
Great News,
The Relational Data Model is Dead !

Whitemarsh Information Systems Corporation
2008 Althea Lane

Bowie, Maryland 20716
 Tele: 301-249-1142

Email: mmgorman@wiscorp.com
Web: www.wiscorp.com

Great News, The Relational Data Model Is Dead !

Copyright 1998, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

ii

Table of Contents

1. Introduction . 1

2. What Is a Data Model . 1
2.1 Record Structures . 2
2.2 Relationships . 2

2.2.1 DBMS Defined and Controlled Relationships . 3
2.2.2 Shared Data Value Relationships . 4
2.2.2 Comparative Performance . 5

2.3 Operations . 6
2.4 Data Model Summary . 6

3. The Four Data Models . 7

4. The SQL Language . 11

5. Data Models and the SQL Language . 12

6. SQL:1999 Language . 13
6.1 Foundation Components . 13
6.2 Call Level Interface . 14
6.3 SQL/Multi Media (MM) Components . 15
6.4 SQL Persistent Stored Module Language Components . 15
6.5 SQL Transaction and Connection Management . 15

7. SQL:1999's Impact on the Relational Data Model . 16

8. SQL:1999's Impact on Database Applications . 17

Great News, The Relational Data Model Is Dead !

Copyright 1998, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

1

1. Introduction

Great news, the relational data model is dead! Well, not completely. It’s that the relational data model,
as we all know it through its linguistic expression, the SQL language, has been “dramatically extended”
by the ANSI H2 Technical Committee on Database. The most interesting part of this “dramatic
extension” into what is now called SQL:1999, is that it has taken the SQL data model clearly into the
past, and then beyond. That is, to embrace the data model of a production class of database
management systems (DBMSs) that predate the first “discovery” of the relational data model. To
understand why these “dramatic extensions” take the SQL data model clearly into the past, this paper
presents:

! An overview of data models,

! The four data models and the identification of the DBMSs that adhere to these data
models,

! The SQL language,

! Data models and the SQL language,
,

! The SQL:1999 language,

! SQL:1999's impacts on the relational data model, and

! SQL:1999's impacts of SQL:1999 on database applications.

2. What Is a Data Model

A data model consists of three main components:

! Record Structures
! Relationships
! Operations

Great News, The Relational Data Model Is Dead !

Copyright 1998, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

2

2.1 Record Structures

A record structure (in relational terms, a table) represents a set of data fields (in relational terms, a
column). There are several classes of data fields. These include:

! Single Value–where each field represents a single value such as Birthdate with the value
11/11/1987

! Multi-value–where each field represents multiple values such as Nicknames with values
“Buddy, Guy, Mac”

! Groups–where each field has subfields to represent single-set of values such as
Address with Street-1, Street-2, City, State, Zip

! Repeating Groups–where each field has subfields to represent multi-sets of values such
as Dependents that contains subfields, Dependent Name, Dependent Birth date,
Dependent SSN.

! Nested Repeating Groups–where each field has subfields to represent multi-sets of
values such as Hobby (Hobby Name, Hobby Description, Hobby Annual Cost) within
each multi-set field, Dependent, that also contains single value fields such as Dependent
Name, Dependent Birth Date, Dependent SSN that is within the Employee table that
also contains single-valued fields, Employee SSN, Employee birth-date, etc.

2.2 Relationships

The second part of a data model is relationships. Relationships are explicit linguistic expressions that
defines the basis for interrelating records from different types of record structures. Relationships among
values of multi-valued fields, instances of repeating groups, and instances of nested repeating groups
within record structures are implicit and are completely controlled by the DBMS. The eight types of
relationships that manage the relationships between records from different record structures are:

! One-to-one: Two record structures representing the partitioning of a single record
structure into two parts, for example, dividing a record structure of 400 columns into
two 200 column sets.

Great News, The Relational Data Model Is Dead !

Copyright 1998, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

3

! One-to-many (single member): One record structure with one instance and another
record structure with multiple instances, for example, employee and job skills

! One-to-many (multiple members): One record structure with one instance and more
than one other record structures, each with multiple instances, for example, territory
and then salesman and customers.

! Many-to-many: One record structure with multiple instances related another record
structure with multiple instances. For example, the relationship that would exist between
multiple owners of multiple automobiles.

! Singular, single member: One record structure with multiple instances. For example, top
rated employees

! Singular, multiple member: Multiple record structures with multiple instances. For
example, current employees, high achievers, full-time employees, part-time employees,
and retired-employees.

! Inferential: Multiple record structures with multiple instances such that the relationship is
not explicitly based on shared values. For example, an employee is assigned to a
department, and four buildings are designated as containing employees of that
department. The inferential relationship is the one between the employee and the
buildings that infers that an employee may be in one or more buildings, but does not
explicitly identify which building.

! Recursive: One record structure with multiple instances that are interrelated
hierarchically. For example, organization unit which contains organization units, each of
which contain organization units, etc.

The relationship mechanisms exist either 1) as separately defined and controlled DBMS “pointer”
mechanisms, or 2) as shared data field values that reside within different record structures that are
defined through normal database design techniques and whose data values are completely controlled
through end-user application program logic.

2.2.1 DBMS Defined and Controlled Relationships

Great News, The Relational Data Model Is Dead !

Copyright 1998, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

4

Figure 1. Multiple Relationships between Department
and Employee

Relationship mechanisms are generally stored by DBMSs in one of two places: In the “source” (also
called the “owner”) data record of the relationship (or possibly in a separate structure just for
relationships), or in the “target” (also called the “member”) data record of the relationship. In this paper
the terms “owner” and “member” are employed.

Many DBMSs that support DBMS defined and controlled relationship processing, maintain
four types of relationship pointers: owner, member, next, and prior. The owner pointer enables access
of the owner data record of a relationship. The member relationship mechanism enables an owner
record to access the first member of a given relationship. Member data records contain “prior” and
“next”relationship mechanisms in a given data record with respect to either the “prior” or the “next”
record in a set of records that form a given relationship. Finally, if member data records are ordered
with respect to the owner data record then that order is maintained via member relationship
mechanisms.

For example, there may be an overarching relationship between a department and its
employees. There then may also be other relationships for current, full-time, hi-achievers, part time and
retired employees. Figure 1 shows the record structures and these relationships between them.

Most of the DBMSs that support pointer-based relationships permit any reasonable quantity of
different relationships between a given owner and sets of members. Some DBMSs store all member
relationship mechanisms of a given owner-member relationship in the owner record. This technique
supports quick counts of members for a given owner and also quick access to a specific member.

2.2.2 Shared Data Value Relationships

Great News, The Relational Data Model Is Dead !

Copyright 1998, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

5

Figure 2. Relational tables necessary for multiple relationships between
Department and Employee

The second form of relationships, shared data values, most often takes on the form of a shared data
value that is the primary key value of the owner data record stored as a foreign key value in one or
more member data records. This member data field is called a foreign key because it is properly a field
from the owner data record.

When the owner data record is needed, the foreign key’s data value is used by the DBMS to
select the owner data record. When all the member data records related to a specific owner data
record are desired, the foreign key value is used to select all the member data records. These accesses
are most commonly accomplished through the use of indexes.

If multiple relationships are needed between an owner record and a set of members then there
must be a different field within the member data record to represent each relationship. For example,
there would have to be different fields for current, full-time, hi-achievers, part time, and retired
employees. Such a technique generally makes for bad database design, however. To make a “good”
database design, several more database record structures have to be created. Figure 2 shows the four
different record structures that have to be defined to create these relationships.

2.2.2 Comparative Performance

DBMSs that employ DBMS defined and controlled relationship mechanisms that store member pointer
arrays in the owner record, or that store next, prior, and owner pointers in the member data records
usually retrieve and traverse data much faster than those DBMSs that only support shared field value
relationship processing mechanisms that are based on primary and foreign keys.

Great News, The Relational Data Model Is Dead !

Copyright 1998, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

6

The DBMS defined and controlled relationship mechanism DBMSs, however, take longer to
load and update data records because in addition to updating data records, their relationship
mechanisms have to be updated as well. These DBMSs also take longer to accomplish database
reorganizations when relationships between data records have to change.

In contrast, the shared-value relationship DBMSs can load and update data records faster as all
relationship processing (save enforced referential integrity) is deferred until retrieval. Retrieval
processing is generally slower as significant computer processing is expended to reassemble report
records that exist in the database within separate normalized tables.

2.3 Operations

The third part of a data model is operations. Here, there are two types: Record structure operations
and relationship operations. Record operations include the traditional ones of Add, Delete, and Modify.
Relationship operations are of two classes and depend directly on whether the relationship mechanisms
are DBMS defined and controlled, that is, member pointer arrays stored in the owner record, or are
next, prior, and owner pointers stored in the member data records, or are shared value-based, that is,
primary and foreign keys.

The choice of relationship implementation gives rise to two different styles of operations:
record-at-a-time, or a multi-set of selected records. Record-at-a-time implies that the user’s program
navigates through the database and employs operations such as GET OWNER, GET NEXT, and GET
MEMBER to accomplish the traversal. The set relationship operations are founded mainly on
mathematical set operations upon selected sets of records. Included are PROJECT, DIVIDE, JOIN
INTERSECTION and UNION. As DBMSs implemented these set processing operations they
provides either explicit syntax or syntax support.

2.4 Data Model Summary

These three data model components, record structure, relationships, and operations, in combination,
form a DBMS’s data model. Different DBMS vendors, over the years have employed different
combinations of techniques from these three data model components to form a particular style. These
styles, when coupled with the vendor’s special language for data structure definition, data loading,
query, report writing, and other features give rise to particular DBMSs.

Until ANSI standardized the SQL language, DBMS vendors had no stable and non-proprietary
target, nor incentive to either directly implement the facilities implied by the standard SQL language or
to map their DBMS facilities to those needed by the SQL language. Within about 5 years after the
standardization of the SQL language, DBMS vendors recognized that while they may not have had

Great News, The Relational Data Model Is Dead !

Copyright 1998, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

7

explicit implementations, they could create mappings to DBMS engine facilities such that users could
employ the SQL language to both define and access databases. This gave those vendors a real
advantage as they could both support their legacy DBMS applications and also those applications that
were defined exclusively through the ANSI standard SQL language.

Great News, The Relational Data Model Is Dead !

Copyright 1998, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

8

3. The Four Data Models

DBMSs from the various vendors have implemented different combinations of characteristics from the
data models presented in Section 2. From the late 1960s through the late 1980s, there was an attempt
to standardize DBMSs that conformed to the network data model through the organization called
CODASYL (Committee on Data Systems and Languages). The documents produced by the
CODASYL DDLC (data definition language committee) were called Journals of Development. They
were not, however, ANSI standards. Thus, vendors adhered to these JODs “spiritually.”

DBMSs that conform at least “spiritually” to the CODASYL JODs are called CODASYL
DBMSs. The relationships shown in Figure 1, for example, hi-achievers are called CODASYL sets.
The relationships supported by CODASYL DBMSs are:

! One-to-one
! One-to-many (single member)
! One-to-many (multiple members).
! Singular, single member
! Singular, multiple member

The member data records belonging to these relationships are able to ordered and these orderings are
automatically maintained by the DBMS.

Because there were neither ANSI standards nor conformance tests during this 1955-1970
time-frame to judge adherence to standards, every DBMS was somewhat different. Notwithstanding,
four general data models arose. Figure 3 presents the key characteristics of the four data models. This
figure shows the four data models as the columns and the three main characteristics, that is, record
structures, relationships, and operations as the rows of this table. Figure 4 presents the lexicon for the
abbreviations in Figure 3.

During the first 15 years of DBMS (1955 through 1970) the three data models were:

! Network
! Hierarchical
! Independent logical file

The network and hierarchical data models are characterized by complex record structures, that contain:

! Single Value
! Multi-value
! Groups
! Repeating Groups

Great News, The Relational Data Model Is Dead !

Copyright 1998, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

9

Figure 3. The four data models most commonly present in DBMSs.

! Nested Repeating Groups

Great News, The Relational Data Model Is Dead !

Copyright 1998, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

10

Record
Organization

SV = Single Value

MV = Multiple Value

MD = Multiple Dimension

G = Group

Operations

Record

A = Add

D = Delete

M = Modify

P = Project

F = Find

Relationship

C = Connect DIS = Disconnect

P = Project J = Join

DIV = Divide GO = Get Owner

GM = Get Member GN = Get Next

INT = Intersection PR = Product

UN = Union DIF = Difference

Figure 4. Lexicon for Figure 3

Great News, The Relational Data Model Is Dead !

Copyright 1998, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

11

Network data model DBMSs generally support explicit relationships between records structures such
that a member data record can be related to more than one owner data record. In contrast, a
hierarchical data model DBMS only allows a relationship between one or more members and a owner
data record. IBM’s IMS created facilities to simulate networks through a concept called “logical
twins.”

In all the network and hierarchical DBMSs, the relationship mechanisms between data records
are through DBMS generated and controlled pointers.

Independent logical file data model DBMSs support value-based primary and foreign key
relationships between data records. The record structures allow the definition of naturally existing
hierarchical data structures. In addition, some independent logical file DBMSs permit outer references
from within a record structure to other record structures within the same database. This enables both
many-to-many and inferential relationships.

Once network and hierarchical database designs are stabilized, processing is very fast. While
relationship processing between data records is slower for independent logical file DBMSs, their
database designs are more flexible and can be redesigned more easily and quickly.

The relational data model was proposed in 1970 and the first relational DBMSs entered
production status by the end of the 1970s. Today, relational DBMSs such as Oracle, Sybase, Informix,
DB/2 and SQL Server are the most commonly found DBMSs in business, government and industry. As
proposed in 1970, relational data model DBMSs only support single valued fields and relationships
between tables are shared data value-based primary and foreign keys.

Relational DBMSs are the most flexible of all the four data model DBMSs with respect to three
features:

! The ability to change relationships quickly and easily. For example, a new data record
can be added and related to existing data records through shared data values. There is
no massive database reorganization effort.

! The ability to hypothesize previously unknown relationships. For example, if there is a
need to relate the persons with an MA degree with students born in MA (i.e.,
Massachusetts), the query language directly supports the expression of the relationship
which is then processed.

! The ability to evolve database designs from a few data records to many data records in
an incremental way.

Great News, The Relational Data Model Is Dead !

Copyright 1998, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

12

Once a relational database’s design is mature, however, the very features that make it the most flexible
also makes it the slowest when compared to DBMSs conforming to the other three data models. To
compensate for this lack of speed, relational DBMS vendors have, over the years, created for example,
very sophisticated index mechanisms, buffer management techniques, and data record clustering to
physically group data records from different types together.

Figure 5 presents an enumeration of DBMSs by data models. In this figure, the dates relate to
the earliest appearance of one or more of the DBMSs in a production status with one or more clients.

The main differences among data models are in the area of record structures and relationships.
In the network, hierarchical, and independent logical file data models, data that naturally exists within
nested structures can be explicitly defined. In contrast, in the relational data model, each record
structure can only be a set of single valued fields. Thus, if there are naturally existing nested data
structures then for each,

! A separate record structure must be defined
! A complete primary key must be specified
! Foreign keys for each relationship must be specified

Some relational data model DBMSs maintain each record structure as a separate physical file
with all the associated computer resource overheads. Other relational data model DBMSs permit one
or more of the separate record structures to be contained within a single physical file. While relational
purists may assert that there is some great theoretic need for all this extra work and overhead, there are
certainly no database or application compelling reasons to completely separate naturally existing data
hierarchies into distinct relational tables. The cost of doing so is manifest in the extra computers,
application development and human resources necessary to create, process, and maintain them, and
these extra costs do not compare favorably with the derived benefits.

Great News, The Relational Data Model Is Dead !

Copyright 1998, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

13

Data Models

Network
(mid 1960s)

Hierarchy
(early 1960s)

Independent
Logical File
(late 1960s)

Relational
(late 1970s)

Typical
systems

Supra
IDMS/R
IDS
DMS-2
DMS-1100
VAX/DBMS

System 2000

IMS

Inquire
Adabas
GIM family
Nomad
Focus
Ramis
CA/Datacom
Model 204

DB/2
CA/ingress
Oracle
Sybase
Informix
SQL/server

Governing
ANSI standard

ANSI-NDL ANSI-
SQL:1999

ANSI-SQL/86
ANSI-SQL/89
ANSI-SQL/92

Figure 5. DBMSs by Data Model and Governing ANSI Standard

4. The SQL Language

The SQL language, originally known as the structured query language, was developed to support the
relational data model. The language was created by IBM in the early 1970s. Ultimately, the language
was made public domain by IBM and was then standardized by the ANSI NCITS (National
Committee for Information Technology Standards) H2 Committee on Database in 1986. Note: H2
stands for nothing, it’s just the committee’s “primary key.” The SQL language consists of the following
main components:

! Database and data record structure definition including relationship integrity
specification, and views.

Great News, The Relational Data Model Is Dead !

Copyright 1998, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

14

! Data record operations for insert, update and delete, and relationship operations that
accomplish JOIN, PROJECT, DIVIDE, INTERSECTION, and DIFFERENCE.

! Data record selection operations from a single data record or through nested
subqueries to then select shared data value related data records.

! Privacy definition and control

! Concurrent update and retrieval data control

! Transaction processing

Because the SQL language is commonly employed through traditional programming languages like
COBOL, SQL contains record-at-a-time processing commands, that is, cursor operations, that
operate against selected sets of records.

The SQL language was first standardized in 1986. The basis for forming the standard was to
standardize only those facilities that the vendor-members of the H2 committee could agree upon.
Simply, the goal of the standard was to fix a base-line of established practice. From 1986 through to
the next standard, 1989, other features were standardized including referential integrity. Referential
integrity is an old concept and has been in CODASYL network systems since the late 1960s.

The next SQL standard was brought out in 1992. This was a major upgrade to the SQL
language. The extensions were mainly in integrity constraints, multiple-language support, transaction
processing, full referential integrity, and the like. The fundamental components of the underlying data
structures and relationship processing remained the same. That is, tables that contain only single-valued
fields.

Figure 6 presents a table that shows the incremental features above the basic capabilities
contained in SQL/86
5. Data Models and the SQL Language

By the time the SQL language became standardized by ANSI in 1986, several vendors, such as IBM
(DB/2), Oracle, Sybase, and Informix had become very popular. These DBMSs gained market share
against non-SQL DBMSs such as Cullinet’s IDMS, IBM’s IMS, Information Builder’s Focus, and
Software Ag’s Adabas. The non-SQL DBMS vendors were then under significant pressure to either
develop SQL language interfaces to their systems or completely transform their DBMSs to the
relational data model. In the next 10 years, these vendors created SQL interfaces. By the end of the
1980s, it had become very clear that database designers, programmers, and end users could employ
the SQL language to accomplish their activities without having a DBMS that was built on a strictly
relational database engine.

Great News, The Relational Data Model Is Dead !

Copyright 1998, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

15

SQL/1986 SQL/1989 SQL/1992

Basic features, that is SQL/1986 plus SQL/1989 plus

Tables
Columns
Views
Basic relational operations
Some integrity constraints
Language bindings to COBOL,
FORTRAN, C, etc.

Partial Referential Integrity Assertions
Bit data type
CASE
Character Sets
Connection Management
DATETIME
Domains
Dynamic SQL
Enhanced constraints
Full Referential Integrity
Get Diagnostics
Grouped operations
Information Schema
Multiple module support
National character sets
Natural joins (inner & outer)
Row & Table constraints
Schema manipulation
Subqueries in check clauses
Table constraints
Temporary tables
Transaction Management
Union and intersect

Figure 6. Features of SQL/86, 89 and 92

6. SQL:1999 Language

Starting in 1992, the H2 committee began the development of dramatic extensions to the SQL/92
standard. The greatest change in the standard is that it no longer adheres to the 1970 relational data
model. The second biggest change is that the SQL:1999 language now consists of individual parts that
comprise a foundation and then a series of independently specified packages. The remainder of this
section provides an overview, in outline form, of the contents of the SQL:1999 standard.

Great News, The Relational Data Model Is Dead !

Copyright 1998, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

16

6.1 Foundation Components

! Tables that have been enhanced to support new built-in data types (boolean,
enumerated, extensions to character sets, translations, and collations)

! BLOB and CLOB data types

! Abstract Data Types (user defined data type with behavior, an encapsulated internal
structure, and access characteristics of public, protected, or private)
Ç strong typing
Ç subtypes and inheritance
Ç encapsulation
Ç virtual attributes
Ç substitutability
Ç polymorphic routines
Ç dynamic binding
Ç compile time type checking
Ç value ADTs

! Array

! Row Types (table person (SSN, name(first, middle, last), address(street, city, state,
zip(four, five)))))

! User Defined Functions

! Predicate extensions (for all, for some, similar to, cursor extensions, null values,
assertions, view updatability, joins)

! Triggers
Ç Different triggering events, update, delete, and insert
Ç Optional condition
Ç Activation time: before and after
Ç Multiple statement action
Ç Several triggers per table
Ç User-defined ordering
Ç Condition and multiple statement action per each row or per statement

Great News, The Relational Data Model Is Dead !

Copyright 1998, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

17

! Roles (enhancements to security), & Savepoints

! Recursion

6.2 Call Level Interface

The SQL Call Level Interface is the set of language specifications used by DBMS vendors to enable
direct SQL engine access through completely specified call routines. Microsoft, for example has
implemented SQL/CLI and calls it ODBC.

The CLI specification contains more than 50 different call specifications that address:

! Connection control to SQL servers
! Allocate and de-allocate resource
! Execute SQL statements
! Obtain diagnostic information
! Control transaction termination
! Obtain information about implementation

It also contains Resource Management Handle routines for:

! Environment
! Connection
! Statement
! Context

The CLI also contains a Descriptor Area that accommodates:

! Application parameter
! Application row
! Implementation parameter
! Implementation row

6.3 SQL/Multi Media (MM) Components

Great News, The Relational Data Model Is Dead !

Copyright 1998, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

18

SQL/MM is itself a set of subparts that contain full specifications for a discrete set of data management
functionality to address the data processing needs of:

! Full Text
! Spatial
! General Purpose
! Still Image

6.4 SQL Persistent Stored Module Language Components

SQL:1999 now has a complete embedded programming language to support the processing needs of
its user defined data types, assertions, and triggers. The SQL/PSM language supports the following
capabilities:

! Call
! Return
! Compound Statements (Begin ... End)
! If Statements
! Case Statements
! Loop
! Repeat
! While
! For
! Leave
! Assignment
! Signal and Resignal

6.5 SQL Transaction and Connection Management

Since the advent of distributed processing, client-server, and of course the Internet, the ability to
manage transactions is critical. SQL:1999 now has facilities that address the following areas of
transaction and connection management:

! Start transaction
! Set transaction
! Test completion

Great News, The Relational Data Model Is Dead !

Copyright 1998, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

19

! Savepoint
! Release savepoint
! Commit
! Rollback
! Connect
! Set connection
! Disconnect statement

7. SQL:1999's Impact on the Relational Data Model

As can be seen from the list of capabilities presented in Section 6, SQL:1999 is no longer a simple
language for defining, accessing and managing tables consisting only of single valued columns of data.
With respect to the basic data model capabilities, the SQL:1999 language more closely supports the
independent logical file data model from the 1960s. It is therefore true to say that SQL:1999 is more of
an implementation of the independent logical file data model (e.g., Adabas, Inquire, Datacom/DB, and
Sybase) than of the 1970 relational data model.

SQL:1999 has, however, gone way beyond the capabilities of the independent logical file data
model by incorporating facilities such as user-defined types, embedded programming language, and
libraries of SQL:1999 defined routines for areas like full text management and spatial data. To say that
these SQL:1999 extensions are mere “extended interpretations” of the relational data model is like
saying that an intercontinental ballistic missile is merely an “extended interpretation” of a spear.

SQL:1999's impact on network and hierarchical data model DBMSs is significant. Network
data model DBMSs have traditionally allowed complex data record structures with arrays, groups,
repeating groups and nested repeating groups. A very unique characteristic of the SQL:1999 data
model is that it now allows arrays. In addition, the elements of the array are able to be outward
references to other data. Since the order of the elements in an SQL:1999 array is maintained by the
SQL:1999 DBMS, then the array, with its outward references, is essentially a CODASYL set. This is a
dramatic departure from the relational data model.

The only remaining and viable network DBMSs are IDMS by Computer Associates and
Oracle DBMS (formerly the VAX DBMS). Both have had an SQL language interface for about 10
years. How Computer Associates plans to take advantage of the existing IDMS facilities with
SQL:1999 is not known. A significant customer of Oracle’s DBMS (formerly Vax DBMS from DEC)
is Intel who uses the Consilium manufacturing package to manage computer chip manufacturing. How
the Oracle Corporation plans to take advantage of the existing VAX DBMS facilities with SQL:1999 is
also not known

Great News, The Relational Data Model Is Dead !

Copyright 1998, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

20

 The only two hierarchical DBMSs, System 2000 and IBM’s IMS will likely not be impacted at
all. System 2000 is no longer being advanced by SAS, and IBM has a full implementation of DB/2 on
many different operating systems.

SQL:1999's impact on independent logical file DBMSs, for example, Adabas, Focus, and
Datacom/DB is significant. These DBMSs already support many of the SQL:1999 data model facilities.
It would seem that these DBMSs could rapidly conform to the new SQL:1999 standard. If these
vendors embrace the SQL:1999 model, then these DBMSs could claim conformance sooner than the
existing set of relational DBMSs.

Simply stated, the SQL:1999 language defines a unique data model. It contains:

! The ability to model CODASYL sets,

! Many of the natural data clustering features of the hierarchical data model,
! Explicit many-to-many and inferential relationships like the independent logical file data

model, and finally,

! The unique ability to directly model recursive relationships.

It therefore can only be said that the SQL:1999 data model is unique unto itself. Clearly, it is not the
relational data model, CODASYL network, hierarchical, or independent logical file data models.
Simply, SQL:1999 is a data model unto itself.

8. SQL:1999's Impact on Database Applications

For the past 20 years, database designers and implementors have struggled with highly normalized
databases that perform poorly. The only solution is to denormalize by collapsing hierarchies of non-
redundant tables into a single flat table with replicated data. While these highly redundant collapsed
tables speed data reporting, it slows updating, and also becomes a significant risk for data integrity.
That is because the data is highly disbursed and is duplicated across these report-tuned denormalized
database structures that are commonly known as data warehouses. For all these reasons, most
organizations only allow reporting from data warehouse databases.

As DBMS vendors implement SQL:1999, the database design process will transform itself
from designing third normal table designs and then denormalizing these tables to enable cost effective
reports to a set of database design activities similar to the ones that were commonly performed in
database design efforts of the middle 1970s through the middle 1980s. There will have to be a greater
knowledge of the application’s processing to take advantage of the natural data structure hierarchies
now possible within SQL:1999 tables.

Great News, The Relational Data Model Is Dead !

Copyright 1998, Whitemarsh Information Systems Corporation
Proprietary Data, All Rights Reserved

21

While processing speeds will dramatically improve with SQL:1999 conforming DBMSs, the
effort and processing time effort required to accomplish database redesigns and reorganizations will
dramatically increase.

In short, we are returning to the past. That is, the data structures of the network and
independent logical file DBMSs. While we will see increased performance for well designed and highly
tuned databases, we will also see the return of significant designer and analyst time for database design
and redesigns.

Keith Hare of JCC Consulting (www.jcc.com), a long time member of H2 and a user of Vax
DBMS products put it best when he said, “With SQL:1999 you can get the best of both worlds and of
course, you can get the worst of both worlds. It is up to the database practitioners to do the right thing.”

