employ
the same set of semantics over and over throughout different data architecture classes. This
fundamental design requirement means that the Whitemarsh metabase must first and foremost

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 13

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

support the definition of the semantics of the enterprise’s business facts, that is, data elements,
and then the deployment of those data element semantic templates within the specified,
implemented, and operational data models across the five distinct classes of data architecture.

Figure 2, above, highlights the financial rationale that makes this approach absolutely
critical to data standardization. In a reflective study of a very large data standardization effort, it
was shown that even though the organization had in excess of 19,000 application data elements,
the actual quantity of completely context independent business facts was far less than 1000. If
the enterprise had followed the approach presented in this book and in the other Whitemarsh
materials then their expenditure of $6.75 million for application column development could have
been less than $500 thousand.

The Whitemarsh metabase module, data modeler, produces ANSI standard SQL data
definition language. Many development environments such as Oracle, Powersoft, and Clarion for
Windows all support the direct development of entire application systems from ANSI standard
SQL. In the case of Clarion for Windows, once the SQL compiled by the DBMS, Clarion can
synchronize to that database schematic and then through its own facilities, create a complete
client side application system through code generation. The metabase also supports the creation
of Clarion’s DDL, and once the Clarion DDL is compiled, a complete client side application
system through code generation

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

Iﬁ! 14

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

2.0 Whitemarsh Data Modeler Architecture & Concept of Operations

Figure 7 presents the overall design of the data modeler. The six distinct functions of data
modeler are:

Data Semantics

Data elements

Specified data model
Implemented data model
Operational data model
View data models

Data Semantics
Classification Hierarchies

] I

y

Data Element
Model

A J

/
Specified Data > Implemented
Model - Data Model
A
A A\ 4

Objects Model Model

Database Operational Dataw

A J

View Data Model

Figure 7. Interrelationship among the six models that comprise data modeling.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 15

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Figure 7 also shows that the database objects model interfaces with the implemented data model.
It interfaces there because the data structures within database objects are tables, and when
exported are linguistically expressed in the ANSI standard SQL.

Because each model corresponds to a class of work that is generally accomplished by a
single group of data designers or data modelers, each is presented in its own section. The
diagram for each section contains shaded and unshaded meta entities. The data represented by
shaded meta entities is created and updated either in other data modeler submodels are in other

metabase meta entity models.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 16

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

3.0 Data Semantics

Business facts, whether context independent or dependent represent a set of semantics
established by the enterprise. Semantics are the rules that govern meaning and usage. The
semantics are represented through a series of classification hierarchies. Each classification
hierarchy represents one complete class of semantics. Each class of semantics relates to a single
meta category value type, which itself is organized into a hierarchy. While there is no limit to
either the quantity, breadth, or depth of a meta category classification hierarchy, the most
coOmmon ones are:

° Semantic modifiers that provide special contexts for the common business fact
meaning. These are the prefix meta category values

° Data use modifiers that point to the data types, roles performed, and value units.
These are the suffix meta category values.

The data model for Meta Category Value Type Classes, Meta Category Value Types, and Meta
Category Values is depicted in Figure 8. The Meta Category Value Type Class broadly divides
the meta category value type and meta category value hierarchies into their class types, prefix
and suffix. This diagram shows only three entities. Two are recursive. That means that each can
contain hierarchically related rows of data.

3.1 Semantic Modifier Hierarchies

Semantic modifiers represent semantic restrictions on both the meaning and the implied value set

Meta Category
Value Type
Class

Meta Category
Value Type

A

I

A4

Meta Category
Value

I

Figure 8. Meta Category Value Type and Meta Category Value Hierarchies

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\l l

IA! 17

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

of a business fact. Semantic modifiers always precede the common business name. The general
meaning of the value set is provided by the common business name of the business fact. For
example, the common business name, Sales, does not in and of itself contain contextual
restrictions on which Sales are implied. Semantic modifiers provide the semantic contexts. For
example, it may be <North American> Sales. Or, it might be <Estimated> <annual> <North
American> Sales. Each semantic modifier conveys a restricted meaning to the value set
represented by the business fact, Sales. Each angle-bracketed term is an instance of some meta
category value type. A common set of semantic modifier types include:

Temporal
Accuracy
Geographic
Organizational

Each type instance may have subtypes and once the type hierarchy is complete, the full meta
category value set is provided. There can be at most one semantic modifier from each semantic
modifier type hierarchy. For example, from above, there can be at most one temporal modifier,
one accuracy modifier, one geographic modifier, and one organizational modifier. There can be
fewer modifiers than the quantity of first level types, but not more. The data modeler
automatically creates names for data elements, attributes of entities, columns of tables, and
DBMS columns of DBMS tables. User-names may, of course, be additionally be created by the
user. Notwithstanding any such changes, the set of semantics inherited through the meta
category value types and hierarchies are maintained.

The primary purpose for breaking the meta category value classifications into two
distinct hierarchies, that is, one for the meta category value types and another for the meta
category values is to ensure that only one value from each meta category value hierarchy
becomes a part of any context independent or dependent business fact. In Figure 9, which
contains a set of semantic modifiers, the first major row is divided into two rows represents the
meta category value type hierarchy. The second major row is divided into seven subordinate
rows represents the lower level hierarchy. In the case of the Temporal and Accuracy semantic
modifier columns, all the entries are siblings. In the case of the Geographic and Organizational
columns the entries are hierarchically related.

Each meta category value and meta category value type contain a number of meta
attributes beyond just the value (e.g., North American). Figure 10 presents an instance diagram
of the entries of the data contained in the Meta Category Value Type and Meta Category Value
Hierarchy table for Semantic Modifiers.

In operational databases, semantic modifiers are represented in two different ways
depending most generally on the type of data architecture class, and most specifically on the type
of data structure in which semantics are implemented. In most original data capture, transaction-
data staging area, and subject area data architecture classes, semantic modifiers and even some
data use modifiers are represented in columns as column name parts so that the columns can be
readily recognized. In data architecture classes, data warehouse and reference data, semantic
modifiers often become actual values through which data rows are selected, analyzed,
summarized, and reported. In the first way, the data structure of the tables and columns is highly

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 18

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

specialized as the semantics are bound into the column’s name. In the second way, the data
structure of the tables is very generalized as the semantics become actual data values. Figure 11

Meta Category
Value Type
Semantic Modifier

A A A A
Temporal Accuracy Geographic Organizational
-
Last -t Estimated & World > World-
| wide
First -t Projected - >
western P Business
Hemisphere A
] Unit
Latest -t Revised |-
North Ly
America Region
Earliest |« Initial -
ldl United L |
States District
Current | Actual [[
= Mid- Ly
This Year | Atlantic Territory
Last Year Maryland
» Bowie

Figure 9. Meta Category Value Types and Meta Category Value Hierarchies

illustrates these two approaches. Because the Whitemarsh metabase’s module, data modeler,
approaches data standardization from a database perspective, all data semantics are first and
foremost data values that can then be used either way. That is, as column names for the
specialized data structures, or as column values in rows for generalized data structures.

Copyright 2006, Whitemarsh Information Systems Corporation

\ Proprietary Data, All Rights Reserved
\AY A

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Meta Category Value Type and Meta Category Value Hierarchies

Meta Category Value

Examples of Semantic Modifiers

Type Hierarchy] —
Temporal Accuracy Geographic | Organizational

Examples of Meta Last Estimated | World World-wide
Category Value) octed i<oh . .
Hierarchies for the First Projecte Hemisphere Business unit
Meta Category Value | [atest Revised North Region
Types America

Earliest Initial United States | District

Current Actual Mid-Atlantic | Territory

This year Maryland

Last year Bowie

Figure 10. Meta Category Value Types and Meta Category Value Hierarchies

Table: Valuables

Real Estate

Boats
Automobiles
Personal Property

Columns:

Specialized Data
Structure with
Semantics Bound into
Column Names

Table: Valuables

Valuable Name
Valuable Value

Columns:

Generalized Data Structure with
Semantics as column values
within rows

Figure 11.

of Operational Databases

Two Methods of Binding Semantics into Tables and Columns

Proprietary Data, All Rights Reserved

20

Copyright 2006, Whitemarsh Information Systems Corporation

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

3.2 Data Use Modifier Hierarchies

Data elements have data use modifiers that point to the data types, roles performed, and value
units that serve to describe the use of the data element. Data user modifiers are appended to the
end of the common business name. These are properly quite separate from the data element’s
name as the common business name might misrepresent a data element’s allowed use. For
example, Social Security Number is not really a number in the mathematical sense of the word.
What is the meaning of the average of a set of 10 Social Security Numbers, or their sum,
difference, etc.

The same problem exists with Telephone Number. It’s really a code consisting of a
country code, an area code, an exchange and finally a four digit number. And, to dial a phone
number you might enter the numeric string, 1-800-USA-RAIL. That’s a number?

The most common three data use modifiers are:

° Data type
° Role
° Unit

Data types represent the fundamental business-use nature of the data values themselves. These
are not however computer data types such as CHAR, VARCHAR, INTEGER, and LONG.
Rather, they represent the business use of the data value. For example, does the number represent
a weight, a code, dimension, volume, money, decimal, or an integer.

The second common type of data use modifier identifies the business role the data
element value serves. For example, in the case of a data element called, Skill Level, the business
data type of a number might be decimal, and the role it plays is that of a multiplier. The role
represents the “job” the data element performs within which context it is contained. An example
of the types of data use modifiers is provided in the Figure 12. Figure 13 presents that same
information as an instance diagram.

There can be at most one data use modifier from each data use modifier type hierarchy.
For example, from above, there can be at most one data type (e.g., decimal, money, integer), one
role (e.g., identifier, factor, flag, or indicator), and one unit (e.g, inches, time, and US Dollars).
There can be fewer data use modifiers than the quantity of first level types, but not more. As
stated above, the data modeler automatically creates names for data elements, attributes of
entities, columns of tables, and DBMS columns of DBMS tables. User-names may, of course, be
additionally be created by the user. Notwithstanding any such changes, the set of semantics
inherited through the meta category value types and hierarchies are maintained.

3.3 Meta Category Value Types and Meta Category Value Hierarchies
Summary

Meta category value types and meta category values, along with other meta attributes such as
definition fragments and a defined set of abbreviations greatly enhance and facilitate the
construction process of the semantics of data element and the semantics for technology

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 21

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Meta Category Value Type and Meta Category Value Hierarchies
Meta Data User Modifiers
Category
Value Type Data Type Role Unit
Hierarchy
Examples of | Date or date component Identifier component Day
Meta q
Category Code Factor Case
Vglue _ Text Flag Aisle
Hierarchies
for the Meta | Weight Indicator Pallet
Category Dimension Identifier component Transaction
Value Types
Money Rank Percent
Integer Business fact Inches

Figure 12. Meta Category Value Type and Meta Category Values

dependent contexts such as fields in files, cells in screens, columns in tables, and variables in
programs. A most commonly produced meta attribute is name. That is, data element name,
column name, field name, cell name, or variable name. To assist in repeatable name
construction, the Whitemarsh data modeler requires that the meta category value types and meta
category values be sequenced in an enterprise-defined order. This way, when a name is
constructed the name parts are strung together, one with another in a repeatable order.

For example, the definition of North America would be the Continental United States and
Canada. The acceptable alternatives might be: N_America®, and N_A. An easy extension to this
architecture is the addition of the values, definitions and abbreviations in different languages.

Note well, however, the name is not the semantics. Rather name is just one of the
meta attributes associated with the data element, field, cell, column, or variable.

The definitions and value alternatives are especially valuable in avoiding the task of creating
business fact definitions altogether, which should be no more nor any less than the stylistic

% Note: computer languages usually “frown” on the use of spaces and periods within names. So, when ever
they are encountered they are replaced with the underscore ().

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 22

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Meta Category
Value Type
Data Use Modifer
' A 4
Data Type Role Unit

Date or Date Identifier
Component | Component | by
Code = Factor | Aisle |-
Text |« Flag | Case |
Weight - Indicator (-t Pallet |
Dimension - Rank |«¢ Feet -t
Decimal & -t
Business | _ Percent |«

Fact
Money |- Inches |-

Figure 13. Meta Category Value Type and Meta Category Value Hierarchies

concatenation of the definitions fragments of its semantic parts. The Whitemarsh data modeler
provides that facility. The definition fragments are brought together in the same sequence as are
the name parts.

A standard report from the Whitemarsh metabase data modeler prints these meta category
value types and meta category value hierarchies so they can be reviewed and analyzed against
the actual data semantics desired by the enterprise. Since these meta category value types and
hierarchies form the essential basis for the most significant of the enterprise’s data semantics,
great care should be expended in their determination, review and finalization.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 23

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

4.0 Data Element Model

The fundamental premise of the data element model is that a data element is a context
independent semantic template for contextually deployed business facts. Because data elements
are context independent they can be used as the semantic models for various contained business
facts such as fields in a file, columns in a table, cells on a report, and variables in a program.
While it may be tempting to think of data elements as fields, columns, cells, or variables, they
are not. Rather, data elements are semantic templates. The semantics of data elements are
represented through:

° The common name that represents the essential meaning of the business fact

° The data use modifiers that point to the data types, roles performed, and value
units.

° Their allowed value sets

When fully specified, the complete semantics of a data element are represented through its
associated set of meta attributes. The meta model for data elements is provided in Figure 14.

Figure 14 shows that the meta category value type and meta category values are shaded
entities. That is because they should be valued prior to the entering meta data associated with
data element domains or data elements. Once these data are entered, it is used to create the
metabase intersection records for data element domains and data elements. The diagram is
broadly divided into the following sections:

Compound data elements
Concepts

Conceptual value domain
Data element classifications
Data element concepts

Data elements

Derived data elements
Value Domains

4.1 Concept

Concepts represent the sets of ideas, abstractions, or things in the real world that are identified
with explicit boundaries and meaning and whose properties and behavior follow the same rules.
Concepts are used as a basis for specifying the concepts of data elements.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

Iﬁ! 24

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Meta Category Value Domain Conceptual || Conceptual Conceptual
Value Type Data Type Value Value Domain #— Value Domain
Classification yp Domain » Structure Structure Type
> Concent Concept
Concept Struclu’:e l4—— Structure
Meta Categon : Type Compound Data Compound Data
gory Value D i Value Domain Element f-— Element
Value Type alue Domain Structure Type
yp! Structure Structure Type
H Data Element T T
K Data Element Concept
Value Domain Concept Structure Type
Structure P Compound Data Compound Data
+—1 Element —m Element & Derived
Meta Category Data Element
Value

Value Domain

Values —l

Value Domain
Values Structure

Value Domain
Values
Structure Type
Derived Data
Element & Data

Data Element Element
—» Concept & Meta |«
Category Value

Data Element
Concept Structure

Compound Data
» Element & Data
Element

Business
Domain

Derived Data
Element

Data Element

Data Element &
Meta Category DS;?:S:;Q;? Data Element
Value Classification

Classification
Copyright 2005, Whitemarsh Information Systems Corporation, l i
All Rights Reserved Data Element Data Element

01/25/2003 Classification —— Classification
Structure Type Structure

'Y

Data Elements

Figure 14. Data element meta model.

4.2 Conceptual Value Domains

The conceptual value domain is a collection of meanings that apply to both value domains and
also data element concepts. A data element concept can have only one conceptual value domain.
A conceptual value domain may be composed of other conceptual value domains or may be a
member (component) of a larger conceptual value domain. Conceptual value domains may also
be interrelated in a bill-of-materials network fashion to then fully support the underlying
concepts of data element domains and value domains.

Conceptual value domains also encompass value domains. If, for example, the
conceptual value domain relates to the notion of countries, then the corresponding value domain
for countries would relate to the enumerated set of countries that might be specified in ISO
standard 3166, Codes for the representation of names of countries.

Copyright 2006, Whitemarsh Information Systems Corporation

\ Proprietary Data, All Rights Reserved
\AY .

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

4.3 Data Element Concepts

Data element concepts maintain the information on the concepts and conceptual value domains
upon which data elements are developed. The components of these meta entities concentrate on
semantics. The concepts are independent of any internal or external physical representation.
From Figure 14 it can be seen that the data element concept represents the association of a given
concept with a conceptual value domain.

Data element concepts also allows for a full bill of materials structure supporting both
network and hierarchical data element concepts in support of data element specifications.

For example, in Figure 15 there is a data element, Annual Salary. It clearly represents
some form of personal compensation that is received by an employee within the context of the
enterprise. The data element concept, Personal Compensation, is the association of the concept,
individual award with the value domain, monies.

The allocation of the two meta category values, dollars and money are then appropriately
added to personal compensation. While it is true that personal compensation could have been in
the form of land, days off with pay, free travel, and the like, the conceptual value domain,
monies constraints the potential set of allowed values. From the point of view of a data element
concept, there is first Personal Compensation and then the data element Annual Salary. Each has
its associated meta category value type and values as appropriate. Figure 15 presents the data
element concept employed as the contextual representation for the data element, Annual Salary.

Data Use Modifier

Concept Conceptual Value
Domain
Units "Individual Award" "Monies"
Data Type
_]
i
"Personal
Dollars | Compensation"& |«
"Dollars" v L
“Personal Data Element
Y . Compensation*
Personal CO n Cept
Compensation Compensation” & <
"Money"
"Annual Salary" Data Element

Figure 15. Data element concept, personal compensation.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 26

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

4.4 Value Domains
The four meta entities in Figure 14 for value domains are:

Value domains

Value domain values

Value domain structures
Value domain structure types

The purpose of these meta entities is to provide specific descriptions about the allowed values
associated with one or more value domains. Value domains that are assignable to a data element
must be in the same conceptual domain family as is the data element’s data element concept.
Value domains assigned to an attribute of an entity within the specified data model, or column
within a table of the implemented data model or a DBMS column within a DBMS table of the
operational data model must all be hierarchically related

Figure 16 illustrates the salary value domain which is related to the data element, annual
salary. In this value domain there are hourly, weekly, monthly, and annual salary value domains.
The annual value domain then has an allowed set of values. In this example, the allowed set of
values are ranges up to $999,999, appropriately able to be set for each different value domain.

If one of these value domain value restrictions is applied to a data element then it can be
assigned. In this case, the annual range is assigned to the data element, annual salary. It then
binds the value domain value ranges of all attributes or columns (and by inference to DBMS
columns) associated with the data element. If it is not appropriate to assign a value domain value
to a data element then the actual implementation strategies for these value restrictions becomes
part of the specified, implemented, and operational data models. As the specification proceeds
towards implementation, the sophistication of the implementing DBMS software comes into
play. The least sophisticated DBMS implementation technique would require all the process and
validation rules to be part of each application program that accomplishes data entry and
maintenance. The most sophisticated DBMS has these rules implemented as assertions and/or
triggers that determine the types of allowed values, and then validates the specific allowed value
either to an enumerated list or to an allowed range for such values.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\l l

IA! 27

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Monies

Domain

Hourly

Weekly

10to 19

Conceptual Value

Concept

Data Element
Concept

Individual
Award

Value Domains

500 to
1,999

Value
Domain
Values

Data Element

-

Personal
Compensation

Montly v
Annual W
2,000 to
8,999 v
50,000 to
999,999

Figure 16. Value domains, associated values and assignment to data element.

Annual
Salary

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

W

28

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

45 Data Elements

A data element is a semantic template for use in constructing context dependent columns in
tables, fields in files, cells in screens, and variables in programs. Figure 17 shows an instance
diagram that represents the intersection records between a set of meta category values and a data
element. From Figure 14 it should be quite clear that a data element is associative type meta
entity between data element concept and value domain that is set within the context of a
particular business domain.

The meta category value types are contained within the “grey” box at the top-left of the
figure. The particular meta category values that are “pointed” to by the meta category value
types are themselves in “grey” boxes. The meta category values, dollars and compensation, are
associated with the data element domain, Compensation. Compensation is in turn, the business
value domain for the data element salary. Because of inheritance, the semantics associated with
the data element domain are assumed by the associated data elements. Thus, Salary is a business
fact in the form of compensation of money in dollars.

All data elements exist within a specific business domain. In the case of compensation,
human resources is appropriate. The reason for the business domain is that many data elements
of the same name mean different concepts. For example, the data element, Tract, can mean 1)
and area of land, 2) a space of time, 3) a system of body parts, or 4) a bundle of nerves. Another
example, Trade, can mean 1) a course of conduct, 2) a path traversed, 3) a business one
practices, and 4) to give in exchange for another commodity. Without business domains, there
would be no way to differentiate the varied word uses. Either there can be no data elements with
different meanings across all the business domains, or there must be a way to separate out these
semantic homonyms.

Also associated with the data element is its common business name, which represents the
name most commonly used name to convey the nature and purpose of the represented context
independent business fact. For example, First Name, Telephone Number, Gender, Social
Security Number, Invoice Date, Shipping Date, and Zip Code. Even if the data elements values
are a coded set, as would the case for Gender (1 for male and 2 for female), the common name is
just that: the common name. A particular data element, salary, which has as its common
business name, Salary, is connected to the other remaining meta category value of interest, that
is, that the salary’s role is that of a business fact. Collectively then, the data element:

Annual Salary is a business fact that represents compensation of money in dollars.

The actual process of creating such a context independent business fact, that is, a data element
consists solely of tagging the relevant:

° Business domain

° Data element concept, compensation
Then allocating the relevant meta category values and assigning the appropriate value domain.
The result of this effort is that regardless of which context Annual Salary is employed, it’s
semantics are automatically part of its nature. Every entity attribute, every table column (and by
inference every DBMS column) is a use of the data element, Annual Salary.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 29

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Data Use Modifiers

Units
L
Data Type
Role]
A
Data
Dollars .
Element BDus'ne_SS
"Compensation"” & Conc ept omain
“Dollars" b
A
"Personal Human
Compensation Compensation” Resources
"Compensation” &
4 "Money"
. v
Business
Fact “Annual
Salary"
,| "Salary" & "Business | Data
Fact Element

Figure 17. Context Independent Data Element Salary with Associated Meta Category Value
Types, Meta Category Values, Data Element Domain, Business Domain, and Common Business
name.

But in the situation where a more general notion of salary is to be employed to govern
attributes, columns (and by inference, DBMS columns), rather than name the data element
Annual Salary, it should be named Salary. Further, no value domain should be assigned to the
data element. When the data element Salary is employed to govern an attribute, then it could be
more locally named Annual Salary and could be allocated the annual amount value domain
range. Additionally, there could also then be attributes for monthly, or weekly, or hourly salaries.
These too could then be allocated their appropriate value domains.

Finally, in the case of bottom-up development where the specified data models are yet to
be defined, individual columns could be created that are annual, monthly, weekly, or hourly
salary and the value domains allocated at the level of granularity.

Even in cases where a contained column is for example, Hourly Wage, its semantic data
element template, Salary, produces the overarching set of semantics. In the case of hourly wage,
it can have a more localized name and a more localized definition that denotes that this column,
while semantically modeled after Salary, actually represents a semantic subset. That is, hour
wages, verus monthly or annual salaries.

A final benefit from this approach is that all the semantic parts are actual “records” in the
metadata repository that can be queried, selected, updated, and reported. This means that all

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 30

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

business facts that have to do with compensation can be found, and, in which ever context they
occur, can be retrieved and printed. This represents a significant improvement over searching
through metric tons of semantics to find names that contain compensation, only to find some that
relate to some work environment that is constructed to adequately address a worker’s special
physical condition such as a special chair for a bad back

4.6 Data Element Classifications

Data element classifications are used to manage classification schemes and the classification
scheme items that are in the classification schemes. A classification scheme may be a taxonomy,
a network, an ontology, or any other system for systematizing where the categories are mutually
exclusive. The classification may also be just a list of controlled vocabulary of property words
(or terms). The list might be taken from the "leaf level" of taxonomy.

The classification scheme allows for a full bill of materials structure supporting both
network and hierarchical classification schemes in support of an administered item.
Administered items relate to one or more data elements.

4.7 Compound Data Elements

Compound data elements are data elements that are perceived as a unit but have subordinate
contained units that are generally “invisible” to the uninitiated. For example, while it’s well
recognized that a telephone number in the United States consists of a country code, area code,
exchange, and then a number, people rarely refer to those specific parts. Rather they say, that
their phone number is “1.717.648.5913" as if it were all one continuous string.

Compound data elements are different from arrays, groups, or repeating groups because
arrays, groups, and repeating groups all exist within a defined context while a data element is
context independent. Thus, arrays, groups, or repeating groups would be defined, for example,
within an SQL:1999 table, a screen, or a program.

An array is a multi-celled business fact in which all the values are of the same type and
have the same meaning. Nicknames is an example of an array. The values might be “Shorty,”
“Junior,” and “Slim.”

A group is a set of individually defined business facts that collectively have a name and
each contained business fact has its own name, data type, and definition. Each fact has only one
value within the context of the group. Address, for example, in the United States is a group and it
contains a number of contained business facts including street number, street name, floor, room
or sulite, city, state, zip, and country. Other components might include company name and
subordinate company unit name.

A repeating group is a collection of individually defined business facts like a group. The
main difference is that a repeating group may have more than one value instance.
Employee_Dependents might include for example, Social Security Number, Birth Date, First
Name, Middle Initial, Last Name, and Gender, and for each employee there could be more than
one dependent.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 31

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

More complex data structures could include arrays within groups or repeating groups,
and nested repeating groups.

None of these, however, are compound data elements. A telephone number is an example
of a compound data element because it contains multiple subordinate units, but it’s commonly
referred to as a single data element. Part numbers, serial numbers, product-case codes, and the
like are common examples of compound data elements.

In the context of data modeler, compound data elements do not have assigned meta
category value types or meta category values. Rather, compound data elements are defined in
terms of their subordinate contained data elements. Thus, in the case of phone number, it would
be a compound data element and would be defined into its most widely recognized subordinate
parts. That is, Country Code, Area Code, and Phone Number. The telephone number’s exchange,
while important to the telephone company is generally unimportant as a distinguishable sub-
component, despite being separated by a period or a hyphen from the remaining part of the
phone number.

The meta data model in Figure 14 shows that a compound data element is a Bill of
Materials data structure that consists of nested sets of subordinate compound data elements. The
figure also shows that a given data element may participate in more than one compound data
element. This only makes sense as the “real” data is actually defined within a data element, and
if there is one compound data element that makes use of some “real” data element there are
probably many other compound data elements employing the same real data element. With this
scheme, access to all the different compound data elements is practical and reasonable.

Compound Data Element

Part Number
Part Ngtlmber Part Number Part Number Part N;mber Part Ngtlmber Part N;mber
& & .
Year of Julian-Date Shift Plant Manufacturing Sequence
Manufacture Number Line Number
i] A [y] i
Year of .) Plant Manufacturing Sequence
Manufacture Julian-Date Shift Number Line Number
Data Elements
Figure 18. Meta data records required to represent the compound data element,

part number

Copyright 2006, Whitemarsh Information Systems Corporation

\ Proprietary Data, All Rights Reserved
) 4

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Figure 18 illustrates the meta data records that would be stored to represent the
compound data element, Part Number*, which contains, Year of Manufacture, Julian-Date of
Manufacture, Shift, Plant Number, Manufacturing Line, and Sequence Number. In this example
the data elements are stored, the compound data element is stored, and then the intersection
records between the data elements and the compound data elements are stored. While this
certainly appears to be a lot of work for such a simple concept, the value proceeds from two
sources. First there is now firmly recorded semantics about each of the component parts of the
compound data element, and also for any other compound data element that involves one or
more of the contained data elements, the only effort is to store the compound data element and
then the intersection record to the appropriate data element. For a one-off example, it is more
work. But for larger work units starting with a project it is less work. Across the enterprise, the
benefits in terms of risk, cost, quality, and productivity approximate those presented in Figure 2.

4.8 Derived Data Elements

A derived data element is a data element whose value has to be calculated from other data
elements. An example could be the age-at-death of a person. This value is clearly computed
from the difference in terms of years between the date of birth and the date of death. The reason
this might be of interest is that if a person died on February 29" of a leap year, then in all other
years the person might have would have a year older when they died if they had been born on
February 28™ of a non leap year. Derived data is best represented in terms of the actual data
elements that comprise the calculated result along with a formula or process that would
determine the derived data result.

Figure 14 shows how a derived data element is mapped to the set of data elements from
which it is calculated. Additionally, Figure 14 shows that a derived data element may be a
component of one or more compound data elements, and vice versa.

Figure 19 illustrates the meta data records that would be stored to represent the derived
data element, Age at Death, which relates to the two data elements, Birth Date and Death Date.
The implementation of process logic that computes the difference between these two data
elements would be placed in the columns of the relevant tables. The process logic specification is
a type of data integrity rule that becomes a condition on the successful valuation of the data
element, Age of Death, in whatever environment it is implemented. That is, no value would be
allowed until there was a Date of Death, and then the value would be automatically calculated
and stored.

Readers of this paper should please refrain from sending Whitemarsh email regarding the quality
or lack there-of relating to the definition of this compound data element. It is provided for
illustration purposes ONLY.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 33

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

4.9 Data Element Model Process Model

The overall processes supporting the creation of data elements are:

° Creating data semantics
¢ Create meta category value type classes
¢ Create meta category value types
¢ Create meta category values
° Creating elements upper level metadata
¢ Create concepts
¢ Create conceptual value domains
¢ Create data element concepts
u Assign data element concept meta category values
u Create value domains
u Create data element classifications
° Creating data elements
¢ Assign data element value domains
¢ Assign data element meta category values
° Create compound data elements

Derived Data Element

Age at Death

Y A

Age at Death
&
Date of
Death

A

Age at Death
&
Date of Birth

A

Date of

Date of Birth Death

Data Elements

Figure 19. Data elements involved in derived data element, Age at Death

¢ Create compound data element structure types
¢ Create compound data element structures

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

Iﬁ! 34

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

¢ Assign data elements to compound data elements
° Create derived data elements

¢ Assign data elements to derived data elements

¢ Assign data elements to compound data elements
° Perform reverse engineering

¢ Reassign data elements to business domains

¢ Reassign data elements to data element concepts
¢ Reassign data elements to value domains
¢ Reassign data element concepts to conceptual value domains
¢ Reassign value domain to conceptual value domains
¢ Promote data elements to data element concepts
¢ Promoted data element concept to concept
° Perform exporting and importing
There are two strategies for creating data elements: Forward engineering and reverse
engineering. Under a forward engineering scenario data element metadata would be created in a
top-down fashion. This generally follows with the processes listed above in generally that same
order. It is unlikely however that once a cache of data elements was created that it would
definitively serve the enterprise. This process would likely have to be supplemented by a reverse
engineering process.

Under a reverse engineering strategy, a key legacy schemas would be obtained and then
their SQL data definition language schemas would be imported into the operational data model
then promoted into the implemented data model. Thereafter the columns would be reviewed and
as a common one is discovered the reverse engineering process of Promote Column to Data
Element would be executed. Then the upper levels for that data element would be created. That
IS, creating

4,10 Data Element Model Summary

Data elements are context independent business facts that are used as semantic templates for
context dependent business facts like column in tables, fields in files, cells in screens, and
variables in programs.

Properly defined, data elements can be of great value to the enterprise’s mission of
achieving data standardization. The following example proves this assertion. If estimates are
properly done, information technology project managers should allow about two staff hours to
fully define each context dependent business fact, that is, a column in a table, a field in a file, a
cell in a screen, or a variable in a program.

If there are 100 tables of 15 columns per table, and 200 screens with 15 screen cells on
each, and 300 programs with about 30 variables per program, the quantity of these context
dependent business facts is 13,500. Thus, the quantity of staff hours that should be expended on
context dependent business fact definition should be about 27,000 staff hours. That’s about 14
staff years with no time off for good behavior.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 35

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Given that no project manager will ever presume that such an estimate will be accepted,
either an unrealistic estimate will be made, such as 15 minutes per context dependent business
fact, which brings the estimate down to about 4,000 staff hours, or the context dependent
business facts just won’t be defined. Since the 4,000 staff hours would also never be accepted,
then, in virtually 100% of the cases the context dependent business facts will not be defined.
Clearly, not a proper solution to a very real problem. Not documenting the various business facts
in all their contextual uses is professionally irresponsible. Y2K was the perfect example of the
consequences of ignoring data standardization.

Given that there are only about 20% “real” data elements across a population of columns
in tables, then the 1500 columns is immediately reduced to just 300 data elements. If two hours
is expended for each, then that’s just 15 staff weeks. But given that a database is largely a
semantic clone of a number of other databases, then the population of 300 data elements
probably already has 75% defined. That reduces the number to just 75 data elements, or about 4
staff weeks.

Since virtually all the other context dependent business facts, that is, fields in files, cells
in screens, and variables in programs are uses of already defined columns in tables, which are
now almost automatically defined through the 4 staff weeks for defining the few data elements
not yet defined, then the data definition problem is almost largely non-existent. Now, that’s a
proper solution to the very real and serious problem.

Finally, through this approach, the actual work is so completely integrated into the
natural work of the analysis and design members, that the actual time to accomplish all this data
standardization effort will actually be NEGATIVE because of the normal acceleration in
productivity due to reductions in:

Research

Rework

Presentations
Documentation preparation

Simply stated, there are no down-sides to this approach. It reduces risk, increases productivity,
and increases quality. The approach is all benefit at virtually no cost. It is work accomplished at
the rate management expected it to be done in the first place.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 36

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

5.0 Specified Data Model

The specified data model represents the technology independent representation of a set of data
structures that are considered important to the enterprise. These can be used by enterprise data
modelers to standardized data structures across all implemented and operational data models.
Specified data models thus represent templates in the same way that a data element represents a
business fact template for attributes of entities or columns of tables. In addition to all the
appropriate requirements for quality data models, the key requirement for the specified data
model is that it can be implemented through a variety of technologies such as DBMS, spread
sheet tables, traditional access file structures, computer program embedded temporary files and
memory arrays, and the like.

As might be expected, Whitemarsh only emphasizes DBMS as an appropriate
implementation technique for data models, whether the DBMS is present on a personal
computer, server, or mainframe. Computing advances have brought about the gradual
disappearance of the sophistication demarcations among these three DBMS platform types. In
the early 1970s, mainframe DBMSs were processing four to six transactions per wall clock
second. Today, personal computer based DBMSs are processing hundreds of similar transactions
per wall clock second. Additionally, personal computers now have disk space, memory, and
processor speeds that were far distant dreams within mainframe environments of just the mid
1980s.

As a consequence of the disappearing technology differences, the main differences that
are present among the three data model classes (specified, implemented, and operational) are
those imposed by the different natures of the databases represented. For example, there may be a
larger quantity of small-in-scope data models within the sphere of specified data models because
they are mainly representational of models of data for certain well defined subject areas. For
example, there could well be a data model for finance, and another for human resources.

Implemented data models on the other hand conform to the specific requirements of a
database that has to be actually implemented. Thus, the database might contain data structures
from many different specified data models. Inclusion of many different models can be justified
on the basis that a implemented database collectively embraces the four specified data model
areas for Sales, Market Management, Customers and Customer Product Distribution. Because of
this real difference between specified and implemented data models, it should be clear that the
differences between them is not just related to transformation. That is, from “conceptual” to
“logical” to “physical.” While that may be the case in some trivial situations, it is not the most
important or useful distinction between these models.

The development and maintenance of specified data models is a measure of the data
management sophistication of the enterprise. Enterprises that recognize the value of enterprise-
wide database are willing to invest in the development of enterprise-wide data semantics in order
to receive the benefits of lowered risk, increased productivity, and enhanced quality.

Implemented data models can certainly be created without first developing specified data
models. So also can operational data models be created without first developing the implemented
data models. In these cases, however, the mapping between the columns of tables within the
implemented data model or DBMS columns of DBMS tables within the operational data models
to the respective specified and implemented models is to “unknown semantics.” This strategy of

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\l l

IA! 37

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

mapping to “unknown semantics” may well be necessary and useful when first incorporating a
commercial-off-the-shelf (COTS) package data model. The Whitemarsh data modeler can read
SQL/DDL streams and will impute the operational data model from that. Most likely, the COTS
data model will be a melding of two of the data architecture classes: original data capture data
model and subject area data model.

Enterprises that continuously develop databases through data models at the operational
level without either first creating the specified and implemented data models or mapping to these
models will ultimately pay a very steep price for this ad hoc data modeling behavior. As stated in
Section 1, a United States Department of Defense agency now pays $175 million per year for its
ad hoc data definition behavior, and, that’s just the cost of extra information technology
resources, not the cost of lost opportunity or the expense incurred by not having quality or up-to-
date information for decision making.

The meta model design for the specified data model is presented in Figure 20. This
diagram contains the following meta entity groups:

° Meta Category Value Types and Meta Category Values (upper left)

[Data Element Domains and VValue Domains, Data Elements and VValue Domains
(middle and right)

° Subject, Entity, and Attribute (middle left)
° Primary and Foreign Key Support for Entities (lower left)

The first two meta entity groups are shaded on the diagram. This means that they should already
be valued in support of the data stored in the specified data model. In case there is a need to map
an attribute to a data element that’s not already defined, the Whitemarsh data modeler supports
two options: The process of automatically creating a data element from an attribute, and the
explicit definition of new data elements through the data element module. This module may be
under special security to prevent the ad hoc definition of semantics. In such a case, the attributes
can still be added, but when they are without the appropriate mapping, reports containing these
unmapped attributes indicate that they are unmapped to standard data semantics.

Shaded meta entities are not allowed to be updated within the specified data model
module. Rather they are accomplished in either the meta category value hierarchy classes, or in
data element modules. The reason these functions are segregated is to prevent ad hoc data
modeling behavior by allowing separate security over each distinct data modeler module.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 38

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Meta Category Value Type
Classification

.| Meta Category

Value Type

i—l

Meta
Category

T

Data Element
Concept &
Meta Category |

Value

Value]

A

Data Element
Concept

Data Element
& Meta

Business
Domain

l

Category Value
A

Subject

J]

| Attribute & Meta

Category Value

Data Element
Concept
Structure

A Y

Value Domain
Structure

i

.

Attribute

Entity »

Data Element

Y

#

Entity
Candidate Key

;

Entity Primary
Key

;

|

Foreign Key
& Attribute

Entity

A

Entity
Candidate Key
& Attribute

'y

Entity Primary
Key & Attribute

Entity Foreign
Key

|

A

Figure 20. Specified data model meta model.

5.1 Subject Area, Entities and Attributes

Specified Data Model

Copyright 2000, Whitemarsh Information Systems Corporation,
All Rights Reserved
03/15/2005

The process of creating the specified data model consists of creating subjects, entities within

those subjects, and then attributes within entities.

5.1.1 Subjects

Subject areas, within the context of the specified data model is a method of classifying entities.
For example, the subject area, Finance, contains two subordinate subject areas, Accounts
Payable and Asset Management. Subjects can be hierarchical. Entities are tied to the leaves of
the subjects. Entities are thus directly tied to accounts payables or to asset management, but not

to finance.

W

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

39

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

5.1.2 Entities

While most all the data modeler material to this point concentrates on data elements and the
semantics attached thereto, the most valuable component of a data model is the entity. An entity
should represent a well defined and obviously recognizable component of business policy that is
instantiated, modified, selected, and reported. Entities are of course recognized through the data
values present in its contained attributes, hence the need for business policy rooted and easily
recognizable data element semantic template from which to model the attributes.

The methodology for developing quality entities is not the subject of this book. There is a
good amount of Whitemarsh material that addresses that process. As a summary of the entity
discovery process within the Whitemarsh methodology, candidate entities are initially derived
from database domains. Database domains are noun-intensive descriptions of the leaves of
mission descriptions. Mission descriptions are the essential end-result characterizations of the
essence of the enterprise.

While it appears that entities are thus a third level hierarchy product from missions to
database domains and then entities, in fact, the candidate entities are collected and a non-
redundant set is produced. Entities are thus related to database domains through a many-to-many
relationship. The non-redundant collections of policy-related entities are subject areas.

When that process is accomplished, other parts of the metabase are filled in with very
critical metadata. The metabase module user guides that readers should consult are:

Resource Life Cycle Analysis
Business Information Systems
Mission, Organization and Function
Information Needs Analysis
Database Objects

Entities are identified within a specific subject area. Figure 21 illustrates the allocation of two
groups of entities to the two different subject areas. Subject areas are merely a mechanism for
classifying the entities. In this case, the subject area, Finance, contains two subordinate subject
areas, Accounts Payable and Asset Management. Associated with these two subordinate subject
areas are a set of entities. This list is not a data model is merely a grouping of entities by subject
area.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 40

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

While entities are properly defined within one subject area, for example, finance, entities
from different subject areas such as employees are able to be interrelated through primary and
foreign keys. Thus, all entities that are directly and indirectly associated with a particular subject
area can be reported. In this case, the directly associated entities for the subject area, accounts
payable within finance, would include asset, budget line item, and contract, and the indirectly

Finance

I

Subject Areas

Accounts Payable Asset
Management
> Asset CQTS.
Application
.| Budget Line ~| In-house
Item Application
Associated Entities
» Contract Marketa_lble
Security
Contract
> Loan > Patent
Agreement

Figure 21. Subject Area and Associated Entities
associated entity, employee, would be from the human resources subject area.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 41

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Entities can also be subtyped. For example, there may be a real-property entity that is to
represent a property in general and also the specialized attributes for an apartment or for a house.
The root entity would contain all the attributes common to all types of properties, and the
individual entity subtypes, one for apartment and the other for house would contain the attributes
special to each. Subtyped entities are not related to each other through keys.

5.1.3 Attributes

Once the subject areas and entities are identified, the task of creating attributes starts. At this
point, the basic definition of data element comes into play. That is, a semantic template for the
business fact attributes within an entity. Attribute definition is accomplished in two stages:

° Employment of the data element semantic template along with the entity to create
an attribute.

° Refinement of the attribute’s meta attributes® through the creation of its remaining
meta attribute values.

This first stage is accomplished through the Whitemarsh metabase technique of tagging. A three
list window is displayed. In the upper left list is the list of entities. In the upper right window is
the list of data elements. An entity is tagged and then one or more data elements are tagged.
Once the “build” button is pressed the attributes are built and displayed in the bottom list that
runs across the full screen. That’s all there is to it. Because of inheritance, all the semantics of
the data element are automatically assumed by the attribute. Figure 22 displays the result of
associating the data element, Salary, with the entity, Employee. The semantics that are
automatically inherited are:

Data element domain and value restrictions

Data element and value restrictions

Data element’s business domain

Data use meta category value types and values associated with the data element
Entity subject areas

Entity

All these attribute semantics are present solely because of tagging and selecting already defined
semantic instances from other meta entities. There’s been no keying of any additional data. In
addition to all these inherited semantics, all the definition fragments associated with these meta
entity types are employed to provide a full definition of the attribute.

An unfortunate circumstance of a metabase (or any other form of meta modeling) is the use and
reuse of the same terms. For example, the attributes of an entity contain meta attributes.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 42

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

The second stage involves allocating the semantic modifiers meta category value types
and meta category values. Semantic modifiers provide additional restrictions on the contextual
use of the attribute. In this example, the intended attribute, Hourly Wage, applies to a particular
class of person, that is, employee, who works within other semantic constraints such as
organization, temporal, accuracy, and geography. For these semantic modifiers, the salary is for
the Central Office from Organization, the Current Year from Temporal, Final from Accuracy,
and North America from Geography. Collectively then the complete set of semantics for the
hourly wage attribute is graphically depicted in Figure 22, and presented in a tabular manner in
Figure 23.

From the point of view of a single attribute within an entity, Figures 22 and 23 represent
a significant amount of semantics that becomes available solely on the basis of inheritance from
the other meta entities to which the attribute is associated. When all the definition fragments

Data Use Modifiers

Units

> Dollars
Data Type
Role L "Compensation” &
"Dollars” Data
Element
Domain Common
4 Business
Compensation "Compensation” & "Compensation” Name
R — “"Money" 3
Salary
Business Fact
"Salary" & "Business |
"] Fact" M v Data
Element
. . — "Salary" =
Semantic Modifiers
. "Hourly Wage & Entity " "
Geographic L s » North American —» North American T I Employee’
Temporal M "Hourly Wage & "Hourly J)
» Current Year — Current Year" [— Wage"
Attribute

Accuracy j

» Final Hourly Wage &

Final"

Person
Organization T
» Central Office —» Hourly Wage & . . Human
Central Office Entity Subject Resources

Area Hierarchy

Figure 22. Fully Selected Semantics for Hourly Wage Attribute of Employee Entity

Copyright 2006, Whitemarsh Information Systems Corporation

\ Proprietary Data, All Rights Reserved
\AY p

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Attribute: Hourly Wage
Inherited Meta Attribute Class Inherited Hierarchy of Values as
Appropriate
Data element domain Compensation
Business domain Human Resources
Common Business Name Salary
Data Element Salary
Data use modifiers Role Dollars
Data Type Compensation
Units Business Fact
Semantic modifiers Geography North American
Temporal Current Year
Accuracy Final
Organization Central Office
Entity Subject area Human Resources
Entity Employee

Figure 23. Full Associated Semantics for Hourly Wage Semantics with Employee Entity

from all these inherited semantics are collected together into a loose definition, nothing more
should be required. In short, the only thing that may have to be originally entered is the local
name of the attribute in the column. And, even in most cases, the common business name that is
inherited from the data element may be sufficient.

In the case, however, when a data element is associated several times within an entity,
then while there may not be the need for additional or different data use or semantic modifiers
there still needs to be some additional information to distinguish the different intent from what
would appear to be “identical twin” attributes.

For example, suppose that the data element, telephone number is allocated to the
employee entity four different times as a way to represent the telephone number for the
employee’s home, office, cell, and fax. In this situation, it may well be that only a slightly
different local attribute name is necessary to represent the difference. So, data modeler provides

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
W

\

lﬁ! 44

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

the ability to change the local name for the attribute from its default name, that is, the data
element name (which in turn has as its default name the common business name) to some other
name. In this case, the local names would most likely be, home telephone number, office
telephone number, cell telephone number, and fax telephone number.

The reason these four different phone numbers are not four different data elements is
both simple and practical. Simple because the essence of each is really just a telephone number.
Practical because if every attribute is a data element then so too would likely be every column
and DBMS column. This results in an impossible to accomplish and ever expanding task.
Finally, given that there are bare enough resources in most organizations to accomplish the
essential and important activities, then these certainly are no resources to devote to what is
arguably inessential and unimportant activities.

5.2 Key Support
The specified data model supports three types of keys:

° Primary
° Foreign, and
° Candidate

There are two classes of primary keys. The collective value from each class represents a unique
value, which when used to select a row of data from a table (or figuratively from an entity),
results in only one row of data. The two primary key classes are:

° Surrogate key attribute
° Business attribute set

The surrogate key attribute is a crafted attribute whose value has no business meaning
whatsoever. A surrogate key is always a single attribute and takes on names like Employee_Id,
or Invoice_lId, or Customer_Id. The form of the name for the attribute is <entity-name> + <ld>.
This type of primary key should only be employed on implemented and operational data models.

A surrogate key must never, never, never be used within the specified data
model to “describe” the set of attributes whose values in combination create a
unique value string through which a single rows (figuratively, of course) is
obtained from the entity.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 45

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

The reason is simple: how will you ever know that you have achieved at least third normal
form®? Third normal form is the minimum data quality characteristic that must be achieved in
any database design of a specified data model.

The Business attribute set is that set of business fact attributes, which in combination
produced a unique value across all rows for that particular entity. The business fact attribute set
is what must therefore be used to fully identify and construct the entity’s primary key or for use
in defining the foreign key that must map back to the primary key.

5.2.1 Primary Keys

The primary key is that set of business fact attributes, which in combination produced a unique
value across all the inferred rows for that particular entity. For example, for an employee entity,
the data modeler [person] must examine the attributes assigned to the entity and ensure that it is
third normal form by determining the set of naturally existing attributes that comprise the
primary key. A candidate set of attributes would be the employee’s full name, that is, first,
middle and last. But for a large enterprise that may not be enough. Added may have to be the
employee’s birth date. Maybe that’s not enough. Probably the last added attribute would be the
person’s birth location which might be city, state, and country.

Since some enterprises might feel the analysis to determine the “natural” primary key for
an enterprise excessive, they often rely on a governmental agency to provide some sort of unique
identifier for the person, such as the Social Security Number in the United States. While this is
generally considered as really some form of a surrogate key, but just from a Governmental
agency, it is still accepted as the employee’s business attribute primary key. While other entities
may also have naturally existing single attribute primary keys such as order number, and invoice
number, some other entities may not. For example, entity, project assignment, may not have a
naturally existing single attribute primary key. At first blush, the key might be project name
(assuming that’s naturally unique) and employee number. But if the person is assigned to the
project more than once, the assignment date may have to be added. But, if a person is assigned to
a project more than one time on the same date to serve in multiple roles, then the role name that
the person is performing may also have to be present. In short, the analysis requires a good
knowledge of the data.

There are five normal forms. The first normal form represents data that has been organized into
two dimensional flat tables. The second normal form represents data that is in first normal form
and that additionally has all its non-primary key columns functionally dependent on the entire
primary key. The third normal form represents data that is in second normal form and that
additionally has no dependencies between any non-key columns and any other non-key columns.
The fourth normal form represents data that is in third normal form and that additionally has its
primary key related to all columns in the table such that it contains no more than one nontrivial
multivalued dependency on the primary key. And, the fifth normal form represents data that is in
fourth normal form and that additionally has the characteristic that if its primary key is a
concatenated key such that none of the components of the concatenated key can be derived from
another component of the concatenated key.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 46

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

As to the creation of the primary key, Figure 24 presents the entity, attributes, primary
key, and primary key attribute rows of data that illustrate the creation of the primary key for the
project assignment entity.

In this example, the entity, project assignment is related to its primary key, Project
Assignment Primary Key through a one-to-one relationship. That is because there is only one
primary key for each entity. Associated with the primary key are the attributes from the entity
that are members of the primary key. The set of values from these attributes become the value of
the primary key. In this example, the primary key value would be: <Employee Number> +
<Project Name> + <Assignment Date> + <Role Name>.

Each primary-key associated entity-attribute also contains a sequence number so that the

Entity
Project Project Entity's
Assignment Assignment Primary key
Primary Key
Primary Key
Employee » & Employee =
Number
Number
Entity's
Primary Key Primary key
» Project Name » & Project |« Attribute
Entity's Name Members
Attributes
Assignment Prlma_lry Key &
> » Assignment |«
Date
Date
_ _| Primary Key
> Role Name | & Role Name
_| Assignment
Start Date
Other Project
» Assignment
Attributes

Figure 24. Meta data records that define primary key for Project Assignment Entity

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
W

\

lﬁ! 47

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

exact value will be known. For example, the value string from Last Name, First Name and
Middle Initial will produce a different value string than First Name, Middle Initial and Last
Name. Thus, sequence is a necessary component of the primary key’s semantics.

This particular example illustrates another benefit to the Whitemarsh approach to data
modeling. Assume that the real basis for the company’s employee number is the Social Security
Number. In this particular case, its data element semantic template is Social Security Number.
The fact that the attribute’s name is Employee Number does not take away the simple fact that
the numeric string is really not just some arbitrary computer generated identifier. Thus, through
this approach, the metabase can be queried to find the names for all attributes (and later on for all
columns and DBMS columns) that are based on the data element Social Security Number. That’s
a good first step down the road to data standardization.

This approach, because it is rooted squarely in database, enables reports, queries, and
updates to be done through standard reporting and query facilities. Thus, the query, “In which
primary keys does the Social Security Number participate?” can be quickly and easily answered.

5.2.2 Foreign Keys

The foreign key is that set of business fact attributes, which in combination produced a value
which maps exactly to a primary key from another entity. In the special case where the foreign
key from an entity maps to the primary key from the very same entity, then the relationship is
deemed to be recursive.

Figure 25 presents the data model that for the three entities, project, employee, and role
that are “parents” of the entity, project assignment. Figure 26 then presents the metadata records
that are implied by the meta data model in Figure 14 that support the relationships among these
entities.

In Figure 26, the entities, Project, Employee, and Role are along the left side. Their
attributes are depicted below them. Their primary keys are depicted to the right of each entity.
The foreign keys for the Project Assignment entity is presented to the left side of project
assignment. There are three foreign keys, Project Foreign Key, Employee Foreign Key, and Role
Foreign Key. The meta records for each is immediately below. The relationship between the
primary key of each parent entity is depicted. For example the relationship between the Project
Primary Key and the Project Foreign Key.

From the presentation in Figures 15, 25, and 26, the required meta model relationships
are:

° A one-to-one between an entity and its primary key

° A one-to-many between any primary key of one entity and any related foreign
keys from one or more related entities

° An intersection record relationship between any primary key and its related
columns

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 48

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

° An intersection record relationship between any foreign key and its related
columns

While this may seem like a lot of work, it is entirely accomplished through the use of tagging. In
fact, for the accomplishment of the foreign keys, the Whitemarsh data modeler module merely
requires the selection of the “parent entity.” All the intersection records and attributes are
automatically created in the “related-to” entity. The default names for the attributes are the
concatenation of the following values:

The Source Entity Name

The Phrase Must or May

An action phrase

Target entity Name

Attribute Name from the corresponding Primary Key Attribute
The String, “reference”

Project Employee Role

Y

Project
" | Assignment |

Figure 25. Data Model for Employee, Project, Role, and
Project Assignments

The foreign key itself is automatically provided a name and it is the concatenation of the
following:

The Source Entity Name
The Phrase Must or May
An action phrase

Target entity Name

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 49

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Related Entities and their Primary Keys

Project
Primary Key

_+

» Project Name —L, Primary Key

Project

& Project
Name
Other Project . S
Attributes _ Entity Entity's
Enmy-s Prlmgry Key
Employee Foreign Keys Project Asz{;r]\?r(l::znt
Employee — i .
ploy Primary Key Assignment Entity's Primary Key
“[— Project Attributes o .
i rimary Ke
E'\rlnplog/ee H Foreign Key Project Name > & Prosjfecty -
umber Primary Key Name
& Employee Foreign Key Jé
Other Number & Project Employee Primary Key
Employee Name ™ Number | —*| &Employee =
Attributes Number
—T—™ Employee]
—» Foreign Key | Assignment Primary Key &
. Date [—» Assignment e
Role — Role Primary ; Date
Key — Foreign Key
& Employee |« -
_| Primary Key | _
oo N l Number » Role Name * & Role Name |
ole Name
: P NI
Primary Key Role Foreign Entity's
& Role Name — Key _| Assignment Primary key
Start Date Attribute
Other Role Foreign Key
Attributes and Role L« Members
Name Other Project
» Assignment
Attributes

Figure 26. Meta data records required to support primary and foreign key relationships among
Employee, Project, Project Assignment, and Role.

5.2.3 Referential Integrity

Referential integrity is simply a statement of the rules that control the integrity of a reference that
exists between the primary key from one entity and the primary key’s presence as a foreign key
in one or more related entities. The purpose of referential integrity is control the consequential
actions taken when an update occurs to either a “child”or a “parent” entity.

The referential action rules are specified through controlled drop down lists when the
foreign key is selected. Appendix 1 of this book presents the referential integrity rules that are
supported by the metabase data modeler.

If two tables are the owner of another table, only one table can have the referential
integrity action, cascade delete. If cascade delete is attempted for a second connected table, an
error message will appear. Only after the cascade delete action is removed from an existing table
can another cascade delete action be placed. The reason for this rule is to eliminate automatic
deletion ambiguity.

Copyright 2006, Whitemarsh Information Systems Corporation

\ Proprietary Data, All Rights Reserved
\AY 4

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

No attribute that is part of primary key is allowed to be set-null as a referential action.
While an attribute within a primary key may be allowed to be “set-null” in certain DBMSs, it
considered bad data modeling and is thus disallowed within the Whitemarsh data modeler.
Except for foreign keys with the referential action of set-null, all foreign key attributes are
automatically set to null not allowed. The only way to change the “nullness” of a foreign key
attribute is to change the referential integrity action on the foreign key.” No attribute of a foreign
key is allowed to be an attribute of a primary key. Primary key attributes and foreign key
attributes are thus, orthogonal.

The choice of referential actions clause not only directly affects the behavior of the
DBMS, it also changes the form of the “story” that is created for the foreign key’s name. The
foreign key name is automatically created and takes on the form, <source entity name>
<optionality phrase> <action phrase> <target entity name>. Foreign key attribute names are
defaulted to <source entity name> <optionality phrase> <action phrase> <target entity
name><primary key attribute name><‘reference’>. For referential actions that imply optionality,
for example, one that is defined with SET NULL, the optionality phrase employed is “may.”
Whenever the referential action chosen is mandatory such as with CASCADE, SET DEFAULT,
RESTRICT, or NO ACTION, the optionality phrase is “must.”

5.2.4 Referential Integrity

Entity candidate keys represent a collection of attributes within an entity that when their values
are collectively employed would result in the retrieval or update of a single row of data for that
entity if that entity had actually been a table. There may be multiple candidate keys within an
entity. Attributes of candidate keys are not allowed to overlap each other or the entity’s primary
key.

5.3 Attribute Value Domains

The process of assigning value domains to attributes is similar to that of assigning value domains
to data elements except for that the assigned value domain must be a direct descendent of the
data element’s value domain. This is clearly illustrated in Figure 27. The value domain for
attribute hourly wage of the entity employee is a subset of the value domain for the data element
salary. This permits value domain deployment tracking from its broadest definition to its most
refined allocation. If an attribute did not have a value domain then the value domain assigned to
its data element is automatically inherited by the attribute.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 51

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

)) Subject Area
Value Domain Compensation
Human
Resources
i Y
Stock
Options Employee Entity
1-100,000 \
Data Elemen
Leave) 5 Salary
1-25 days
Automobile
2 door sedan
to A
Luxury
Money > Hourly | attribute
1-1,000,000 Wage
) Weekly 6
A Monthly 240 i% -
Annual 1,000 1 EJOOO At\t/rllbute
12,000 to ’ alue
to 200,000 v Domain
2,400,000

A

$7.85

Figure 27. Value Domain for Hourly Wage Attribute of the Salary Entity

5.4 Reverse Engineering
Within the context of the specified data model, reverse engineering relates only to:

Reassigning subjects to subjects
Reassigning of entities to subjects
Reassigning entities to entities
Reassigning of attributes to data elements
Reassigning of attributes to entities
Promotion of an attribute to a data element
Removing attribute meta category values

During the course of creation of the specified data model, there typically is the creation of
subjects, entities and their contained attributes. Eventually there will be a need to “move” some
entities to different subjects as the subjects are recast and possibly consolidated. The reallocation
process enables the tagging of one or more existing entities, the tagging of one subject, and then
when the reallocation button is pressed, the entities are all reallocated from their existing subject
to the selected subject.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 52

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

In a similar fashion, attributes may need to be reallocated to different data elements
because of creation, refinement, and recasting of existing data elements. Finally, an attribute may
surface that is really a data element. The promotion process causes a data element to be created
from the essential semantics contained in the attribute. Once the data element is created, it is
connected to the attribute, and all the semantics associated with the newly created data element
are stripped from the attribute. These are still inherited by the attribute as the data element is its
semantic template.

5.5 Specified Data Model Maintenance
Maintenance of the specified data model conforms to a set of rules. These are:
o All primary key attributes are only not-null.

° Because of automatic foreign key attribute generation from the primary key, all
foreign key attributes are initially set to not-null. If, however, the referential
action for a foreign key is “set null,” then the foreign key attribute is
automatically set to null-allowed.

° When an attribute is directly deleted, it can be deleted only if it does not
participate in a primary or foreign key.

° When a foreign key is deleted, so to are all its attributes.

° When a primary key is deleted, all its attributes are deleted, and so too are all
associated foreign keys and their attributes.

° When an entity is deleted, so too is its primary key, primary key associated
foreign keys, entity contained foreign keys, all non-key attributes. An entity can
be deleted if and only if its attributes are not related to any column within the
implemented data model

° Whenever an attribute is deleted, deleted also are the associated semantics for
meta-category values. An attribute can only be deleted if it is not related to any
column of any table in the implemented data model.

° Whenever a subject is deleted so too are deleted all entities and contained
attributes and keys. However, a subject can only be deleted if no entity has an
attribute that is related to any column of any table in an implemented data model.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 53

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

5.6 Specified Data Model DDL and Graphics

The data modeler, via the data model tree menu selection, supports a graphical tree-rendition of a
data model. You can also cause the creation of an ASCII text file SQL data definition language if
the selected specified data model.

The first graphic is presented immediately within the window as a graphical tree. In these
graphic trees, the targeted root entity upon which the dynamically created tree is based, is
colored black, descendent entities are colored blue, the ancestor entities are red, subtyped entities
are cyan. As each entity is highlighted in the data model tree, all the attributes and keys are
presented in “surrounding” list windows.

The SQL data definition file contains two different types of data models: Subject based
and highlighted entity based. Subject based data models contain all related entities for which the
highlighted subject is the parent. Highlighted entity based data models are the collection of
entities that are related to the specific highlighted entity regardless of parent subject area. In the
highlighted entity based data model, all direct ancestors and all direct descendants are produced.
No “cousins” are produced.

The SQL data definition language file is able to be shipped to a SQL DBMS engine and
compiled. From within the Specified data model all data types are Char(1). That is because the
specified data model is purely logical and not cluttered up with database schema or DBMS data
type details.

5.7 Specified Data Model Summary

The specified data model is a technology independent representation of entities and attributes
within certain subject areas. The specified data model serves as a source of data model templates
for both DBMS databases and for non-DBMS data structure definition facilities such as spread-
sheets.

The specified data model attributes are quickly created through the identification of one
or more data elements that are to be the semantic templates for attributes within entities. The
inherited semantics from the hierarchies of meta category value types, meta category values, data
element domains, data elements, and entity subject areas hierarchies all contribute critical
components to the semantics of an attribute. Attribute definitions can be completely automatic
with all the definition fragments that are immediately available from the attribute’s inherited
semantics.

In the case where a data element is associated with more than one attribute in an entity as
would be the case for home-, office_, cell_, and fax_telephone_number, the ability to create a
local name and even a local definition is present. Available, of course are all the already
inherited semantics.

Because of these work saving assists, creating a specified data model is an effort that is
characterized by:

° Significantly shorter times to create entities because of all the inherited semantics

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

Iﬁ! 54

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

° Lowered risk because when things are the same they will be semantically defined
the same
° Increased quality because there will be more time for important semantic

component parts

° Increased productivity because the process of creating the specified data model
can be accomplished by functional experts rather than just data administration
staff.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 55

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

6.0 Implemented Data Model

The implemented data model is the technology dependent transformation of a collection of
entities from within the specified data model. The implemented data model may also represent a
stand alone database design. That, of course, is not recommended.

While the Whitemarsh data modeler can read ANSI SQL data definition language
streams and load the appropriate meta entities within the implemented data model area of the
metabase, it is not advised. This is because there is really no ANSI SQL DBMS. Rather there are
vendor DBMSs such as Oracle, DB/2, or Informix that conform in some way to the ANSI SQL
language. Thus, all databases are operational databases. Consequently, these SQL DDL streams
should be imported into the Whitemarsh operational data model, and are interrelated through
DBMS column to Table column mappings.

The only situation where it is recommended to import SQL DDL streams into the
implemented data model is when an enterprise has developed a library of DBMS independent
data models that it then employs as “templates” for actual DBMS-bound database designs. If the
data model design is really a production database, then it is advised to load the data model into
the operational data model and then promote it to be an implemented data model. Thereafter the
data model can be transformed as may be needed to fully name all the columns, allocate the
semantics, relate the columns to data elements, and if necessary transform any non-third-normal
form tables to third normal form. All the while the relationships to the operational data model
will be automatically maintained.

A key difference between the specified data model and the implemented data model is
that while the specified data model is to portray standard models or structures of data within the
domain of a subject areas, implemented data models are to reside under the scope of a schema. In
the context of the Whitemarsh data modeler, the concept—database—is linguistically represented
through a schema expressed in the ANSI SQL language. Consequently, if the schema’s scope is
broad, it is very likely to contain specified data model data structures from multiple subject
areas.

Specified data models are of no particular data architecture class. In contrast,
implemented data models are one of the five distinct classes, which are:

Original data capture

Transaction data staging area

Subject area (Bill Inmon’s ODS (operational data store))
Wholesale and retail (also called data marts) databases
Reference data

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 56

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Another key difference is that’ tables within the implemented data model are able to
belong to database objects, while, in the specified data model, entities are merely standard data
structures that are able to be deployed as tables (possibly within database objects) of a particular
database.

COTS, that is, commercial off the shelf packages like Oracle Finance or SAP’s HR,
generally contain their own self-contained data model. Some enterprises do not assess whether a
COTS data model is of high quality or is designed well except as the COTS data model must be
understood in light of required extra functionality for reporting, queries, data extracts for TDSA,
and subject area data architecture class databases®. Under this situation, there is a need to both
import the COTS data model through its DBMS specific SQL DDL as an operational data model
and to then map the operational data model to an implemented data model, which should already
be mapped to specified data model structures. This triple mapping is necessary so that the COTS
data model data can be understood by the rest of the enterprise.

If an enterprise only had one COTS package, then this triple mapping clearly represents
extra work. Most enterprises, however, commonly have multiple COTS packages within the
same domain running on different platforms with overlapping and conflicting semantics.
Without the implemented data model to which the COTS data models should be mapped there is
no practical way to sort out these conflicting semantics.

Similarly, legacy systems may be seen as a set of COTS packages that have been
developed over a variety of technologies, platforms, access methods, and DBMSs. Each of these
legacy system file strictures should be recorded into the data modeler in a SQL DBMS language
form so that these legacy system “databases” can be mapped to the appropriate implemented data
models.

Since an SQL-DBMS based COTS data model is implemented through a command file
of DBMS schema, DBMS table and DBMS column statements, the imputed data semantics
contained in the implemented and specified data models can then be used to tailor SQL views to
shield the “unique/non-standard characteristics” of the COTS data model. For example, the
DBMS data model COTS column, Social Security Number, which is an identifier for an
employee, might be called PID. In an SQL view the name could be changed to the enterprise’s
name, Employee Social Security Number.

The meta model design for the implemented data model is presented in Figure 28. This
diagram contains the following meta entity groups:

° Meta Category Value Types and Meta Category Values (upper left)

Database objects represent the collection of traditional (that is, formatted and structured data) and
nontraditional (that is, video, sound, and unstructured text) data. Database objects, expressed
entirely within SQL:1999 proceed through precisely defined states and are squarely based on
policy analysis for its data structure formulation, and on implemented processes that are embedded
within the database object and that accomplish the database object’s proper valuation,
modification, migration, and reporting.

It is the position of Whitemarsh, however, that no COTS package should every be procured unless
it has a high quality, fully documented data model and unless this data model was used as the basis
for the code generation of the majority of the COTS package.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\l l

IA! 57

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Meta Category Value Type
Classification

Meta Category L
Value Type

Data Element
Concept & Data Element »| Data Element Data Element
- Concept - Concept
Meta Category Concept >
Structure Structure Type
Value
Meta Category
Value ‘
Value Domain
A J L Business Schema
Data Element Domain
& Meta !
Category Value Domain
Value Structure
A
Y
A
Column & -
L Meta Category |« Data Element Table —‘
Value
Table Primary |
Key
SQL Data
Subject |- Type
4
i \; \— Table Primary Table
; Candidate
v Key & Column

Ke
Entity R > T Y
Column

Table
L) t—
y Foreign Key

. Table
Attribute
Foreign Key

& Column
Implemented Data Model —
Copyright 2006, Whitemarsh Information Systems > CandidZteeKey & |
Corporation, Column
All Rights Reserved
01/26/06
Figure 28. Implemented data model meta mode.
° Data Element Concepts and Value Domains, Data Elements and VValue Domains

(middle and right)
° Subject, Entity, and Attribute (lower left)
° Schema Table and column including SQL data type (lower right)
o Primary and foreign key structures (lower far right)
The first three meta entity groups are shaded on the diagram. This means that they should
already be valued in support of the data to be represented in the implemented data model. In the
case there is a need to map to a data element there are two options: The process of automatically

creating a data element from a column, and the explicit definition of a new data element but only
through the data element module.

Copyright 2006, Whitemarsh Information Systems Corporation

\ Proprietary Data, All Rights Reserved
\AY 4

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

The data element module may be under special security to prevent the ad hoc definition
of semantics. In such a case, the columns can still be added, but when they are without the
appropriate mapping, reports containing these unmapped columns indicate that they are
unmapped to standard data semantics.

Shaded meta entities are not allowed to be updated within the scope of creating the
implemented data model. Rather they are accomplished in either the meta category value
hierarchy classes, data element, or specified data model modules. The reason these functions are
segregated is to prevent ad hoc data modeling behavior by allowing separate security over each
distinct data modeler module.

As stated in the section on the Specified Data Model and in the section above, the
purpose and intent of a schema along with its attendant tables and columns is to represent a
database that is to be implemented on some technology dependent platform. That is, through one
or more DBMSs and one or more specific computers. If a human resources schema is
implemented under a SQL DBMS on three different platforms, for example, MVS, Unix, and
Windows/NT, then while there would be only one Schema (and tables and columns), there
would be three different sets of DBMS Schemas, DBMS Tables, and DBMS Columns.

Tables and columns within an implemented data model schema are created through:

o Forward engineering
° Original creation

6.1 Forward Engineering

When the Schema and its attendant tables and columns is forward-engineered from one or more
specified data models, the following steps occur:

Schema creation

Table and column creation

Table maintenance

Column maintenance

Relationships maintenance (that is, primary and foreign keys)

6.1.1 Schema Creation

The schema is created through the normal process of creating the metadata record, schema
through a data modeler add screen. As can be seen from Figure 28, no direct relationship exists
between schema and subject [area]. Clearly that means that the Implemented Data Model is not
just a transformation of the Specified Data Model. The relationship is to the intersection record
that connects the column of a table within a schema to the attribute of an entity within a subject
area. Through these connectors, reports can be produced that identify which subject areas are
represented in which schemas, and vice versa.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 59

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

6.1.2 Table and Column Creation

The process of forwarding engineering tables for a schema is accomplished by importing
entities. The entities are listed by subject area and are interrelated by primary and foreign keys.
If an entity is selected for inclusion, a list of all entities related through primary and foreign keys
is presented. When the apex of a set of related entities is tagged, all entities and sub-typed
entities related to that entity are automatically included into the schema. This creates a series of
table families.

When an entity is included in a schema, all the attributes of the entity are transformed to
columns of a newly created table. In addition, to the creation of raw tables, the intersection
records between a column of a table and the column of the related entity are also created.

The data modeler engineering is such that one or more entities can be imported into a
table. Suppose, for example, a Specified Data Model had a very narrow scope and there was an
entity that was just a person’s name structure. That is, salutation, first name, middle name, last
name, and name suffix.

If there was an implemented data model table for invoice header and there was to be a
salesman contact, billing contact, and buyer contact, then all three would have the same person
structure. This would required the importing of the Specified Data Model person’s name
structure three times, and then for each, the local names would change. The relationship from the
specified data model to the implemented data model in this case is from the specified data model
entity attribute set to the three different implemented data model table column set.

Similarly, a specified data model entity attribute set can be related to a single
implemented data model table. In this case there might be an invoice header, but then a
descendent table of invoice header key contacts. Where the first business column is invoice
header key contact type to hold the value, salesman, billing, or buyer. And then a single set of
columns for the person name structure.

Finally, there might be a specified data model entity that can be related to multiple
implemented data model tables. First there might be the relationship between the specified data
model person attribute set to the invoice header key contacts, and then to other tables within that
implemented data model schema that might have person names such as product warranty
representative, or region manager, and the like.

In all these cases, there is just one set of specified data model person name attributes that
maps to all these different uses within the implemented data model tables. Clearly, not a
transformation strategy. Rather a define-once use many-times strategy

In Figure 29, there are two subject areas, Project Management and Human Resources. In
this example, the project management subject area contains three entities, project, role, and
project assignment. In the Human resources subject area there is one entity, employee. Under the
assumption that project, role, and employee are all connected with a mandatory action form of
referential integrity, then if any of the three are identified then all three plus project assignment
is brought over into the implemented data model. In this example, the entities, attributes, and
relationships for project, role, project assignment, and employee would all be transformed into
tables, columns, and relationships under the identified schema.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 60

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

6.1.3 Table Maintenance

Once an initial set of tables and columns are created, tables can be “electronically pruned.”
Three “pruning” cases occur:

o A table that is not a “parent” to another other table
° A table that is a “parent” to another other table
° A table that is a “parent” to a table that is in turn a parent to another table

Figure 29 illustrates these three types of tables. Skills is a table that is not a parent to another
table. Dependents is an example of a table that is linked solely to the Hobbies table. Employee is
an example of a table that contains dependents, which in turn, contains Hobbies.

In the case of a table that is not a “parent” to another other table, for example, Skills in
Figure 29, that table can be deleted in its entirety. The data modeler provides the ability to select
a table, present it, and to delete the table through the delete button. If the table is not a parent of
any other table, it is deleted. When this is done, the columns of that table and the intersection

Subject Areas

Project Human
Mangement Resources
—
y h J
Project Role Employee Entities

[
Primary to \—l
Foreign Key
Relationships % v
., Project | Dependents Skills
Assignment

/

Hobbies

Figure 29. “Pruning” cases for table maintenance

records to the appropriate attributes within an entity are deleted.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 61

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Subject Areas

Project Human
Mangement Resources

] [

A A /

Project Role Employee Entities

[

Primary to
v Foreign Key
Relationships

Project
" | Assignment |

Figure 30. Entities that are transformed into tables of an implemented data model

In the case of a table that is a parent to one or more other tables, for example, Dependents
in Figure 29, if the parent table is deleted so too are the foreign key and foreign key columns in
the child table deleted.

In the case of a table that is a “parent” to a table that is in turn a “parent” to another table,
for example, Employee which is the parent of Dependents, which in turn, is the parent of
Hobbies, the process described above is cascaded to the “grandchild” table and evaluated before
the action is taken on the “grandparent.” In this case, for example, if the “grandchild” table had a
foreign key as part of its primary key, and if the “grandparent” was related to its “child” table
through a cascade delete, then the delete operation on the “grandparent” would be disallowed
because it would have caused a [cascade] delete on the “child,” which in turn, is prohibited
because the “child’s” primary key, as represented in the “grandchild,” is part of the
“grandchild’s” primary key.

When Dependents and Skills are thus deleted, the result is depicted in Figure 30.

6.1.4 Column Maintenance

Once an initial set of tables and columns are created, columns can be “electronically pruned.”
Several cases occur:

° A column that is not part of a primary or a foreign key
° A column is part of a primary key
° A column that is part of a foreign key

Figure 31 illustrates the implemented metadata result from the transformation of the four entities,
project, role, employee, and project assignment into tables within a schema, project management.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 62

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

In Figure 31, Project Name (upper left) is a component of the primary key of project, while the
“Other Project Columns” are not. Project Name is also part of the foreign key between Project
and Project Assignment.

In this example, the column “Other Project Columns” could be safely deleted because
“it” is not part of a primary or a foreign key, that column is deleted. Whenever a column is
deleted, the intersection record that relates the deleted column to an attribute is also deleted.

Project Name, on the other hand is part of the primary key of project and thus, the delete
operation is prohibited as it is likely to cause a fundamental change in the meaning of the table.
In another example from Figure 31, if the primary key of Project Assignment consisted of
Employee Number and Project Number, Assignment Date, and Role instead of just Project
Assignment Identifier, then the delete operation which removed the Employee Number would
then cause the fundamental nature of the table Project Assignment to be transformed from one or
more assignments of an employee to a project serving possibly different roles to just that of role-
based project assignments without regard to who was assigned or what role they performed. For
that very reason, the Whitemarsh data modeler prevents the creation of a primary key that
contains columns that are also members of a foreign key. In short, the columns of a primary key
are orthogonal with the columns of any foreign key of that same table.

Continuing the case of a column that is part of a multi-column foreign key, deletion of

Related Tables and their Primary Keys

) Project ,
Project —— Primary Key |] Table ATabIe S
Primary Key
i i . Project
Project Name Primary Key Project !
o] e o o
ame
- Table
Other Project Columns
Columns
Table's ol ncsgnent || idenifer & Primary Key
Employee [— Employee Foreign Keys e i
Primary Key Identifier Column
> Project ,
Employee H Foreign Key } Table's
Number , [—* Project Name Primary Key
Primary Key Column
& Employee Foreign Key Jé
Other Number & Project Employee
Employee Name Number
Columns Employee A
Foreign Key Assignment
—
. Date
Role - Role Primary _
Key Foreign Key
& Employee =
l Number —» Role Name
Role Name
; I N
Primary Key Role Foreign
& Role Name Key Assignment
Start Date
Oéhelzr Role Foreign Key
olumns and Role [« R
N Other Project
ame .
— Assignment
Attributes

Figure 31. Stand alone, Primary, and Foreign Key Columns.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 63

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

any one of the columns that comprise the foreign key is prohibited as that changes the very
nature of the relationship between the table that is the source of the foreign key and the table
containing the foreign key. The only operation that is allowed is the deletion of the foreign key.
And, in that case, all the columns that are members of the foreign key are also deleted.
Continuing with the example from Figure 31, if there was a table called Work, it would have to
have a primary key of its own with columns solely resident in the Work table. It’s relationship
with Project Assignment would be based on the inclusion of the Project Assignment Identifier as
the column of a foreign key in Work. Figure 32 shows the keys.

Once the appropriate set of columns are determined for each table, the other metadata
attributes for each column must be created. This means selecting the appropriate SQL data type,
the length, and quantity of decimal places. This metadata is necessary so that a report based on a
schema can produce a ANSI SQL data definition language command file. Some ANSI SQL:1999
data types represent complex data structures such as user defined types, arrays, and nested
structures. In these cases, the semantic mapping between an attribute of an entity to the columns
of a table may only be approximate.

Table
. Project
Prolect Assignment — Table
Assignment Primary Key
Table
Columns | Work Work
Table Primary Key
Project Project Assignment
» Assignent » |dentifier & Primary Key
Identifier Column Y
Work Work
Table's Identifier Prgn\;avrgﬂlfey
» Project Name Primary Key \dentifier
Column ¥
Project » Work Date Table's
Employee L Assignment Primary key
Number i
Foreign Key Columns
Assignment Table's > Project
Date Foreign Key Assignent
» ldentifier
» Role Name
Assignment
"] Start Date
Other Project
» Assignment
Attributes

Figure 32 Primary and Foreign Keys in Work.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

Iﬁ! 64

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

6.1.5 Relationship Maintenance

Primary and foreign key support is automatically provided in most forward engineering cases.
Whenever “pruning” a column potentially results in a change in the meaning of a relationship,
that change is automatically prohibited. In these cases, the only way to accomplish this type of
change is to perform an original creation. An example of what is not allowed is presented in the
previous section and in Figures 32 and 33.

Relationships may also not exist when entities have been forward engineered into tables
from multiple subject areas. This would be the case if the entities within a specified data model
are restricted by convention to only single subject areas. For example, customers and sales
persons may each be in their own subject area specified data model. Given the need to have a
schema for sales and customer management, then entities from both subject areas would be
forward engineered into tables belonging to one schema. In this case, there would be a need, for
example, to create a table like customer salesperson assignment. This would be an intersection
record and would require the creation of a primary key that contains two foreign keys, one to
customer and another to salesperson. This type of table, column, and relationship creation is
handled in the section that follows, Original Creation.

Figure 30 illustrates this situation as the entities from both the project management
subject and human resources subject would not include Project Assignment if by user convention
the specified data model was restricted to contain entities only from within the subject area.
Note, however, the metabase system neither has nor enforces such a convention. It would only
be after the implemented data model was constructed that the intersection table, Project
Assignment would have been possible. And, in that case, columns from the both project and
employee would be needed to construct the primary key for Project Assignment.

6.2 Original Creation

Original creation of a schema, attendant tables and columns involves these steps:

° Schema creation

° Table creation

° Column adjustments

° Relating columns within tables to attributes within entities of the specified data
model

° Relationship creation (that is, primary and foreign keys)

° Column value domain creation

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 65

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

This “Relating columns ...”step is the very important because it enables enterprise wide
semantics. Through this step, no matter in which table a column resides, its semantics, that is,
those of the related entity attribute and related data element are able to be used to find that
column.

6.2.1 Schema Creation

The schema is created through the normal process of creating the metadata record, schema
through a data modeler add screen.

6.2.2 Table Creation

A table is created through the normal process of creating the metadata record, table. Since
schema acts as a foreign key, the names for all schemas is provided for selection.

6.2.3 Column Creation

The process of creating a column within a table is similar to that of creating an attribute within
an entity. Once the table is selected, the task of creating columns starts. This is when the basic
definition of data element comes into play. That is, as a semantic template for the business facts
associated with the table. Column definition is accomplished in two stages:

o Employment of the data element semantic template along with the table to create
the basic metadata for the column.

° Refinement of the column’s meta attributes through the creation of its remaining
meta attribute values.

The first stage is accomplished through the Whitemarsh metabase technique of tagging. A three
list window is displayed. In the upper left list is the list of tables. In the upper right window is
the list of data elements. An table is tagged and then one or more data elements are tagged. Once

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 66

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

the “build” button is pressed the columns are built and displayed in the bottom list that runs
across the full screen. That’s all there is to it. Because of inheritance, all the semantics of the
data element are automatically assumed by the column. Figure 33 displays the result of
associating the data element, Salary, with the table, Employee.

The semantics that are automatically inherited are:

Data element domain and value restrictions

Data element and value restrictions

Data element’s business domain

Data use meta category value types and values associated with the data element
Schema of a table

Table

The inherited semantics should be identical to those present on Figure 22. The column is related
to the Salary data element. Missing from this figure, of course are the additional semantics
resulting from completing the full meta data attribution of the newly created column.

The second stage involves selecting the appropriate SQL data type, length, quantity of
decimal places, and the necessary semantic modifiers for that are directly tied to the column of
the table rather than through the data element. Figure 34 presents the additional semantic
modifiers that are suitable for the Hourly Wage column. In this example, the Geographic
semantic modifier is the United States, and the Organization semantic modifier is Accounting.

Data Use Modifiers

Units

> Dollars

Data Type

Role L "Compensation" &

"Dollars” Data
Element
Domain Common
4 Business
Compensation "Compensation” & " o Name
— " " Compensation
v Money'
Salary
Business Fact
.| "Salary" & "Business
" Y
Fact Data
Element
— "Salary" <
Table
"Employee"
y
"Hourly
Wage"
Column

Figure 33. Associating a column to a data element.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\l l

IA! 67

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Note that these are “semantically inside” the semantic modifiers of Figure 22. Still missing are
any semantics that would be inherited when the Hourly Wage column is related to a suitable
attribute.

In the case, however, when a data element is associated several times with an table, then
while there may not be the need for additional or different data use or semantic modifiers there
still needs to be some additional information to distinguish the different intent from what would
appear to be “identical twin” columns. For example, suppose that the data element, telephone
number is allocated to the Customer table two times as a way to represent the telephone number
for the customer’s main and fax telephone numbers. In this situation, it may well be that only a
slightly different local column name is necessary to represent the difference. So, data modeler
provides the ability to change the local name for the column from its default name, that is, the
data element name (which in turn has as its default name the common business name) to some
other name. In this case, the local names would most likely be, main telephone number, and fax
telephone number.

Data Use Modifiers

Units
Dollars
Data Type
Role "Compensation” & |_
"Dollars" h Data
Element
Domain Common
v Business
Compensation — "Compensation" & | "Compensation” Name
. "Money" N P
Salary
Business Fact
.| "Salary" & "Business
Fact" A Data
Element
. » — ‘Salary" |
Semantic Modifiers
ited "Hourly Wage & Table M | "
Geographic S United States —» | 4 ciares T] Employee
Temporal "Hourly Wage & "Hourly
> Current Year ™ curentvear |¢ | Wage"
Column

Accuracy

Final Hourly Wage &

Final"

Organization T
Accounting > Hourly W_age" &
Accounting

Figure 34. Additional semantics associated with the hourly wage column.

Copyright 2006, Whitemarsh Information Systems Corporation

\ Proprietary Data, All Rights Reserved
\AY 4

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

A key difference between a specified data model and a implemented data model can be
the SQL:1999 capability to have “nested columns.” Prior to SQL:1999, all columns represented
singly occurring data values all drawn from the same traditional data type. In SQL:1999, the
very definition of data type has changed from its traditional meaning, e.g., Integer, Float,
Decimal, Character, to a meaning that is closer to the computer science phrase, “data structure.”
The five data structures (called data types in ANSI SQL:1999) are:

Single value traditional
Array

User Defined type
Row type

REF

When the data structure of a column of a table is a single value traditional data type, then the
data value represented by the column within a row of a table exists as a single value and is any of
the traditional types, Integer, Character, Decimal, Float, etc. An example of a column with this
data type would be Social Security Number, which of course is a fixed length numeric string.

When the data structure of a column of a table is an array, the “cells” are called elements,
and the data value represented by the column within a row of a table exists as an ordered list of
values all belonging to the same data type. An example would be Telephone Numbers, which
could exist multiple times and all be of the same data type, that is, a fixed length numeric string.
Because the list is ordered, semantics could be imposed that the first telephone number is the
most common, and so on. The data type of an element within an array may be a traditional type
(e.g., integer, date, character or decimal) or any of the other data types, that is, user defined type,
row type, or a REF type. Each of these other data types are described in paragraphs that follow.

When the data structure of a column a user defined type (UDT), its contents are called
attributes. A UDT attribute can be any SQL data type, including user defined types. Each
attribute can have a domain name, a default clause, and a collate clause. In addition to data
structure, the UDT contains functions through which UDT values are constructed, changed, or
observed. UDTs can have instance ordering clauses. When ever a UDT is a subtype of another
the parent UDT is identified.

The row type data structure is a technique to type a group of columns within a row. Each
row type group is said to contain fields, and each field can be any data type. That is, it can be
predefined type, a row type, a user defined type, etc. Each field can have a domain name and a
collate clause. So, a table, Employee can have a row type, address as one of its columns. Within
that address group can be another row type, zip code. Zip code can in turn have two fields, Zip
and Zip +4.

The REF data structure represents a system generated “pointer” that references an object
that is stored at another site.

The implication of these new SQL:1999 data [structure] types is profound. It has changed
the SQL.:1999 data model clearly from relational to its own data model. Within a table of an
SQL:1999 database, full hierarchical records such as those within IBM’s IMS, or System 2000
can be defined. So too can “files” from Adabas, Model 204, and Inquire. Finally, because of the
REF type, which can be the data type of an element within an array, Codasyl sets can be defined.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 69

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Because of these very sophisticated data structuring capabilities, database designers have to
return to days in which there was a significant difference between the three types of data models,
that is, specified, implemented, and operational.

The terminology within the new data types of the ANSI SQL:1999 standard can be
confusing. For example, columns of a table, elements of an array, fields of a row type, and
attributes of a UDT, and *“data structure” is no where to be found. Not only was no alternative
found, the mixed terminology was not really even noticed until late in the ANSI SQL:1999
ratification process. So, the exhortation, “get used to it” was put forward as the solution.

6.2.4 Mapping Columns of Tables to Attributes of Entities

The final step of column creation is the mapping back to the attribute of an entity. This is done
through the process of tagging. In this case, since an attribute may be related to multiple columns
across multiple tables, the upper-left window of the intersection record screen has the subject
area, entity, and attribute as the information in the upper left intersection record screen. In the
right window, the data that appears is the schema, table and column. The process consists of
going through the attributes of the entities until the proper one is found. That is then tagged.
Then, the schema, tables and columns are traversed until the appropriate column is found. It is
then tagged. If there are any more columns to be related to the attribute then these are tagged as
well. Once all columns are tagged for the attribute, then the Build button is pressed. The
intersection records are then built.

If however, no attribute seems to be appropriate, then one must be created to support
enterprise-wide semantics. The data administration staff associated with attribute creation should
be contracted to determine if there is an appropriate attribute. If the data administration staff
cannot discover an attribute then an effort to create one must be undertaken. In this situation, two
cases can occur:

° An attribute exits but is in a different form
° No attribute exits

In the first case, a column, for example, Employee Age at Hire is needed. If attributes with
entities are properly created, then the closest attribute that could be used would be Employee
Birthdate. If the actual data value for “Employee Age at Hire” is needed, then the column’s value
would have to be the result of calculating the interval between the two dates. To compute the age
value, a different column may have to be created to represent the event against which the
employee’s age is computed. For example, if the Employee’s Age at Hire column is to represent
the age when hired, then the column that would be required would be Employee Date of Hire.
This column is likely to already exist in support of other human resources data. At that point,
given there was an employee biographic table with the Employee Birthdate, the Employee Age
at Hire could be computed on-the-fly by “subtracting” employee birth date from employee hire
date and converting the interval result to years.

In the second case, that is, when no attribute exists, two subcases occur:

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\l l

IA! 70

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

° The policy analysis under which the specified data model was created was
insufficient, or

° Enterprise-wide data semantics is being created inductively.

In the first subcase, the methodology through which the specified data model was created must
be examined to determine if it is sufficiently comprehensive. Projects and/or methodologies that
are narrowly focused or that are function driven seldom result in specified data models that are
appropriately generalized. The remedy is to base specified data models on the database domains
within enterprise missions.

The second subcase arises when the enterprise is arriving at its semantics inductively.
That is, individual databases are created to serve the needs of specific applications or business
functions. In either case, the data model is likely to have application or function based names for
both the tables and columns. Once these are created, it would be a mistake to just create clones
of these schemas, tables and columns and make them subject areas, entities, and attributes.
Analysis should be undertaken with “adjacent” organizations to determine if they have similar
applications and functions, or if they share data. In either case, a set of names and definitions for
these schemas, tables and columns should be generalized if at all possible. This process of
semantic generalization then results in a wider-space of common semantics. Eventually, through
this approach, enterprise-wide semantics is achieved.

Once an attribute has either been found or created, it still may be the situation that the
column represents a semantic subset of an attribute. In this case, the previously allocated
semantic modifiers meta category value types and meta category values should reflect the extra
restrictions. With respect to the Employee column, Hourly Wage, Figure 34 illustrates that the
data element contains a more restricted set of semantic modifiers when compared to the attribute,
Hourly Wage depicted in Figure 22.

In the event an attribute is immediately found, then no additional semantic modifiers are
required. The only requirement is to create the intersection record between the column of the
table and the attribute of the entity. In the event that the attribute is connected to a data element
different from the one connected to a column, an error message is presented.

From the point of view of this single column, Hourly Wage, Figure 34 and Figure 22
represent a significant amount of semantics that becomes available solely on the basis of
inheritance from the other meta entities to which the column is associated. When all the
definition fragments from all these inherited semantics are collected together into a loose
definition, nothing more should be required. In short, the only thing that may have to be
originally entered is the local name of the column. And, even in most cases, the common
business name that is carried down may be sufficient.

The reason why columns of tables are related to attributes of entities is because a schema
table can be an arbitrary collection that does not belong to a single subject area as would be
inferred if tables were related to entities. This type of mixed subject area mapping is especially
common in the data architecture class, data warehouse. In the case of data architecture classes,
original data collection, TDSA, and in subject area databases (i.e., Bill Inmon’s ODS), single
subject area mapping to entities is commonly maintained within tables of schemas.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\l l

IA! 71

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Mixed mappings also supports the Whitemarsh data modeler concept that the
implemented data model is not just a technology binding or transformation step on the way to a
DBMS schema. That is, first specified data model, then implemented data model and finally
operational data model. While such a binding and/or transformation process is possible if all the
schema tables and columns are drawn from entities within a single subject area, such a mapping
IS just not practical given today’s databases from different data architecture classes. The
Whitemarsh data modeler was not created to support some theoretical concept. Rather, it was
created to support and then possibly improve the real practice of data modeling that must be
accomplished on a day to day basis.

Columns that comprise surrogate keys are a special mapping case. Surrogate keys are a
technique employed by implemented and operational data model data-modeler [persons] to
replace a collection of business-based columns with a “computer-generated” integer value. This
integer value is then employed as the primary key of a table and also as a foreign key in other
tables. The ultimate purpose of a primary-foreign surrogate key pair is to act as a relationship
between two tables.

In summary, while it is clearly possible to create columns without relating them to
attributes, such actions should be considered professional malpractice. The metabase supports
the production of reports that identify all columns that are not related to attributes. If these type
of relationships had existed prior to the “Y2K” crisis, it probably would not have been a “crisis.”
Rather, “Y2K” would have been just another software maintenance event. That is, only painful,
risky, and costly rather than possibly the reason why some businesses fail.

Whenever there are multiple levels of meta category value type and meta category values
assigned to a data element domain, then to a data element, then to an attribute, then to a column,
each semantic set must be a subset or a narrower interpretation of the next higher set.

6.2.5 Key Support
The implemented data model supports three types of keys.

° Primary,
° Foreign, and
° Candidate

There are two classes of primary keys. The collective value from each class must be unique,
which when used to select a row of data from a table results in only one row of data. The two
primary key classes are:

° Surrogate key column
° Business column set

The surrogate key column is a crafted column whose value has no business meaning whatsoever.
A surrogate key is always a single column and takes on names like Employee_Id, or Invoice_Id,

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\l l

IA! 72

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

or Customer_Id. The form of the name for the column is <table-name> + <Id>. This type of
primary key is only employed within implemented and operational databases.

The business column set is that set of business fact columns, which in combination
produced a unique value across all rows for that particular table. The business fact column set is
what must therefore be used to fully identify and construct the entity’s primary key or for use in
defining the foreign key that must map back to the primary key.

6.2.5.1 Primary Keys

As in the case of the specified data model, a primary key is a named set of business fact columns,
which in combination produced a unique value across all rows for that particular table. For
example, for an employee table, the data modeler [person] must examine the columns assigned to
the table and ensure that it is third normal form by determining the set of naturally existing
columns that comprise the named primary key. A candidate set of columns might be the
employee’s full name, that is, first, middle and last. But for a large enterprise that may not be
enough. Added may have to be the employee’s birth date. Maybe that’s not enough. Probably the
last added column would be the person’s birth location which might be city, state, and country.

In the event a surrogate column is employed to represent the collective set of business
facts, then the table that contains the surrogate key as a primary key must also have each of the
business facts. In subsequent tables, for example, an Employee Dependent’s table, the primary
key may also be a surrogate key. The mechanism that would connect the Employee Dependents
to the Employee would be the inclusion of the Employee Id surrogate key as a foreign key in the
Employee Dependents table. While creating these types of keys is easy, this easy process must
never replace the effort to derive a well engineered third-normal-form design for the table.
Without the third-normal-form design step, it may never be known-until too late—that the
database will contain redundant data that is updated unevenly.

As to the creation of the primary key, Figure 35 presents the table, columns, primary key,
and primary key column rows of data that illustrate the creation of the primary key for the
project assignment table in which all columns are surrogate keys. If the surrogate key is
employed as the primary key of a table in the implemented data model, the mapping must be to
the attributes of an entity in the specified data model that comprise the business data attributes
for which the surrogate primary key is the alternative. If the surrogate key is a foreign key,
however, there cannot be a mapping from the implemented data model to the attributes of the
specified data model entity for which the foreign key occurs as a surrogate because these entity
attributes are in the entity’s “parent” entity. A data modeler report overcomes this problem by
tracing the “lineage” of the surrogate keys until a full set of business data attributes is available
for printing.

When surrogate columns are defined within tables, the assigned semantics should clearly
show the column’s properties as an identifier. Figure 36 depicts the meta category value type and
meta category values that should be created so they can be allocated to the columns.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\l l

IA! 73

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Table
Project Project Table's
Assignment Assignment Primary key
Primary Key
Project Primary Key &
» Assignment > Project -
Id Assignment Id
Table's
Primary key
» Employee Id .
e Attribute
Members

» Project Name
Table's
Attributes

.| Assignment
g Date

» Role Name

.| Assignment
Start Date

Other Project
» Assignment
Attributes

Figure 35. Project Assignment table with surrogate primary key

Since every column must be associated with a data element, a special data element such
as “surrogate identifier” must be created so all surrogate columns can be associated with that
special purpose data element. It is because of this special data element that the Whitemarsh data
modeler can then “know” the key is a surrogate key in order to then perform a “lineage trace” to
the ultimate set of business fact attributes for which the surrogate key is acting.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
W

\

lﬁ! 74

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

6.2.5.2 Foreign Keys

The foreign key is that set of business fact columns, which in combination produced a value
which maps exactly to a primary key from another table. In the special case where the foreign
key from a table maps to the primary key from the very same table, then the relationship is
deemed to be recursive.

Figures 26 presents the specified data model that for the three entities, project, employee,
and role that are “parents” of the table, project assignment. For the purposes of this example,
when all these four entities are transformed to tables, all the primary and foreign keys are
represented as surrogate keys. Figure 37 then presents the metadata records that are implied by
the meta data model in Figure 25 that support the relationships among these entities.

In Figure 37, the tables, Project, Employee, and Role are along the left side. The columns
necessary to represent the surrogate key based columns are depicted below them. The surrogate
key based primary keys are depicted to the right of each table. The foreign keys for the Project
Assignment table is presented to the left side of project assignment. There are three foreign keys,
Project Foreign Key, Employee Foreign Key, and Role Foreign Key. The meta records for each
is immediately below. The relationship between the primary key of each parent table is depicted.
For example the relationship between the Project Primary Key and the Project Foreign Key.

From the presentation in Figures 26, 36, and 37 the required meta model relationships

are:
Business
Data Use Modifiers Domain
Data Type Data Model]
Role L
Data c
Element ommon
Domain Business
Name
I Y
Number “dentifier & Number" — "ldentifier" Identifier
Identifier » "Identifier & Identifier" "Su"qgat,?
Identifier
Data
Element

Figure 36. Meta category value type and meta category values allocated to Identifier data
element.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\l l

IA! 75

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

° A one-to-one between a table and its primary key

° A one-to-many between any primary key of one table and any related foreign
keys from one or more related tables

° An intersection record relationship between any primary key and its related
columns

° An intersection record relationship between any foreign key and its related
columns

Related Tables and their Primary Keys

Project
Primary Key

_+

= Project_Id —L> Primary Key

Project

& Project_Id
Other Project -
1 Attributes Table Entity's
Table's Primary Key
Foreign Keys Project Project
Employee |— Employee ; Assignment
Py Primary Key Assignment Table's Primary Key
“—» Project Attributes :
\—+ —»| Foreign Key Project Prlmary Key &
Employee_Id > . o Project
Assignment _Id Assi t 1d
Primary Key & ssignment_
Employee_Id Foreign Key
Other & Project_Id | Project_Id
Employee
Attributes
—]—* Employee
—»| Foreign Key » Employee_ld
Role — Role Primary ;
Key Foreign Key
& Employee_ («—1
l Id » Role Name
Role_Id -
Primary Key Role Foreign
& Role_Id — Key :
Other Project
Other Role » Assignment
Attributes Foreign Key Attributes
and Role_Id

Figure 37. Metadata required to support surrogate primary and foreign key relationships among
Employee, Project, Project Assignment, and Role.

Copyright 2006, Whitemarsh Information Systems Corporation

\ Proprietary Data, All Rights Reserved
§L :

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

While this may seem like a lot of work, it is entirely accomplished through the use of tagging. In
fact, for the accomplishment of the foreign keys, the Whitemarsh data modeler module merely
requires the selection of the of the “parent table.” All the intersection records and columns
required to represent the foreign key are automatically created in the “related-to” table. The
default names for the foreign key columns are in the following format:

<parent table name> +<parent column name> + <foreign key>

In this case, the attribute names are thus:

° Project project name foreign key
° Employee employee number foreign key
° Role role name foreign key

Since the local name for a column is able to be changed without changing any of the semantics,
the redundant words should be removed to improve readability. In the case where there are
additional levels of data model, for example in the case where time charges would be recorded
against a project assignment, the default attribute names for just these three attributes that would
comprise the foreign key from Time Charges to Project Assignment would be:

° Project assignment project name foreign key
° Project assignment employee number foreign key
° Project assignment role name foreign key

In this case there would be no redundant words.

6.2.5.3 Referential Integrity

Referential integrity is simply a statement of the rules that control the integrity of a reference that
exists between the primary key from one table and its presence as a foreign key in one or more
related tables. The purpose of referential integrity is control the consequential actions taken
when an update occurs to either a “child”or a “parent” table.

The referential action rules are specified through controlled drop down lists when the
foreign key is selected. Appendix 1 of this book presents the referential integrity rules that are
supported by the metabase data modeler.

If two tables are the owner of another table, only one table can have the referential
integrity action, cascade delete. If cascade delete is attempted for a second connected table, an
error message will appear. Only after the cascade delete action is removed from an existing table
can another cascade delete action be placed.

No foreign key field that is part of primary key field is allowed to be set-null as a
referential action. While a column within a primary key may be allowed in certain DBMSs, it
considered bad data modeling and is thus disallowed within the Whitemarsh data modeler.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬂ ! 77

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Relationship stories, a standard report in support of the implemented data model employ
the same “may be” and “must be” conventions used in the specified data model.

6.3 Reverse Engineering
Within the context of the implemented data model, reverse engineering relates only to five areas:

Reassigning of column to attribute

Reassigning of column to data element

Reassigning of column to SQL data type

Reassigning of a column to a table

Reassigning tables to schema

Reassigning tables to tables

Promote implemented data model to a specified data model
Promote implemented data model table to specified data model
Promotion of a column to a data element

Remove column meta category values

Remove column attribute assignments

In general, the implemented data model is created through the use of specified data model entity
templates. However, the implemented data model may also be created through reverse
engineering of SQL DDL streams into the operational data model and then data model
promotions into the implemented data model. In such situations there are no specified data
models.

When there is no specified data model, implemented data model columns are mapped to
the single data element, unknown. The attribute, unknown, is also the parent of the columns. To
properly resolve this “mapping to the unknown” situation, the implemented data model allows
the reassignment of a tagged set of columns to data element. Similarly, a tagged set of columns
can be allocated to one attribute. If the column is already allocated to a data element, the
allocation process of the column to the attribute occurs only if the semantics of the attribute are
compatible with the column’s already allocated data element.

During the iteration process of refining an implemented data model, data types may
initially be vague. In such situations, modelers can subsequently tag one or more columns and
reassign them to a different tagged SQL data type.

The last type of simple reverse engineering is the promotion of a discovered column as a
data element. The promotion process causes a data element to be created from the essential
semantics contained in the column. Once the data element is created, it is connected to the
column, and all the semantics associated with the newly created data element are stripped from
the column. These are still inherited by the column as the data element is its semantic template.

The largest type of reverse engineering is the promotion of a table and all its columns and
keys (but not foreign key as it’s really the primary key of another table) to be an entity and
attributes within a specified data model. Once promoted the subject of the entity needs to be

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\l l

IA! 78

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

identified as it’s initially set to “unknown.” Attributes are set to the data element of the promoted
column.

Table promotion is needed as it is likely that original data capture databases are initially
created through an operational data model promotion process, which was in turn created through
a SQL DDL import process from a commercial off the shelf package that was purchased by the
enterprise. Once an implemented data model is promoted from an operational data model, the
process of promotion should occur one more time to the specified data model to ultimately arrive
a set of subjects, entities and attributes. It is these re-worked entities and attributes that will
enable the cross referencing of implemented data models via their column-mapped attributes.

Then, once the specified data models exist, “down-stream” data architecture databases,
such as TDSA, subject area databases, reference table databases, and the myriad of data
warehouse databases can be created through already described forward engineering capabilities

6.4 Column Value Domains

Irrelevant of the technique employed for implemented data model development, that is, forward
engineering or original creation, column value domains are a critical component of semantics.
The column value domains are similar to those of data element and attribute value domains.
There are extensions and possible subsets.

In the case of the column, Employee Age at Hire, which is within the semantic scope of
the Age data element might be between the values of 16 and 65 to conform to the corporation’s
employment rules of only hiring persons between those ages. In contrast, the data element, Age,
could range from a value just greater than zero to one of no real limit as the data element could
apply to rocks as well as to employees. Figure 38 illustrates the metadata that support the
hierarchical set of value domains. As can be seen from this example, whenever there are multiple
value domain “levels,” each level must be a semantic subset of the previous (i.e., “higher”) level.

6.5 Implemented Data Model DDL and Graphics

The data modeler, via the data model tree menu selection, supports a graphical tree-rendition of a
data model. You can also cause the creation of an ASCII text file SQL data definition language if
the selected specified data model.

The first graphic is presented immediately within the window as a graphical tree. In these
graphic trees, the targeted root table upon which the dynamically created tree is based, is colored
black, descendent entities are colored blue, the ancestor tables are red, and sub-typed tables are
cyan. As each table is highlighted in the data model tree, all the columns and keys are presented
in “surrounding” list windows.

The SQL data definition file contains two different types of data models: Schema based
and highlighted table based. Schema based data models contain all related tables for which the
highlighted schema is the parent. Highlighted table based data models are the collection of tables
that are related to the specific highlighted table within the specific schema of the highlighted

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\l l

IA! 79

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Age Value Domain
\
Schema
Human
Resources
Years
11,000,000 Data Element y
Value Domain -~
Age Employee =
Table
L]
Yy v
| Years Col
™ 1-1,000,000 Age at olumn
Hire
Value Domain
Column
Value
Domain
» 16 -65

Figure 38. Hierarchy of value domains

table. In the highlighted table based data model, all direct ancestors and all direct descendants
are produced. No “cousins” are produced.

The SQL data definition language file is able to be shipped to a SQL DBMS engine and
compiled.

6.6 Implemented Data Model Summary

The implemented data model is distinct from the specified data model. It may merely be the
technology dependent transformation of a collection of entities from within the specified data
model whereby subject areas, entities, and attributes serve as data structure templates for tables
and columns within an implemented database. The implemented data model may also represent a
stand alone database design that has not been mapped to the specified data model. That of course
is not recommended. The implemented data model may have a multiple subject-area scope and
thus may represent interrelated collections of entities, attributes and relationships from the
different subject areas.

Specified data models are of no particular data architecture class. In contrast,
implemented data models are one of the five distinct classes, which are:

° Original data capture

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 80

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Transaction data staging area

Subject area (Bill Inmon’s ODS (operational data store))
Wholesale and retail (also called data marts) databases
Reference data

Another key difference is that tables within the implemented data model are able to belong to
database objects, while, in the specified data model, entities are merely standard data structures
that are able to be deployed as tables (possibly within database objects) of a particular database.

A key value of the implemented data model is to convey a COTS package vendor’s data
model in a form that is understood by the rest of the enterprise. If TDSA data architecture
databases are built with push-data from the COTS package, then downstream pull-database
applications such as subject area databases and data warehouse databases can be built.

The implemented database’s main purpose and intent of a schema along with its attendant
tables and columns is to represent a database that is to be implemented on some technology
dependent platform. That is, through one or more DBMSs and one or more specific computers. If
a human resources schema is implemented under a SQL DBMS on three different platforms, for
example, MVS, Unix, and Windows/NT, then while there would be only one Schema (and tables
and columns), there would be three different sets of DBMS Schemas, DBMS Tables, and DBMS
Columns.

Creating the implemented database is accomplished either through forward-engineering
or original creation. Forward engineering is accomplished initially by identifying the relevant
entities and pressing the build button. The underlying data modeler software creates all the
tables, columns, and for those already related, the relationships in terms of primary and foreign
keys. When a schema is to contain relationships among multiple unrelated tables, then the data
modeler supports the creation of these new relationships. If there are more tables, columns, and
relationships than necessary, data modeler supports “electronic pruning” of the aspects of the
implemented data model that are not needed.

Original creation is accomplished by creating a schema, a set of tables, columns (through
data element tagging), and appropriate relationships. The resultant columns should be related to
existing attributes. If none exist then the data administration group should be enlisted to either
discover existing attributes, or create other columns that support the production of the right
values for the needed column. A byproduct of original creation is the inductive creation of
additional data semantics within the enterprise.

The greatest benefit from this approach to the development of the implemented data
model is the ability to employ predefined semantics from the specified data model. That is, from
subject areas, entities, attributes, data elements, meta category value types, and meta category
values. After a period of time, this approach should enable enterprises to develop entirely new
schemas, tables, columns, etc., with a minimum of original effort. The data architecture classes
that benefit most are subject area databases, wholesale and retail (data mart) databases, and
TDSA databases. Original data capture and reference data databases benefit the least from this
approach as these databases are the source of the majority of data structures and semantics for
the enterprise.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 81

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

7.0 Operational Data Model

The operational data model is not only DBMS specific, it is also targeted to a specific operating
environment. For example, an enterprise may have chosen Oracle and may have implemented a
particular human resources database on three different environments, mainframe under IBM’s
MVS, WAN-based server under Unix, and a small network under Windows/NT. In all three
cases, the DBMS could nominally be Oracle, but because of performance, storage, and other
factors, there could be a different schema for each. In this case there would be three different
operational data models.

In addition to these differences, the DBMS schemas may not be in third normal form so
as to achieve performance improvements. It is common for original data capture, subject area,
TDSA, and reference data databases to be in third normal. In contrast to these update-intensive
databases, data warehouse databases are report-intensive. Hence, these databases are commonly
not in third normal form. Notwithstanding the normal form of a particular database, all the
DBMS columns of all the operational data models that have the same granularity and same
semantics should map back to the same column of an implemented database. The meta model for
the operational data model is presented in Figure 39.

Meta
Category

L

Meta Category

Value

Classification

Type

Database
Production Status

Database Nature

Value Type
A Database -
Architecture Class Database
Meta Category
Value i
Business DBMS
f . Table
Domain DBMS » DBMS Schema Primary
‘ Key
DBMS Data i —
Data Element & Type Picture
Meta Category
Value Schema DBMS
Table L L
Y Data A4 Q
Y
Element v DBMS Data !
Column & Meta Tyoe
Category Value Table P DBMS Table
Foreign Key
[SQL Data Y
: Type
Value Domain
S DBMS Column D.BMS Table
\—> Primary Key & [4——
YK DBMS Column
Column
DBMS Table
» Foreign Key &
Column
DBEMS Tabl DBMS Table
able Candidate |«—
» CandidateKey & 4—‘ Key
DBMS Column
Operational Data Model DEMS Table DBV Table
Copyright 2005, Whitemarsh Information Systems Corporation »| Secondary Key & Secondary
All Rights Reserved DBMS Column Key

06/01/2005

Figure 39. Meta model for the operational data model.

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved
82

W

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

The meta entity groups within this meta model are:

° Meta Category Value Types and Meta Category Values (upper left)

° Data Element Domains and VValue Domains, Data Elements and VValue Domains
(middle)
° Schema, table and column including SQL data type (lower middle to left)

° Database, DBMS, DBMS schema, DBMS table, and DBMS column (middle
right)

° DBMS Column primary and foreign key structures (lower right)

The first three groups should already be valued if the process of creating the operational data
model is proceeding from specified to implemented and now operational data models. While it is
possible to begin only with operational databases and to proceed inductively to enterprise
database, the road will likely be longer and more difficult.

Most likely, organizations will begin the journey to enterprise database in a both top-
down and bottom-up fashion. That is, top-down from missions to database domains to database
objects and then to specified data models for one or more subordinate mission areas such as
finance, human resources, inventory, sales, distribution, and customers. Then, as this effort
proceeds, existing operational databases can be fed—bottom-up--through the reverse engineering
process to create the realistic portrayals that must be present to give implemented databases a
real rather than a theoretic existence.

As stated in the section on the implemented data model and in the section above, the
purpose and intent of a DBMS schema along with its attendant DBMS tables and DBMS
columns is to represent a database that is operational on some technology dependent platform.
That is, through some DBMS and on a particular computer. If a human resources schema is
implemented under a DBMSs on three platforms, for example, MVS, Unix, and Windows/NT,
then there would be three different sets of DBMS Schemas, DBMS Tables, and DBMS Columns.

This three data model strategy is illustrated in Figure 40. In this figure, a specified data
model is depicted with its four subject areas and a partial set of entities are shown. In this
specified data model, none of the entities from the different subject areas interrelated. These
entities are then stylistically combined into one implemented data model that supports sales and
marketing. To achieve this, additional tables and relationships would have to be created. Finally,
this single Sales and Marketing database is transformed into three different operational
databases, one with all the data for the enterprise, one to serve the Canadian telecommunications
network for the enterprise with only Canadian data and possibly data transformations to serve
Canadian currency and metic measures, and finally, a whole series of very small databases that
would be a downloaded at least once a week to every salesperson to support their weekly sales
plan and activities.

Supporting this three data model strategy would have to be operational original data
capture data architecture databases that would provide the data for all four subject areas. These

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 83

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

original data capture databases might be on different platforms as well and operate under
different COTS packages. Once the data is collected it would be pushed to TDSA databases and
then pulled by possibly the mainframe version of the Sales and Marketing database application
which might be a subject area database. Finally, the two operational sales and marketing
databases, one for Canada and the others for each sales staff would likely be retail data

warehouse databases (also known as data marts).

The operational data model DBMS tables and DBMS columns that belong to a DBMS

schema can be created through:

o Forward engineering
° Original creation
° Reverse engineering
Human Customer Product Organization
Resources

Cust
Location

Des-

criptions

\ Employee

Specified Data Model's
Subject Areas and Entities

Operational Data Models

Sales & Marketing

» | Database for Mainframes
via IBM's DB2

Sales & Marketing
» | Database for Canada via

Sa]e§ Marketing
Statistics
Class- —
ification Yy Ware-
houses
l l Y
Implemented Cust i
Data Model Location ‘ Sales\'v'm;etlng ‘
Ware- Cust Class- Emplovee
houses ification ploy
Sales
Statistics
Prod Prod
Inventory Descriptions

Oracle

Sales & Marketing
> Database for Sales Staff

via PC Anywhere

Figure 40. Relationship among Specified, Implemented and Operational Data Models

Copyright 2006, Whitemarsh Information Systems Corporation
“ ’ Proprietary Data, All Rights Reserved
W/

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

7.1 Forward Engineering

When the DBMS schema and its attendant DBMS tables and DBMS columns is forward-
engineered from an implemented data model, the result represents one and only one operational
data model, and is accomplished through the following steps:

DBMS schema creation

DBMS table creation

DBMS column adjustments

Relationships adjustments (that is, primary and foreign keys)

Prior to the start of the actual forward engineering, the database for which the DBMS schema is
created and the DBMS must be identified. These are accomplished through normal creation and
then selection screens.

7.1.1 DBMS Schema Creation

The DBMS schema is created through the normal process of creating the metadata record and
DBMS schema through a data modeler add screen. Since the DBMS schema exists within the
context of a database and a DBMS, both must exist prior to the development of the DBMS
schema.

Database represents the overall domain of all the DBMS tables, columns, and
relationships. As such there could be more than one different DBMS schema for a particular
database. Since each set of DBMS schema, DBMS tables, DBMS columns and relationships are
to represent the same database, the differences between the different sets could be attributed to
editions or evolutions. To assist in tracking the evolution, the date of last update is visible along
with a meta attribute for version. These are present in the meta entity, DBMS schema. A
metabase process permits the bulk copying of the meta entity instances for metadata under the
domain of a DBMS schema from which a new DBMS schema version can be created. This is
illustrated in Figure 41. Reporting the changes from one version to the next is provided from the
vantage point of the DBMS schema.

Also supported is the concept of having one single database, such as a human resources
subject area database that is implemented through three different DBMSs because each DBMS
schema (and associated DBMS tables, columns and relationships) are to be implemented on
different computing platforms. This is illustrated in Figure 40.

7.1.2 DBMS Table Creation

The process of creating the DBMS tables consists of employing the add screen to create the
DBMS tables for the DBMS schema. This is done by selecting tables from within a list of
implemented data models. The tables within an implemented data model are listed by schema

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 85

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

DBMS
Schema

h A

Database DBMS
| |
Y
DBMS
Schema 3
DBMS
Y Schema
DBMS
Tables
Y
DBMS
Y Tables
DBMS
Columns
Y
DBMS
Columns

DBMS
Tables

h A

DBMS
Columns

DBMS
Schema

Y

DBMS
Tables

Y

DBMS

Columns

Figure 41. Multiple versions for a particular operational data model DBMS schema and
supporting metadata within the domain of a particular database and DBMS.

and are interrelated by primary and foreign keys. If a table is selected for inclusion, a list of all
tables related through primary and foreign keys is presented. When the apex of a set of related
tables is tagged, all tables related to that table are automatically included within the DBMS
schema. This creates a series of DBMS table families.

As a DBMS table is included in a DBMS schema, all the DBMS columns are included
automatically. In addition, the intersection records between a DBMS column of a DBMS table
and the DBMS column of the related DBMS table are also created.

When an operational data model is created there may be several DBMS data types that
have been chosen for the implemented data model that may not be available the DBMS that is to

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
W

\

Iﬂ!

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

“host” the operational database. In this case, the data type for the DBMS column is set to
“unknown.” The report on the forward engineering process documents any data type
transformations that are not possible. Some of the transformations will require the addition of
different data structures within the operational data model. For example an ANSI SQL.:1999 data
type, array, may require an entirely new table within the operational data model to represent the
multiple values from the array. A significantly greater sophistication would be required for other
ANSI SQL:1999 data types such as row type, REF, and user defined types.

The ability to construct operational data models from implemented data models has the
same flexibility as creating implemented data models from specified data models. That is, one or
more implemented data model tables can be combined into any one operational data model table.
Or any one implemented data model table can be brought into more than one operational data
model table. Section 6.1.2 provides a good example of the flexibility.

7.1.3 DBMS Table Maintenance

Once an initial set of DBMS tables and DBMS columns are created, through forward
engineering, DBMS tables may result with some columns that have “unknown” data types. This
means that the DBMS did not “understand” the data type for the column from the implemented
data model. Analysis must be undertaken to understand the actual intent of the intended data
type. Several cases can occur:

° A DBMS column needs to be transformed into a new DBMS table

° A DBMS column contains a substructure that needs to be transformed into
multiple DBMS tables

In the case where a DBMS column needs to be transformed into a new DBMS table, as would be
the case for the array data type, the new DBMS table must contain the primary key of the DBMS
table that originally contained the array column. The primary key must also be supplemented
with a sequence number as elements of an array are to be ordered by the sequence in which the
values are entered rather than by an ordering based on the value of the array’s element. Finally,
the new table should finally contain the column that represented the array’s element. Figure 42
illustrates the transformation process that represents the “before” and the “after” of this effort. In
this example, the array column of Nicknames is on the left and the newly created table for
Nicknames is on the right.

In the case where a DBMS column contains a user defined type that represents nested
data structures such a hobbies within dependents of an employee, then two additional tables must
be created: dependents and hobbies. The primary key for dependents must be the primary key
from employee plus an appropriate additional column to identify the dependent. The primary key
for hobbies must be the primary key for dependents plus additional columns to then uniquely
identify the hobbies. To accomplish both these implemented to operational data model
transformations, original creation activities (described below) must be accomplished. Once these
original creation activities are complete, the “offending” columns that were marked as having

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\l l

IA! 87

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Employee
Table
Employee
Table
—» Employee Id ‘
Nicknames Nicknames Dependents
Array Table Table
Address v
Group Hobbies
Table
—»| Dependents
L» Hobbies
ANSI SQL:1999 Employee Table ANSI SQL:1992 Employee Table

Figure 42. SQL:1999 DBMS Column transformations that may be required
to accommodate SQL:1992 DBMSs.

“unknown” data types must be removed. This is accomplished within the column maintenance
section that follows. Figure 42 also illustrates the transformation process that represents the
“before” and the “after” of this effort. In this example, the dependents and hobbies within the
dependents is on the left and the newly created table for Dependents and Hobbies is on the right.

7.1.4 DBMS Column Maintenance
Column maintenance within forward engineering should consist solely of one or more DBMS
column deletions as either the column is an acceptable data type match, or it requires the original

creation of new DBMS tables with columns to “flatten out” the SQL:1999 column based data
structures.

7.1.5 Key Support

The keys supported in the operational data model are:

° Primary
° Foreign

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 88

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

° Candidate, and
° Secondary

Primary, foreign, and candidate keys are the same as in the implemented data model. Secondary
keys are keys where the unique value is not required. These keys are intended to directly support
the index capability of most DBMSs. There should be no maintenance of primary and foreign
keys. The only work in this area should be in support of the creation of new primary and foreign
keys.

7.2 Original Creation

The original creation of DBMS tables and DBMS columns may be required because of
“unknown” data types resulting when an implemented data model is forward engineered into an
operational data model involves these steps:

° DBMS table creation
° DBMS column adjustments

° Relating DBMS columns within DBMS tables to columns within tables of the
implemented data model

° Relationship creation (that is, primary and foreign keys)

7.2.1 DBMS Table Creation

A DBMS table is created through the normal process of creating the metadata record, DBMS
table. Since DBMS schema acts as a foreign key, the names for all DBMS schemas is provided
for selection.

7.2.2 DBMS Column Creation

The process of creating a DBMS column within a DBMS table is similar to that of creating a
column within an table. Once a table is identified, the task of creating DBMS columns starts. In
the case of an implemented data model, this task is accomplished by tagging a data element and
pressing a build button. At that point, the column is automatically created. In this particular case,
this is not possible because every DBMS column first maps to an implemented data model table
column, which in turn maps to a data element. Consequently, the column creation screen will
present a set of tables and contained columns. The column that should be chosen should be the
one that is the source of the transformation from the ANSI SQL:1999 data type that cannot be

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 89

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

mapped. This way, the semantics will be properly allocated. The data type of the new DBMS
column will still have to be chosen.

For example, if the implemented data model table Employee contained an array data type
column, Nicknames, then the newly created DBMS table is Employee Nicknames, the data type
for the new DBMS column, Nickname, should also be character. The transformation process is
illustrated in Figure 42.

Because of this strategy of mapping the newly created DBMS column to the appropriate
and already existing table column, then the semantics that are automatically inherited are:

Data element domain and value restrictions that are related to the column

Data element and value restrictions that are related to the column

Data element’s business domain that are related to the column

Data use meta category value types and values associated with the data element
Schema of a table

Table

Column of the table

Attribute of the column

All these DBMS column semantics are present solely because of the already defined semantic
instances from other meta tables. There’s been no keying of any additional data. In addition to all
these inherited semantics, all the definition fragments associated with these meta table types are
employed to provide a full definition of the DBMS column. The sum total of all the inherited
semantics are those contain in both Figures 23, 35 and 37.

7.2.3 Key Support
The keys supported in the operational data model are:

° Primary

° Foreign

° Candidate, and
° Secondary

Primary, foreign, and candidate keys are the same as in the implemented data model. Secondary
keys are keys where the unique value is not required. These keys are intended to directly support
the index capability of most DBMSs. There are two classes primary keys. The collective value
from each class represents a unique value, which when used to select a row of data from a
DBMS table results in only one row of data. The two primary key classes are:

° Surrogate key column
° Business column set

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 90

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

7.25.1 Primary Keys

Since the primary keys are to be related to those of existing tables, such as the creation of the
nicknames table for an already existing employee, the first choice for a primary key should either
be a surrogate key or one that contains the DBMS columns from the “parent” DBMS table plus
what every other new column is necessary to construct a proper primary key.

7.25.2 Foreign Keys

Again, since the foreign keys are to be the primary keys from the “parent” table of the newly
created table, the choice is simple and straight forward.

7.2.5.3 Referential Integrity

In the case of data structures that are resulting from transformed columns, the only proper
referential integrity actions should be cascade delete. That is because, if the column did not have
to be transformed, then when the “parent” row was deleted, the contained column values would
be deleted. Hence, the only logical referential integrity action is cascade delete.

Because of the cascade delete referential integrity action, the produced relationship
stories will all be for the “must be” variety.

7.3 Reverse Engineering

The purpose of reverse engineering within the operational data model of the Whitemarsh data
modeler is to import a SQL DDL command file for a particular DBMS that was:

° Created manually
° Already being used by a DBMS,
° Generated by a CASE tool such as ERwin

° Generated by an application development environment such as Clarion for
Windows.

If all the critical statements within the file are correctly processed the metadata appropriate for
DBMS schema, DBMS tables, DBMS columns, and relationships is created. If the DDL file
cannot be acceptably processed, then no metadata is created. Finally, a report is produced that
indicates the action taken on the input file on a command line by command line basis.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 91

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

The DBMS schema and its attendant DBMS tables and DBMS columns are created
through the following:

DBMS identification

Database identification

External file identification

DBMS schema creation

DBMS table creation

DBMS column creation

Relationship creation (that is, primary and foreign keys)

Relating DBMS columns within DBMS tables to DBMS columns within entities

The first two steps are accomplished through normal add or select screens. The steps, DBMS
schema creation through DBMS column creation, are accomplished automatically by the
metabase operational data model reverse engineering software.

The last step is accomplished manually and is the most important step because it enables
enterprise wide semantics. Through this step, no matter in which DBMS table a DBMS column
resides, its semantics are mapped first to the implemented data models, then to specified data
models, and finally through the implemented data model to the data elements. Supplementing all
these mappings are the allocated meta category value type and meta category values and the
multiple layers of value domains.

7.3.1 DBMS identification

The particular DBMS that governs the processing of the SQL command file must be selected.
Once selected, this activates the appropriate processing for the different lines within the
command file. A report from the data modeler indicated which types of command file lines are
able to be processed for each different DBMS.

7.3.2 Database Identification

The name and description of the database for which the SQL DDL is to be analyzed and
configured into the metadata appropriate for an operational data model is entered through a
normal metabase update screen.

7.3.3 External File Identification

A normal file name selection dialog permits the identification of the SQL DDL command file to
be processed.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 92

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

7.3.3 DBMS Schema Creation through Relationship Creation

Once the import button is pressed, the command lines from the external file are processed one by
one. The command lines must be in proper order. That is, the schema line first, then a series of
command line sets for table, column, and relationships. As each command line is processed, the
appropriate metadata is created for DBMS schema, DBMS table, DBMS column, and DBMS
relationships (that is, primary and foreign keys).

7.3.4 Mapping DBMS Columns of DBMS tables to Columns of Tables

The final step of operational data model DBMS column creation is the mapping back to the
specified data model column of a table. This is done through the process of tagging. In this case,
since a table column may be related to multiple DBMS columns across multiple DBMS tables,
the upper-left window of the intersection record screen has the schema, table, and column as the
information in the upper left intersection record screen. In the right window, the data that
appears is the DBMS schema, DBMS table and DBMS column. The process consists of going
through the specified data model table columns until the proper one is found. It is then tagged.
Then, the DBMS schema, DBMS tables and DBMS columns are traversed until the appropriate
DBMS column is found. It is then tagged. If there are any more DBMS columns to be related to
the tagged specified data model table column then these DBMS columns are tagged as well.
Once all DBMS columns are tagged for the specified data model table column, the Build button
is pressed. Intersection records are then built.

The reason why DBMS columns of DBMS tables are “manually” related to columns of
tables is because the advanced data structure capabilities of SQL:1999 may not have been
implemented in every DBMS that is to host a database. In these cases, this arbitrary mapping is
necessary.

While it is clearly possible to create DBMS columns without relating them to specified
data model table columns, such actions should be considered as professional malpractice. The
metabase supports the production of reports that identify all DBMS columns that are not related
to specified data model table columns. As stated previously, if these type of relationships had
existed prior to the *“Y2K?” crisis, it probably would not have been a “crisis.” Rather, “Y2K”
would have been just another software maintenance event.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 93

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

7.4 DBMS Column Value Domains

The DBMS column value domains are similar to those of column value domains. They are
extensions and possible subsets. In the case of the DBMS column, Hourly Salary, which is a
specified data model table column within the semantic scope of the data element salary, which in
turn is within the scope of the data element domain, compensation, the value domain for Hourly
Salary must be within that of Salary. Figure 43 presents the next level of value domains, that is
the value domain that would address Hour Wage.

Age vaoue Domain Schema
[Human
Ll Resources
lJ Database DBMS
Years
Data Element
- Y Table
1 -1,000,000 Human Oracle
Value Domain Age Employee Resources DBMS
Human Resources DBMS
> Schema for Schema
Oracle V8
Years

A

Column

1-1,000,000
Value Domain » Employee | DBMS
Table
Value Age at
Domain Hire DBMS
» 16-65 Column
DBMS
» 18-55 Column Value
Domain

Figure 43. Hierarchy of value domains from data element value domain through DBMS
column value domain.

Copyright 2006, Whitemarsh Information Systems Corporation

\ Proprietary Data, All Rights Reserved
\AY 4

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

7.5 Operational Data Model DDL and Graphics

The data modeler, via the data model tree menu selection, supports a graphical tree-rendition of a
data model. You can also cause the creation of an ASCII text file SQL data definition language if
the selected specified data model.

The first graphic is presented immediately within the window as a graphical tree. In these
graphic trees, the targeted root DBMS table upon which the dynamically created tree is based, is
colored black, descendent entities are colored blue, the ancestor DBMS tables are red and sub-
typed DBMS tables are cyan. As each DBMS table is highlighted in the data model tree, all the
columns and keys are presented in “surrounding” list windows.

The SQL data definition file contains two different types of data models: DBMS schema
based and highlighted DBMS table based. DBMS schema based data models contain all related
DBMS tables for which the highlighted DBMS schema is the parent. Highlighted DBMS table
based data models are the collection of DBMS tables that are related to the specific highlighted
table within the specific DBMS schema of the highlighted DBMS table. In the highlighted
DBMS table based data model, all direct ancestors and all direct descendants are produced. No
“cousins” are produced.

The SQL data definition language file is able to be shipped to a SQL DBMS engine and
compiled.

7.5 Operational Data Model Summary

As stated at the start of the operational data model section, the operational data model is not only
DBMS specific, it is also targeted to a specific operating environment. If the only set of data
models that an enterprise retains are those that reflect the operating DBMSs, then there will be
no context independent business semantics from which the business can be understood and
changed.

As clearly shown in Figure 40, there can be three operational data models, each with a
somewhat different design due to DBMS characteristics and performance requirements for every
database. Additionally the data models contained in the data structures within the specified data
models could appear in multiple implemented and operational data models.

Because most enterprises do not define, interrelate and track the different deployments of
the same set of business semantics they do not really have any control over the most valuable
resource, information.

Operational data models are created through three avenues: forward engineering, original
creation (due to capabilities that may be missing in certain DBMSs) and reverse engineering.
Most often, the enterprises will employ a combination of top-down and bottom-up techniques.
Top-down from techniques drive from missions to database domains to database objects and then
to specified data models for one or more subordinate mission areas such as finance, human
resources, inventory, sales, distribution, and customers.

Bottom up techniques proceed via reverse engineering to create the realistic portrayals
necessary to give implemented databases a real rather than a theoretic existence. Once the top-
down and bottom-up are joined, enterprise database begins to emerge.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 95

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

What may seem to be an inordinate amount of work in order to achieve enterprise
database is really not. The model building strategy of the Whitemarsh data modeler ensures that
there is maximum reuse of already defined business based semantics through automatic copy and
tagging techniques.

7.6 View Data Model

The view data model is where the “rubber meets the road.” If there were nothing but
unimplemented data models there never would have been a Y2K problem. It was only because
data models were created, implemented, and maintained in an unintegrated and non-enterprise-
wide manner that the Y2K problem became the multi-hundred-billion dollar waste of corporate
resources that it is.

It is not that data is specified wrong that is the “real” problem. It’s that it’s not known
where the data is operating, under what systems, computers, and operating systems, and within
which DBMSs or other file access methods that is the source of the real problem. If the data
location was known in any efficient way then it could be fixed efficiently.

Finally, once the data is brought within the domain of a computer program it may be
consigned to local program variables that transform and change it, and then possibly write the
data back out to other computer-based files. While there is nothing within the Whitemarsh
metabase data modeler that can “see inside” computer programs, the application view data model
can track data use to the “door” of the application. That is, the SQL view that may exist between
the operational database and the application system.

The meta model for the application view data model is provided in Figure 44. As can be
seen from this figure, almost all the meta entities are shaded. The view and view column meta
entities are not shaded and the data represented by them is created by loading ANSI SQL views.
The other four meta entities that are not shaded are intersection records between view column
and other shaded meta entities. These intersection record meta entities are created through
normal tagging and intersection record build buttons. The view model also support relating one
or more view columns of one view to one or more view columns of a different view.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 96

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Business

Information

EE

Compound Data
Element
Structure Type

System]

Meta Category
Compound Data
Value Type Eplement
Classification ﬁ Structure

Business
Information
System & View

Meta Category

I L

v

View Column &
Compound Data
Element

Value Type
Compound Data
Compound Data Element &
Element Derived Data
Element
4
Meta Category
Value
Derived Data
A Element
Data Element & Busingss
Meta Category Domain
Value
A
Column & Meta Data Element
Category Value

SQL Data
Type

Table]

Y

DBMS Schema

B

e

l—l

View

'

View Column

View Column &
Derived Data
Element

View Column -

Structure

—

View Column &
DBMS Column

LDBMS Table

A

View Column
Structure Type

View Column
Structure
Process

Yy

View Data Model

Column

DBMS Column

Figure 44. View meta model data model.

A

Copyright 2000, Whitemarsh Information Systems Corporation,

All Rights Reserved
12/10/2001

Copyright 2006, Whitemarsh Information Systems Corporation

W

97

Proprietary Data, All Rights Reserved

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

8.0 Summary and Conclusions

The approach described in this book is simply this: create a re-usable cache of semantic rich data
elements and then use that cache to support:

° The definition of database columns,

° The interrelationship of the defined columns through the data element metadata,
and

° Both forward engineering of new databases and reverse engineering of existing
databases.

The approach to creating a re-usable cache of data elements begins with the adoption of a data
element definition that fosters reuse. That is, a data element is a context independent business
fact semantic template. But how does it become that? It does when the data element represents
an amalgamation of familiar concepts expressed as single words brought together under a single
name and then represented as a value. The value is not the data element, the collection of
semantics is. The value is merely a discrete value-based alternative representation of the
semantics.

Critical to reusing the underlying data element concepts that form the semantics of a data
element is a metadata model that exists within a repository type database. Finally, since all data
elements are not just elementary atomic fact templates, both compound facts, and derived facts
must be represented. Full name, and age are common examples.

Putting all this together into a single data element meta model is depicted in Figure 14.
While an enterprise could develop this data element meta model into a single data element
metadata repository, it is neither critical nor practical. After all, if the ideal is reached, that is all
the metadata is defined once, stored once and then used throughout the enterprise, and if that
metadata repository suffers a catastrophic disaster then conceivably all IS development and
maintenance would cease. While some might argue that humanity would be better off, it is not
appropriate to either advance or refute such arguments.

If the enterprise supports a distributed metadata repository environment, then
sophisticated distributed DBMS synchronization concepts would have to be employed. Shared
for certain would be the certain of the meta models that are identified below, such as semantic
hierarchies and data elements, and specified data models at least at the subject level.

Once implemented, if data element metadata resides solely within the confines of a
metadata repository as opposed to being employed within a complete CASE (both lower and
upper) environment, the benefits of the data element metadata will be greatly limited. In short,
the more “active” the data element metadata is, the greater its positive effect on the goal of
achieving enterprise-wide data standardization. Figure 45 presents an integrated environment in
which data element metadata is integrated within a CASE-Repository environment. Within this
environment there are the following submodels:

° Data Semantics

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
‘ ‘

\

lﬁ! 98

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

@ntral" Semantics &

Data Element
Standardization

Semantics
Hierarchies

Derived and Compound
Data Element Structures

> 1

Data Element Domains
Data Elements

BN

/‘v
— 75// Data Admin,

Specified
Data Models

Database Admin &
Systems Devel.

Functional
Data
Admistrators
_ Y,

Implemented

\

View Data Models

7

Data Models

Operational
Data Models

N—

_

Figure 45. Integration of semantics and data element model with other essential to
enterprise-wide data standardization models.

Data Elements

These six models and their inferred data represent the executed policy of the IT organization of

Specified Data Model
Implemented Data Model
Operational Data Model
Application View Model

the enterprise with respect to data metadata. If key data metadata is not defined, collected or is
not able to be properly employed in the efficient and effective development, use, and

maintenance of databases and information systems then blame should squarely lay at the feet of

data administration, database administration, and subject matter functional experts.

There are many other meta models besides these six that comprise full IT systems
development. Collectively these six and the other meta models should form the complete
metadata repository that is at the heart of a completely integrated CASE (Computer Aided

System Engineering) environment. If all these meta models are fully defined and integrated into
the critical path of information technology then productivity and quality will increase, and costs
and risk will decrease to such an extent that the overall cost of building such environments will

be negative

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
W

\

Iﬂ!

99

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

8.1 Semantic Hierarchies and Data Element Model

The semantic hierarchy and data element meta model database should be a data administration
project. That is, it should be their responsibility to determine requirements, build the database
design, specify and possibly implement the data element metadata repository subsystem, to
develop training, documentation, and to assist users in its proper use as they work to achieve
enterprise-wide data standardization. The other meta models that are described below should be
a joint responsibility of data administration, database administration, and subject matter
functional experts.

The semantic hierarchy and data element models are essential first models to be built and
implemented because flowing out of these models is the ability to achieve enterprise-wide data
standardization, and the ability to “see” where data sharing can occur.

8.2 Specified Data Models

The specified data model represents a first step in achieving data standardization in support of
enterprise-wide database. That is, the creation of data model templates. These represent
commonly used collections of entities, attributes, and relationships that are organized by subject
areas.

Each entity is a coherent policy-based collection of attributes that are in at least third
normal form so as to guarantee policy based homogeneity. Data elements map to the attributes
across and within these specified data model templates.

Semantic hierarchies from the data element meta model in Figure 14 are mapped to
attributes that more precisely define the semantics within the attributes of their containing
entities. The semantics of the attributes must, of course, represent a subset of the semantics
previously assigned to the data elements.

Specified data models are not database designs. Its paradigm is subject, entity, attribute.
Relationships connect various entities, and can related entities across subject areas. These
models are best accomplished by functional data administrators or experts. These specified data
models are then available to database designers as they employ these data model templates to
create implemented databases.

The specified data model attributes are quickly created through the identification of one
or more data elements that are to be the semantic templates for attributes within entities. The
inherited semantics from the hierarchies of meta category value types, meta category values, data
element domains, data elements, and entity subject areas hierarchies all contribute critical
components to the semantics of an attribute. Attribute definitions can be completely automatic
through the definition fragments that are immediately available from the attribute’s inherited
semantics.

In the case where a data element is associated with more than one attribute in an entity as
would be the case for home-, office_, cell_, and fax_telephone_number, the ability to create a
local name and even a local definition is present. Available, of course are all the already
inherited semantics.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
W
A -

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Because of these work saving assists, creating a specified data model is an effort that is
characterized by:

° Significantly shorter times to create entities because of all the inherited semantics

° Lowered risk because when things are the same they will be semantically defined
the same

° Increased quality because there will be more time for important semantic

component parts

° Increased productivity because the process of creating the specified data model
can be accomplished by functional experts rather than just data administration
staff.

8.3 Implemented Data Models

Database data models exist in two necessary forms: DBMS independent and DBMS dependent.
Both these models are needed because databases that are actually deployed may have table
designs changed to meet the needs of different DBMSs, operating systems, data architecture
classes, or computer hardware capacities. In such cases, the “real” database design is not
intrinsically changed, just deployed differently. Consequently, the DBMS independent database
designs are needed.

Independent database data models are thus database data model templates for operational
database data models deployed across the enterprise. The triple of the implemented data model
are schema, table, and column. Data elements are mapped to columns. Attributes are mapped to
the columns. Semantic hierarchies mapped to columns give a more precise layer of semantic
subsetting of the attributes and in turn of the data elements that are mapped to the columns. A
database is thus a collection of tables of columns that map to attributes of entities. Attributes
from more than one entity may map to columns of a single table.

A table then is not necessarily a homogeneous set of attributes within a policy based
entity as would be the case in a well designed specified data model entity, but may be artificially
contrived to meet the needs of a particular data architecture class such as original data collection,
Transaction Data Staging Area (TDSA), subject area database, data warehouses (wholesale or
retail), or reference tables.

The implemented data model is distinct from the specified data model. It may merely be
the technology dependent transformation of a collection of entities from within the specified data
model whereby subject areas, entities, and attributes serve as data structure templates for tables
and columns within an implemented database. The implemented data model may also represent a
stand alone database design that has not been mapped to the specified data model. That of course
is not recommended. The implemented data model may have a multiple subject-area scope and
thus may represent interrelated collections of entities, attributes and relationships from the
different subject areas.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
W
A o

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Another key difference is that tables within the implemented data model are able to
belong to database objects, while, in the specified data model, entities are merely standard data
structures that are able to be deployed as tables (possibly within database object classes) of a
particular database.

A key value of the implemented data model is to convey a COTS (commercial off the
shelf) package vendor’s data model in a form that is understood by the rest of the enterprise. If
TDSA data architecture databases are built with push-data from the COTS package, then
downstream pull-database applications, such as subject area databases and data warehouse
databases, can be built.

The implemented database’s main purpose and is to represent a database that is to be
implemented on some technology dependent platform. That is, through one or more DBMSs and
one or more specific computers. If a human resources schema is implemented under a SQL
DBMS on three different platforms, for example, MVS, Unix, and Windows/NT, then while
there would be only one Schema (and tables and columns), there would be three different sets of
DBMS Schemas, DBMS Tables, and DBMS Columns.

The greatest benefit from this approach to the development of the implemented data
model is the ability to employ predefined semantics from the specified data model. That is, from
subject areas, entities, attributes, data elements, meta category value types, and meta category
values. After a period of time, this approach should enable enterprises to develop entirely new
schemas, tables, columns, etc., with a minimum of original effort. The data architecture classes
that benefit most are subject area databases, wholesale and retail (data mart) databases, and
TDSA databases. Original data capture and reference data databases benefit the least from this
approach as these databases are the source of the majority of data structures and semantics for
the enterprise.

8.4 Operational Data Models

DBMS data models for the operational set of schemas that exist within specific hardware,
operating systems, and DBMSs. The triple here is DBMS schema, DBMS table, and DBMS
column. DBMSs columns are mapped to columns from the implemented data model tables.
Because of the divergence of DBMS vendor implementations of SQL standards because of
different performance characteristics of operation systems and hardware, there may be different
operational data model variations of the same implemented data model.

As stated at the outset of this section, the operational data model is not only DBMS
specific, it is also targeted to a specific operating environment. If the only set of data models that
an enterprise retains are those that reflect the operating DBMSs, then there will be no context
independent business semantics from which the business can be understood and changed.

Thus, there can be multiple operational data models, each with a somewhat different
design due to DBMS characteristics and performance requirements for every database.
Additionally the data models contained in the data structures within the specified data models
could appear in multiple implemented and operational data models.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
W
A i~

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Because most enterprises do not define, interrelate and track the different deployments of
the same set of business semantics they do not really have any control over the most valuable
resource, information.

Operational data models are created through three avenues: forward engineering, original
creation (due to capabilities that may be missing in certain DBMSs) and reverse engineering.
Most often, the enterprises will employ a combination of top-down and bottom-up techniques.

Bottom up techniques proceed via reverse engineering to create the realistic portrayals
necessary to give implemented databases a real rather than a theoretic existence. Once the top-
down and bottom-up are joined, enterprise database begins to emerge.

What may seem to be an inordinate amount of work in order to achieve enterprise
database is really not. The model building strategy described in this approach ensures that there
is maximum reuse of already defined business based.

8.5 View Data Models

Application view data models, that is, view models that interface the operational data models to
the database applications consist of views and their view columns with the associated hierarchies
of joins and selects to give applications a flat “record set” for processing. Included in the views
are rename clauses and on-the-fly calculations. View elements map to DBMS columns and as
appropriate compound data elements and derived data elements.

8.6 Approach Summary

Data elements mapped through attributes of the specified data model and/or through columns of
the implemented data model enable fact based semantic homonyms regardless of name changes.
Semantic hierarchies that are attached to data elements, which in turn are mapped to attributes or
columns enable the identification of semantic homogeneous or related context dependent
business facts that exist ultimately as DBMS columns.

Data elements form the semantic templates that can be employed to control the semantics
of attributes within specified data model entities. This saves great time in specifying attributes
and also enables rapid where-used reports across entities of different subject areas.

Specified data model templates, in turn, serve as templates for complete or partial tables
within the design of databases. This too saves resources in specifying database tables, and
because the data elements are, by inheritance, mapped to the database table columns, where-
used reports across tables from different schemas can be produced. And, because implemented
data models are mapped to specified data models through the mapping of columns to attributes,
cross reference subject, entity, and attribute reports can be produced.

Implemented data model collections of schemas, tables, and columns can finally be
employed to deploy different operational data models. Different operational data models may be
needed to accommodate different DBMS-based database designs that had to be created as a
consequence of difference in hardware configurations, operating/system differences, and in the
different types of data models that are able to be created by any given DBMS.

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
W
A o

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

To complete the process, DBMS data model columns are mapped to application view
columns to thus enable the full complement of IT staff to understand which business information
systems are collecting, reporting, and updating enterprise business facts.

The complete integration of these models, that is, semantic hierarchies, data elements,
specified data models, implemented data models, operational data models and application view
models finally gives enterprises the metadata through which integrated, shareable, enterprise-
wide data standardization can be achieved.

The strategy for researching, identifying, defining, and deploying data elements within an
enterprise can be highly efficient. It is fundamentally based on the premise that enterprises have
a finite set of business facts that are used over and over in different contexts and computing
environments. That this assertion is true is supported by the examples in this book.

While the sensibility of this approach is intuitive, and widely recognized, it is almost
never employed. That is because the approach for data element metadata development has been
isolated into stand-alone repositories and not integrated within a CASE environment through
which the benefits of “define-once use many times” can be realized. Without wide deployment
and without CASE integration, isolated data element repositories have almost always fallen out
of favor, and in times of financial distress, have been difficult to support and are often
discontinued. Given that prior proponents of such projects are then identified as having wasted
scarce corporate resources, future proponents of such projects are seen as being foolhardy at the
very minimum.

Make no mistake, however, the benefits have always been present, but seldom realized
due to poor implementation and integration strategies. Thus, properly designed and implemented
meta data, CASE-based, repository projects have always been justifiable. The implementation
costs from such projects, if implemented through pre-existing designs, CASE and code
generators are commonly returned on the first use project.

A key determining characteristic as to whether your organization has implemented an
environment that leads to enterprise-wide data standardization is just not the existence of a data
element registry, but the existence of a use environment that parallels the other data meta models
such as Specified, Implemented, Operational, and Application View. Without these other data
meta models the inventory of data elements will essentially be the same as the inventory of
columns. You will not have achieved the 20-30 to 1 ratio between columns and data elements.
Rather, if you have 50,000 columns you will probably have about 30,000 data elements. The
reason for the difference in quantities is that you are 20,000 “data element” definitions behind in
your work. By the time that recognition occurs, you will probably then realize that for every
database of 1500 column that comes into existence you now have an additional set of 1500 data
elements to define. Not a “pretty picture.” In short, the faster you go, the “behinder you get.”

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
W
A o

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Appendix 1
Referential Integrity Actions

Referential Integrity and Actions

Selected
Referential
Integrity
Action

Target of
Referential
Integrity
Action

If the
specified
referential
action is

Then the Referential Action Consequence is

On Update

Parent

No action

Referential integrity is not checked. If a
relationship error is caused, it remains.

Restrict

If there is an attempt to change a parent’s primary
key from one value to another value that does not
already exist, then

CASE: if there are already existing children that
already have that intended new value then the
attempt to change the parent’s primary key value
is rejected.

CASE: if there are no children then the change to
the parent’s primary key value is allowed.

If there is an attempt to change a primary key
value from one value to another and if the
intended new primary key value already exists, the
change request is rejected on its face as duplicate
primary keys are not allowed.

Cascade

If there is an attempt to change a parent’s primary
key from one value to a different value, then

CASE: if the intended new primary key value
does not exist, then the corresponding old values
that exist in the child records are changed to the
intended new value.

CASE: if the intended new primary value already
exists then the update of the primary key value of
the parent is rejected on its face as duplicate
primary keys are not allowed.

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

105

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Referential Integrity and Actions

Selected
Referential
Integrity
Action

Target of
Referential
Integrity
Action

If the
specified
referential

action is Then the Referential Action Consequence is

Set Default | If there is an attempt to change a parent’s primary

key from one value to a different value, then

CASE: if the intended new primary key value
does not exist, the corresponding old values that
exist in the child records are changed to the
default value established for that column.

CASE: if the intended new primary value already
exists then the update of the primary key value of
the parent is rejected on its face as duplicate
primary keys are not allowed.

Set Null If there is an attempt to change a parent’s primary

key from one value to a different value, then

CASE: if the intended new primary key value
does not exist, the corresponding old values that
exist in the child records are changed to the ZERO
or Null value.

CASE: if the intended new primary value already
exists then the update of the primary key value of
the parent is rejected on its face as duplicate
primary keys are not allowed.

Child

No action | Referential integrity is not checked. If a

relationship error is caused, it remains.

Restrict If the intended new value in the foreign key of the
child does not exist as a primary key value of

some parent record then the update is rejected.

Cascade not applicable

Copyright 2006, Whitemarsh Information Systems Corporation

Proprietary Data, All Rights Reserved
106

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Referential Integrity and Actions

Selected
Referential
Integrity
Action

Target of
Referential
Integrity
Action

If the
specified
referential
action is

Then the Referential Action Consequence is

Set Default

If the intended new value in the foreign key of the
child does not exist as a primary key value of
some parent then the foreign key value of the child
is set to the default value established for that
column.

Set Null

If the intended new value in the foreign key of the
child does not exist as a primary key value of
some parent then the foreign key value of the child
is set to Zero or to Null.

On Delete

Parent

No action

Referential integrity is not checked. The parent
record is deleted and the child records are left with
erroneous references to the non-existent parent.

Restrict

If there are any child records that have the primary
key value of the parent as their foreign key value,
then the request to delete the parent record is
rejected.

Cascade

If there are any child records that have the primary
key value of the parent as their foreign key value,
then these are deleted at the same time the parent
record is deleted.

Set Default

If there are any child records that have the primary
key value of the parent as their foreign key value,
then the foreign key value in the child records is
set to the default value established for that
column.

Set Null

If there are any child records that have the primary
key value of the parent as their foreign key value,
then the foreign key value in the child records is
set to ZERO or to Null.

Child

No action

Not applicable

Restrict

Not applicable

Copyright 2006, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

107

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Referential Integrity and Actions

Selected Target of If the

Referential | Referential | specified

Integrity Integrity referential

Action Action action is Then the Referential Action Consequence is
Cascade Not applicable
Set Default | Not applicable
Set Null Not applicable

Copyright 2006, Whitemarsh Information Systems Corporation

Proprietary Data, All Rights Reserved
108

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

Index
American National Standards Institute i 8
ANSIL 6, 8, 11-14, 16, 56, 64, 69, 70, 87, 89, 96
ANSISQL ... e 6, 11-13, 56, 64, 69, 70, 87, 89, 96
ANSI SQL:1999 . .. 6, 64, 69, 70, 87, 89
Architecture i, vil, 6, 7, 13-15, 18, 22, 38, 56, 57, 71, 72, 79-81, 83, 101, 102
ASS B T ON . ot 1, 35,104
BINAINg e 20,72
BUSINESS BVENt . . .o 5
BUSINESS FUNCLION ... o e e e e e e 5
Business Information Systems vii, 5, 40, 104
BUSINESS POIICY ..o 5,40
Call Level Interfacet e e 12
COBO L . 4,9
COD ASY L .ot 69

Column . 2, 3,6, 8-10, 14, 18, 19, 22, 27, 29, 30, 35, 44, 45, 53, 56-60, 62-74, 77-79, 81-83, 85-
94, 96, 101, 102, 104, 106, 107

Compound data element 32-34
Concatenated KeYot 46
Concept of OPerationst i, vii, 15
L0 11 o 41
Data administration i 10, 55, 70, 81, 99-101
Data Architecture 6, 7,13, 14, 18, 38, 56, 57, 71, 72, 79-81, 83, 101, 102

Data element 1, 2, 4, 6, 8-10, 14, 21, 22, 24-27, 29-35, 37, 38, 40, 42, 44, 45, 48, 51-54, 58, 59,
66-68, 71, 72, 74, 75, 78, 79, 81, 83, 89, 90, 94, 98-100, 104

Dataelementdomain i 29, 30, 42, 44, 67, 72,90, 94
Data element Nameot 22,45, 68
Data Elements ... 1,2,4,5,8,9, 11, 14, 15, 18, 21, 24, 26, 29, 31-36, 38, 40, 42, 45, 51-54, 56,
58, 66, 81, 83, 92, 98-104

Datafile .. 8
Data INtEgrIY . .. oo 12,33
Data INtegrity rUle . ..o 33
Data Loadingc.i i e 8

Data Models . . vii, 1, 4-8, 11-15, 27, 30, 37, 38, 45, 54, 56, 57, 59, 70, 71, 78-80, 82-85, 87, 92,
95, 96, 98, 100-104

Data Semantics vii, 4, 6, 8, 15, 17, 19, 23, 34, 37, 38, 57, 59, 71, 81, 98
Data Standardization 1,2,4-6,9, 13, 14, 19, 35, 36, 48, 98-100, 104
Data Structure 6, 10, 18, 19, 32, 54, 57, 69, 80, 93, 101
Datatype ..., 10, 21, 22, 31, 44, 54, 58, 64, 67, 69, 78, 83, 87-90
Database Management Systemt e 1,6
Database ObjeCt 5, 13,57, 102
DBMS . 1,4,6,8,9,11, 12, 14,18, 21, 27, 29, 30, 37, 45, 48, 51, 54, 56, 57, 59, 72, 80-95, 98,

101-104

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
W
A o

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

DBMScolumn 6, 8,9, 27, 29, 45, 56, 57, 83, 85-90, 92-94, 102
DBMSschemac i 6, 57, 72, 83-86, 89, 91-93, 95, 102
DBMStable ... 6,9, 27, 57, 83, 85-87, 89-93, 95, 102
Derived datat 24, 33, 35, 103
Derived data element 33
Domain . vii, 1, 9, 10, 24-27, 29, 30, 35, 42, 44, 51, 52, 56, 57, 65, 67, 69, 72, 79, 85, 86, 90, 94,

96

Enterprise . . vii, 1, 2, 4, 6, 8, 13, 14, 17, 22, 23, 26, 33, 35, 37, 40, 46, 56, 57, 66, 70, 71, 73, 79,
81-83, 92, 95, 96, 98-104

E X Ot L 99
File ... 4,6,8,9, 13, 24, 35, 37,54, 57, 64, 79, 80, 91-93, 95, 96
Foreignkey 8,9, 38, 46, 48-51, 53, 58, 62-66, 72, 73, 75-78, 83, 89, 106, 107
Form............ 4,12, 23, 26, 29, 42, 45, 46, 51, 56, 57, 60, 70, 73, 81, 82, 98-100, 102, 103
Hierarchy 17, 18, 20-22, 38, 40, 44, 59, 80, 94, 100

Implemented data model . 5,6, 8,9, 15, 16, 27, 35, 37, 53, 56-61, 65, 69, 72, 73, 78-81, 83, 85-
87, 89, 90, 92, 99, 101-103

INfOrmMatioN SYSteM 5
SO L 8,25
JOD 5
Knowledge WoOrKer 4,5
Knowledge Worker Framework 4,5
Life CyCle . . 40
MaD o 38, 46, 57, 58, 73, 82, 100, 101, 103
Meta Models e 98-100, 104
Metabase i, vii, 2,4, 12-14, 16, 23, 24, 40, 42, 48, 50, 56, 65, 66, 72, 77, 85, 92, 93, 96
Metadata . . 1, 8-13, 30, 34, 35, 40, 48, 59, 62, 64, 66, 75, 76, 79, 85, 86, 89, 91-93, 98-100, 104
Metadata REPOSItOrYt 9, 12, 30, 98-100
M BtIIC . .ot e 31
MISSION .« . 5, 35, 40, 83, 95
Multivalued dependencCyt 46
@]] = S 5, 13, 57, 69, 102
OB C . 12
Operating SYSteMSot e 12,96, 101, 102
Operational data model 5,6, 8, 13, 15, 27, 35, 38, 56, 57, 72, 78, 79, 82-93, 95, 99, 102
Operational Data StOreot 56, 81
Ordered ...t 69, 87
Organizationo it vii, 1, 5, 8, 14, 40, 43, 44, 67, 99, 104
Primarykey 45-51, 53, 62-65, 72, 73, 75-78, 87, 90, 91, 105-107
Project ... 6, 33, 35, 36, 46-50, 60, 62-65, 73, 75-77, 100, 104
Project Managementt 60, 62, 65
RECUISIVE ..ttt 17,48, 75
Reference Datat 7,18, 56, 81, 82, 102
Referential integrity i 9, 50, 51, 60, 77, 91, 105-107
REPOIt . . 9,10, 23, 24,64, 73, 78, 82, 87, 91, 92

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
W
A e

Whitemarash Metrabase: Dato Modeler Architecture & Conceppt of Operations

REPOSITOY ..o e 9,12, 30, 98-100, 104
RESOUICE . . o 5,40, 95, 103
Role ... vii, 21, 22, 29, 44, 46-50, 60, 62, 63, 75-77
ROW 4,18, 45, 51, 69, 70, 72, 87, 90, 91
SC 32 8
Schema........ 6, 8,9, 11, 12, 54, 56-60, 62, 64-67, 70-72, 78, 79, 81-86, 89-93, 95, 101, 102
SCreeN . 9, 10, 31, 35, 42, 59, 66, 67, 70, 85, 89, 92, 93

Semantics vii, 2,4-6, 8,9, 11, 13-15, 17-24, 26, 29-31, 33, 34, 37, 38, 40, 42-44, 48, 53, 54,
56, 57, 59, 66-71, 73, 77-79, 81, 82, 89, 90, 92, 95, 96, 98-103

Specified data model . 5, 6, 8, 15, 27, 37-39, 45, 46, 52-57, 59, 60, 65, 69, 71-73, 75, 78-81, 83,
93-95, 99-103

SQL ...2,6,8,11-14, 16, 31, 35, 38, 54, 56-59, 64, 67, 69, 70, 78-81, 83, 87-89, 91-93, 95, 96,

102
SOL:IL092 . . 88
SQL:1999 e 6, 8, 13, 31, 57, 64, 69, 70, 87-89, 93
Staff .. 6, 12, 35, 36, 55, 70, 84, 101, 104
Table .. ii,1,2,6,8-11, 18, 24, 27, 29, 31, 35, 45, 46, 50, 51, 53, 56-73, 75-80, 83, 85-95, 101-

103
Third normal form 12, 46, 56, 73, 82, 100
TIME CRAIgES . o\ttt e e e 77
USBE ot vii, 11, 18, 21, 22, 40, 64, 65, 69, 87
ValUB SBES . 24
Warehouse Databases i 79, 81, 82, 84, 102
WG L 8

Proprietary Data, All Rights Reserved

m Copyright 2006, Whitemarsh Information Systems Corporation
W
A »

