
Overview of SQL:2003Overview of SQL:2003

Krishna KulkarniKrishna Kulkarni

Silicon Valley LaboratorySilicon Valley Laboratory
IBM Corporation, San JoseIBM Corporation, San Jose
2003-11-062003-11-06

1

Outline of the talkOutline of the talk

Overview of SQL-2003

New features in SQL/Framework

New features in SQL/Foundation

New features in SQL/CLI

New features in SQL/PSM

New features in SQL/MED

New features in SQL/OLB

New features in SQL/Schemata

New features in SQL/JRT

Brief overview of SQL/XML

2

SQL:2003SQL:2003

Replacement for the current standard, SQL:1999.

FCD Editing completed in January 2003. New
International Standard expected by December 2003.

Bug fixes and enhancements to all 8 parts of
SQL:1999.

One new part (SQL/XML).

No changes to conformance requirements -
Products conforming to Core SQL:1999 should
conform automatically to Core SQL:2003.

3

SQL:2003 (contd.)SQL:2003 (contd.)

Structured as 9 parts:
Part 1: SQL/Framework

Part 2: SQL/Foundation

Part 3: SQL/CLI (Call-Level Interface)

Part 4: SQL/PSM (Persistent Stored Modules)

Part 9: SQL/MED (Management of External Data)

Part 10: SQL/OLB (Object Language Binding)

Part 11: SQL/Schemata

Part 13: SQL/JRT (Java Routines and Types)

Part 14: SQL/XML

Parts 5, 6, 7, 8, and 12 do not exist

4

Part 1: SQL/FrameworkPart 1: SQL/Framework

Structure of the standard and relationship between

various parts

Common definitions and concepts

Conformance requirements statement

Updates in SQL:2003/Framework reflect updates in

all other parts.

5

Part 2: SQL/FoundationPart 2: SQL/Foundation
The largest and the most important part

Specifies the "core" language

SQL:2003/Foundation includes all of
SQL:1999/Foundation (with lots of corrections) and
plus a number of new features

Predefined data types

Type constructors

DDL (data definition language) for creating, altering, and
dropping various persistent objects including tables, views,
user-defined types, and SQL-invoked routines.

Scalar and table expressions

Predicates

DML (data manipulation language) for retrieving and updating
persistent data

Host language bindings, dynamic SQL, and direct SQL
6

New Features in SQL/FoundationNew Features in SQL/Foundation

New data types
BIGINT

MULTISET

Extensions to existing data types
Unbounded ARRAY

Deletion of existing types
BIT

BIT VARYING

New schema objects
Sequence generators

7

New Features in SQL/Foundation New Features in SQL/Foundation
(contd.)(contd.)

Enhancements to existing schema objects
Identity columns for tables

Generated columns for tables

Major enhancements to CREATE TABLE LIKE

Base tables created from a query expression (aka Materialized
tables)

Retrospective check constraints

ALTER functionaity for Transforms

SQL-invoked routines with Invoker's rights

"Table" functions

Dynamic and schema statements inside routine bodies

8

New Features in SQL/Foundation New Features in SQL/Foundation
(contd.)(contd.)

New built-in scalar functions
LN (expr)

EXP (expr)

POWER (expr, expr)

SQRT (expr)

FLOOR (expr)

CEIL[ING] (expr)

WIDTH_BUCKET(expr, expr, expr, expr)

New one-argument aggregate functions
STDDEV_POP (expr)

STDDEV_SAMP (expr)

VAR_POP (expr)

VAR_SAMP (expr)

9

New Features in SQL/Foundation New Features in SQL/Foundation
(contd.)(contd.)

New two-argument aggegate functions
COVAR_POP (expr, expr)

COVAR_SAMP (expr, expr)

CORR (expr, expr)

REGR_SLOPE (expr, expr)

REGR_INTERCEPT (expr, expr)

REGR_COUNT (expr, expr)

REGR_R2 (expr, expr)

REGR_AVGX (expr, expr)

REGR_AVGY (expr, expr)

REGR_SXX (expr, expr)

REGR_SYY (expr, expr)

REGR_SXY (expr, expr)

10

New Features in SQL/Foundation New Features in SQL/Foundation
(contd.)(contd.)

New windowed table functions
RANK () OVER ...

DENSE_RANK () OVER ...

PERCENT_RANK () OVER ...

CUME_DIST () OVER ...

ROW_NUMBER () OVER ...

New inverse distribution functions
PERCENTILE_DISC (expr) WITHIN GROUP (ORDER BY <sort
specification list>)

PERCENTILE_CONT (expr) WITHIN GROUP (ORDER BY

<sort specification list>)

11

New Features in SQL/Foundation New Features in SQL/Foundation
(contd.)(contd.)

New hypothetical aggregate functions
RANK (expr, expr ...) WITHIN GROUP (ORDER BY <sort
specification list>)

DENSE_RANK (expr, expr ...) WITHIN GROUP (ORDER BY
<sort specification list>)

PERCENT_RANK (expr, expr ...) WITHIN GROUP (ORDER BY
<sort specification list>)

CUME_DIST (expr, expr ...) WITHIN GROUP (ORDER BY <sort

specification list>)

12

New Features in SQL/Foundation New Features in SQL/Foundation
(contd.)(contd.)

Extensions to scalar expressions
Extensions to CASE

Extensions to TREAT

Extensions to query expressions
Extensions to GROUP BY clause

WINDOW clause

TABLESAMPLE clause

Multiset expressions

Extensions to routine invocations
Untyped dynamic parameter arguments in routine invocations

Ability to qualify parameters with routine name inside routine
bodies

13

New Features in SQL/Foundation New Features in SQL/Foundation
(contd.)(contd.)

New Predicates
Multiset predicates

NORMALIZE

New DML statements

MERGE statement

SET COLLATION /SET NO COLLATION statement

Multiple column assignment

Nested savepoints

Improved diagnostic management

Enhancements to PREPARE statement

14

Sequence GeneratorsSequence Generators

Mechanism for automatic generation of sequential
values.

Two kinds:
External: Explicit schema object created via CREATE statement.

Internal: Implicitly created when an identity column is created.

Example:
CREATE SEQUENCE part_num AS INTEGER

START WITH 1
INCREMENT BY 1
MAXVALUE 100000
MINVALUE 1
CYCLE

15

Sequence Generators (contd.)Sequence Generators (contd.)

The data type of a sequence generator must be
exact numeric with scale 0. If unspecified, an
implementation-defined exact numeric type with
scale 0 is implicit.

If increment is not specified, then an increment of 1
is implicit.

If maximum value is not specified or if NO
MAXVALUE is specified, then an
implementation-defined maximum value is implicit.

If minimum value is not specified or if NO
MINVALUE is specified, then an
implementation-defined maximum value is implicit. 16

Sequence Generators (contd.)Sequence Generators (contd.)

The maximum value must be greater than the
minimum value.

If increment value is negative, then the sequence
generator is a descending sequence generator;
otherwise, it is an ascending sequence generator.

If start-value is not specified, then a start-value that
is equal to the implicit or explicit minimum value is
implicit for ascending sequence generators and a
start-value that is equal to the implicit or explicit
maximum value is implicit for descending sequence
generators.

17

Sequence Generators (contd.)Sequence Generators (contd.)

The start value must lie between the minimum and
maximum value.

Increment must not be 0.

If CYCLE or NO CYCLE is not specified, then NO
CYCLE is implicit.

Every sequence generator has a “current base value”

Set to the start value at the time of creation.

Generate next value of a sequence generator:
NEXT VALUE FOR seqname

(returns current base value + N * increment for some
N > 0)

18

Sequence Generators (contd.)Sequence Generators (contd.)

If next value > MAXVALUE (or < MINVALUE), then:

 If NO CYCLE was specified, raise an exception.

Otherwise, reset to MINVALUE (or MAXVALUE) and compute

new value for some N.

Examples:
INSERT INTO orders (orderno, custno)

VALUES (NEXT VALUE FOR my_seq, 123456);

UPDATE orders
SET orderno = NEXT VALUE FOR my_seq

WHERE orderno = 123456;

19

Sequence Generators (contd.)Sequence Generators (contd.)

All NEXT VALUE FOR expressions specifying the
same sequence generator within a single statement
evaluate to the same value for a given row.

Changes to the current base value of a sequence
generator are not under transaction control, so values
returned by NEXT VALUE FOR may have gaps.

ALTER statement can be used to alter the values of
increment, maximum value, minimum value, cycle
option or specify a new current base value.

ALTER SEQUENCE myseq
RESTART WITH 500
INCREMENT BY 2

DROP SEQUENCE statement drops a sequence
generator.

20

Identity columnsIdentity columns

At most one column of a base table can be
designated as an identity column.

Values for an identity column are assigned
automatically every time a row is inserted into such
tables.

An internal sequence generator is assumed to be
associated with every identity column (only
conceptually - no need for implementations to use
one).

Same options as those for sequence generators -
data type, start value, increment, maximum value,
minimum value, and cycle option.

21

Identity Columns (contd.)Identity Columns (contd.)

Example:
CREATE TABLE employees (

EMP_ID INTEGER

GENERATED ALWAYS AS IDENTITY

START WITH 100

INCREMENT 1

MINVALUE 100

NO MAXVALUE

NO CYCLE,

SALARY DECIMAL(7,2),

...)

22

Generated columnsGenerated columns

Any number of columns of a base table can be
designated as generated columns.

Each generated column must be associated with a
scalar expression. All column references in such
expressions must be to columns of the base table
containing that generated column.

If a type is specified for a generated column, it must
correspond to the type of expression. If unspecified,
column type is the type of expression.

Values for generated columns are computed and
assigned automatically every time a row is inserted
into such tables.

23

Generated columns (contd.)Generated columns (contd.)

Example:
CREATE TABLE EMPLOYEES (

EMP_ID INTEGER,
SALARY DECIMAL(7,2),
BONUS DECIMAL(7,2),
TOTAL_COMP GENERATED ALWAYS AS (

SALARY + BONUS),
HR_CLERK GENERATED ALWAYS AS (

CURRENT_USER)

)

24

Tables created from a queryTables created from a query

The definition and/or content of a base table can be
generated from a query expression.

"Materialized view" - refresh mechanism not
standardized yet.

Example:
CREATE TABLE T1 AS

(SELECT (C1+1) AS X, (C2+1) AS Y
 FROM T
 WHERE C1 = 1)

WITH DATA

If WITH NO DATA is specified, an empty table gets
created.

25

Table functionsTable functions

A SQL-invoked function whose return type is
MULTISET (ROW (...)).

Example of an external table function:
CREATE FUNCTION DOCMATCH
(VARCHAR(30),VARCHAR(255))

RETURNS TABLE(DOC_ID CHAR(16))
LANGUAGE C
NO SQL
DETERMINISTIC
EXTERNAL
PARAMETER STYLE SQL

26

Table functions (contd.)Table functions (contd.)

Example of a SQL table function:
CREATE FUNCTION DEPTEMPLOYEES

(DEPTNO CHAR(3))
 RETURNS TABLE (EMPNO CHAR(6),

NAME VARCHAR(40))
 READS SQL DATA
 DETERMINISTIC
 RETURN TABLE(SELECT EMPNO, NAME

 FROM EMPLOYEE
 WHERE

EMPLOYEE.WORKDEPT =

 DEPTEMPLOYEES.DEPTNO)

27

Table functions (contd.)Table functions (contd.)

Table functions can appear in FROM clauses and
other places where table references are allowed.

Example:
SELECT T.AUTHOR, T.DOCTEXT
FROM DOCS AS T,

TABLE(DOCMATCH('MATHEMATICS', 'ZORN''S
LEMMA')) AS F(DOC_ID)

WHERE T.DOCID = F.DOC_ID

28

BIGINT typeBIGINT type

Exact numeric, scale 0

Implementation-defined precision, but the precision

of BIGINT >= precision of INTEGER >= precision of

SMALLINT

Must have same radix as SMALLINT and INTEGER

All operations defined for values of INTEGER or

SMALLINT are also applicable for values of

BIGINT.

29

Multiset type constructorMultiset type constructor

SQL:1999 offered only one collection type
constructor: ARRAY

SQL:200x offers another collection type constructor:
MULTISET

Varying- length, unordered collections of element
having specified type

No syntax to specify maximum cardinality

Example:
CREATE TABLE (

C1 INTEGER,
C2 INTEGER MULTISET,
C3 ROW (F1 INT, F2 INT) MULTISET)

30

Multiset value constructorMultiset value constructor

Constructing an empty multiset

 MULTISET ()

Element type determined by the context

Multiset constructed by explicit enumeration of
elements:

MULTISET(2, 3, 5, 7)

Multiset constructed from the result of a query:

MULTISET(SELECT col1
 FROM tbl1
 WHERE col2 > 10)

31

Multiset operationsMultiset operations

CARDINALITY (value1)
Type of value1 must be multiset

Returns number of elements in value1

SET (value1)
Type of value1 must be multiset

Returns value1 with duplicate elements removed

ELEMENT (value1)
Type of value1 must be multiset

Cardinality of value1 must be 1

Returns the single element in value1

32

Multiset operations (contd.) Multiset operations (contd.)

UNNEST(value1) AS corr- name

Type of value1 must be multiset

“ Unnests” value1 and turns the elements into rows of a virtual
table

Example:
SELECT SUM (t.c)
FROM UNNEST (MULTISET (2, 3, 5, 7)) AS t(c)

produces the following result:
17

33

Multiset operations (contd.)Multiset operations (contd.)

value1 MULTISET setop quantifier value2

Type of value1 and value2 must be multiset

setop — UNION or EXCEPT or INTERSECT

quantifier — ALL or DISTINCT

ALL is the default quantifier

Example:
SELECT col1

MULTISET INTERSECT DISTINCT col2
FROM tbl1
WHERE CARDINALITY(col2) > 50

Close analogs to ordinary set operators UNION ,
EXCEPT, and INTERSECT

34

Multiset operations (contd.)Multiset operations (contd.)

One new aggregate function that produces a value
of multiset type:

COLLECT

Transform the values in a group into a multiset

Two new aggregate functions on columns of
multiset type:

FUSION

Form a union of the multisets in a group

number of duplicates of a given value in the result is the sum of
the number of duplicates in the multisets in the rows of the group

INTERSECTION

Form an intersection of the multisets in a group

number of duplicates of a given value in the result is the minimum
of the number of duplicates in the multisets in the rows of the
group 35

Multiset operations (contd.)Multiset operations (contd.)

= and <> are the only comparison operations
allowed on multisets.

Three new predicates defined for values of
multisets.

MEMBER predicate:
value1 [NOT] MEMBER [OF] value2

value2 should be a multiset and value1 should be comparable
to the element type of value2.

If value1 is equal to some element of value2, returns true

If value2 is empty, returns false

If some element of value2 is null, returns unknown.

36

Multiset operations (contd.)Multiset operations (contd.)

SUBMULTISET predicate:
value1 [NOT] SUBMULTISET [OF] value2

Both value1 and value2 should be multisets and their element
types must be comparable

If value1 is empty or if every value in value1 has a
corresponding value in value2, then returns true

SET predicate:
value1 IS [NOT] A SET

value1 must be a multiset

If there are no duplicate values in value1, returns true

Maximum of 1 null value in value1

37

Windowed Table functionsWindowed Table functions

Windowed table functions provide facilities for
calculating ranks, moving sums, moving averages,
etc.

A windowed table function operates on a window
of a table and returns a value for every row in that
window. The value is calculated by taking into
consideration values from the set of rows in that
window.

5 new windowed table functions
RANK () OVER ...

DENSE_RANK () OVER ...

PERCENT_RANK () OVER ...

CUME_DIST () OVER ...

ROW_NUMBER () OVER ... 38

Rank, Dense_Rank, and Rank, Dense_Rank, and
RownumberRownumber

RANK
Returns the relative position within an ordered list.

Requires ordering.

Ties have the same rank.

DENSE_RANK
Like RANK, but no gaps in rankings in the case of ties.

ROW_NUMBER
Ties are nondeterministically numbered.

If no ordering is specified, each row is nondeterministically
numbered.

39

Rank, Dense_Rank, and Rank, Dense_Rank, and
RownumberRownumber

Rank the employees in descending order of their
salary.

SELECT name, salary,
rank() over (ORDER BY salary DESC) as rank,
denserank() over (ORDER BY salary DESC) as dense_rank,
rownumber() over (ORDER BY salary DESC) as rownum
FROM emp;

name salary rank dense_rank rownum

Chris 8000 1 1 1
Sally 7900 2 2 2
Jim 7900 2 2 3
Frank 6600 4 3 4
Lynn 6600 4 3 5
Sara 6000 6 4 6

40

Windowed Table Functions - Windowed Table Functions -
SyntaxSyntax

Windows are defined using the window-clause.

Window clause consists of
A partition clause - The partition clause allows the rows in a
table to be grouped into partitions.

An order clause - The order clause allows the rows in a
partition to be ordered.

A frame clause - The frame clause allows the specification of
the range of rows relative to the current row that would
participate in the function evaluation.

Function(arg)
OVER (

partition-clause order-clause frame-clause

)

41

Aggregate Functions as Aggregate Functions as
Windowed Table FunctionsWindowed Table Functions

 Existing aggregate functions can also be used as
windowed table functions:

SUM (...) OVER ...

AVG (...) OVER ...

MAX (...) OVER ...

MIN (...) OVER ...

COUNT (...) OVER ...

EVERY (...) OVER ...

ANY (...) OVER ...

SOME (...) OVER ...

Allows calculation of moving and cumulative
aggregate values.

42

Hypothetical Aggregate Functions Hypothetical Aggregate Functions

Hypothetical aggregate functions evaluate the
aggregate over the window extended with a new
row derived from the specified values.

4 new hypothetical aggregate functions
RANK (expr, expr ...) WITHIN GROUP (ORDER BY <sort
specification list>)

DENSE_RANK (expr, expr ...) WITHIN GROUP (ORDER BY
<sort specification list>)

PERCENT_RANK (expr, expr ...) WITHIN GROUP (ORDER
BY <sort specification list>)

CUME_DIST (expr, expr ...) WITHIN GROUP (ORDER BY
<sort specification list>)

43

Inverse Distribution FunctionsInverse Distribution Functions

2 new inverse distribution functions
PERCENTILE_DISC (expr) WITHIN GROUP (ORDER BY
<sort specification list>)

PERCENTILE_CONT (expr) WITHIN GROUP (ORDER BY
<sort specification list>)

Argument must evaluate to a value between 0 and
1.

Return the values of expressions specified in <sort
specification list> that correspond to the specified
percentile value.

44

Queries over Sampled dataQueries over Sampled data

Permits evaluation of aggregates on samples
derived from stored data.

Better performance when database is huge and
absolutely exact results are not necessary.

Two forms of sampling:

BERNOULLI: the probability of a given row of the
original table appearing in the sample table is
independent of every other row.

SYSTEM: the probability of a given row of the
original table appearing in the sample table may
depend on rows alreday included in the sample.

45

Queries over Sampled data Queries over Sampled data
(contd.)(contd.)

Example: Retrieve an approximate estimate of the
total salary of employees in each department:

SELECT dept, SUM(salary) * 10
FROM employee TABLESAMPLE BERNOULLI (10)

 REPEATABLE (5)

GROUP BY dept

REPEATABLE clause serves the same purpose as
a random number seed for sampling - If specified,
repeated executions return identical result table for
the same argument, provided certain
implementation-defined conditions are satisfied.

46

MERGE statementMERGE statement

Combination of insert and update operations in a
single statement.

Rows in the input table are divided into two groups
based on a predicate: insert source table if the
predicate evaluates to false or unknown and update
source table if the predicate evaluates to true.

Insert source table is inserted into the target table.

Every row in target table that has a matching row in
update source table is updated. It is an error if a
given row in target table matches with more than
one row in update source table.

47

MERGE statement (contd.)MERGE statement (contd.)

Example:

MERGE INTO inventory AS in
USING (SELECT partno, description, count

FROM shipment
 WHERE shipment.partno IS NOT NULL) AS sh

ON (in.partno = sh.partno)
WHEN MATCHED THEN

UPDATE SET description = sh.description,
quantity = in.quantity + sh.count

WHEN NOT MATCHED THEN
INSERT (partno, description, quantity)

VALUES (sh.partno, sh.description, sh.count)

48

MERGE statement (contd.)MERGE statement (contd.)

MATCHED and NOT MATCHED clauses permitted
once each, in any order.

The order of inserts and updates depends on the
order of MATCHED and NOT MATCHED clauses.

No MERGE triggers - UPDATE/INSERT triggers fire
as necessary.

49

Multiple assignmentMultiple assignment

In SQL:1999's UPDATE statements, a value can be
assigned to a single target only.

In SQL:2003's UPDATE and MERGE statements,
multiple targets can be updated by assigning a
value from a list of values to the corresponding
target in a list of targets.

All values are evaluated before any assignment is
executed.

50

Part 3: SQL/CLIPart 3: SQL/CLI

A Call-Level Interface for dynamically invoking SQL
from application programs

Consists of over 60 routine specifications
Control connections to SQL-servers

Allocate and deallocate resources

Execute SQL statements

Control transaction termination

Obtain information about the implementation

Provided for vendors of truly portable "shrink
wrapped" software

CLI does not require pre-compilation of the application
programs

Application programs can be delivered in "shrink wrapped",
object-code form 51

New Features in SQL/CLINew Features in SQL/CLI

No new functionality in SQL:2003, mainly bug fixes

52

Part 4: SQL/PSMPart 4: SQL/PSM

Procedural language constructs similar to those
found in block-structured languages

Improve performance in centralized and client/server
environments

Multiple SQL statements in a single EXEC SQL

Multi-statement procedures, functions, and methods

Gives great power to DBMS

Several, new control statements (procedural language extension) (begin/end
block, assignment, call, case, if, loop, for, singal/resignal, variables,

exception handling)

SQL-only implementation of complex functions
Without worrying about security ("firewall")

Without worrying about performance ("local call")

SQL-only implementation of class libraries

53

New Features in SQL/PSMNew Features in SQL/PSM

Extensions to CASE statement

Ability to qualify variables with beginning labels

54

Part 9: SQL/MEDPart 9: SQL/MED

MED - Management of External Data

Two distinct techniques:
Datalinks

Wrapper Interface

Datalinks
External data coordinated by SQL-server

External data accessed through native interface

External data kept consistent with SQL-data

Wrapper interface
External data not controlled by SQL-server

External data accessed through SQL-server

Data access from multiple sources transparently

55

New Features in SQL/MEDNew Features in SQL/MED

Enhancements to Datalinks

Update-in-place - Linked file can be updated while it is linked
provided the datalink column was defined with WRITE
PERMISSION ADMIN ...

56

New Features in SQL/MED New Features in SQL/MED
(contd.)(contd.)

Enhancements to the Wrapper interface
The ability for an SQL-server to communicate complex
requests to foreign-data wrappers.

Requests containing WHERE clauses

Requests containing multiple table references in FROM clauses

Requests containing complex value expressions in SELECT and
WHERE clauses

Requests containing user-defined functioninvocations in value
expressions

The ability for an SQL-server to communicate the query context
(that is, information to identify requests belonging to the same
query) to foreign-data wrappers.

The ability for an SQL-server to ask foreign-data wrappers for
request execution "costs".

57

New Features in SQL/MED New Features in SQL/MED
(contd.)(contd.)

In SQL:1999, all foreign server requests were

required to be of the form:

SELECT *

FROM foreign_table

In SQL:2003, foreign server requests could be of

the form:

SELECT c1+1, c2 || c3, fun1 (c4)

FROM foreign_table1, foreign_table2

WHERE c4 = 1 AND c5 = 2 AND c6 = ?

58

Part 10: SQL/OLBPart 10: SQL/OLB

OLB - Object Language Bindings

Embedding of SQL statements in Java programs

Many differences from the traditional host language
bindings:

specification in terms of JDBC, but static compilation

provides typed cursors and better exception handling

platform independence (binary portability)

Close relationship between SQL/OLB and JDBC

SQL/OLB advantages over JDBC:
SQL/OLB provides higher level of abstraction than JDBC

SQL/OLB uses static precompiled SQL while JDBC uses
dynamic SQL.

59

New Features in SQL/OLBNew Features in SQL/OLB

Reference to JDBC revised to JDBC 3.0

Support for ARRAY and DATALINK types

Support for Savepoints

Support for multiple result sets returned from an

SQL-invoked procedure

60

Part 11: SQL/SchemataPart 11: SQL/Schemata
Specification of over 85 views that describe the
metadata

TABLES view

COLUMNS view

USER_DEFINED_TYPES view, etc.

These views exist in a special schema named
INFORMATION_SCHEMA

Can be queried by users - users see only those
objects that are either owned or have some
privilege on

Cannot be updated by users

Underlying base tables created in a hypothetical
"Definition schema" - auomatically updated
everytime a DDL statement executes 61

New Features in SQL/SchemataNew Features in SQL/Schemata

New views for SQL:2003 schema objects
SEQUENCES

ROUTINE_SEQUENCE_USAGE

TRIGGER_SEQUENCE_USAGE

Additional views for SQL:1999 schema objects
COLUMN_COLUMN_USAGE

CHECK_CONSTRAINT_ROUTINE_USAGE

ROUTINE_ROUTINE_USAGE

TRIGGER_ROUTINE_USAGE

VIEW_ROUTINE_USAGE

COLLATION_CHARACTER_SET_APPLICABILITY

SQL_PARTS

Additional columns for SQL:1999 views
62

Part 13: SQL/JRTPart 13: SQL/JRT

SQL Routines and types using the JavaTM

programming language

Extension to <SQL-invoked routine> syntax to

create SQL-invoked routines based on Java static

methods.

Extension to <user-defined type definition> syntax

to create SQL user-defined types based on Java

classes.

63

New Features in SQL/JRTNew Features in SQL/JRT

Support for table functions

Support for DATALINK type as a parameter or

result type.

64

Part 14: SQL/XMLPart 14: SQL/XML

New part in SQL:2003

A new built-in type, XML.

4 built-in operators:

 XMLPARSE: returns a value of XML type given an SQL
character string expression

 XMLSERIALIZE: returns a value of character string type given
an XML expression

XMLROOT: modifies the root information item of an XML value
and returns the modified value.

 XMLCONCAT: concats two or more XML values and returns
the resulting value.

A predicate, IS DOCUMENT, to test whether an
XML value has a single root element.

65

Part 14: SQL/XML (contd.)Part 14: SQL/XML (contd.)

5 "publishing functions" that generate values of
XML type from SQL expressions:

XMLELEMENT

XMLFOREST

XMLATTRIBUTE

XMLNAMESPACES

XMLAGG

Host language bindings for values of XML type.

66

Part 14: SQL/XML (contd.)Part 14: SQL/XML (contd.)

Rules for mapping SQL "things" to XML "things"

Rules for mapping SQL identifiers to XML names

Rules for mapping XML names to SQL identifiers

Rules for mapping SQL types to XML Schema types

Rules for mapping SQL values to XML values

Rules for mapping SQL tables, schemas, and catalogs to XML

values

Conformance requirements

67

XML typeXML type

A new SQL built-in type
Can be used wherever a SQL data type is allowed - as the type of a
column of a table, parameter of a routine, attribute of an UDT, field
of a row, or a SQL variable.

Strongly-typed - values of XML type are distinct from their textual
representation.

Semantics of operations on values of XML type is specified by
assuming a tree-based internal representation based on the XML
Information Set Recommendation (Infoset).

The Infoset model is modified in one significant way: the document
information item of Infoset is replaced by a new kind of information
item, XML root information item.

68

XML type (contd.)XML type (contd.)

An SQL/XML information item is either an

XML root information item (as defined by SQL/XML)

XML attribute information item (as defined by Infoset)

XML character information item (as defined by Infoset)

XML comment information item (as defined by Infoset)

XML document type declaration information item (as defined by
Infoset)

XML element information item (as defined by Infoset)

XML namespace information item (as defined by Infoset)

XML notation information item (as defined by Infoset)

XML processing instruction information item (as defined by Infoset)

XML unexpanded entity reference information item (as defined by
Infoset)

XML unparsed entity information item (as defined by Infoset)

69

XML type (contd.)XML type (contd.)

XML root information item is similar to document information
item of Infoset with one difference.

While document information item allows exactly one child
element information item, XML root information item allows
zero or more child element information items.

An XML value is either
the null value, or

a collection of SQL/XML information items that consists of
exactly one XML root information item and every SQL/XML
information item that can be reached recursively by traversing
the properties of the SQL/XML information items.

70

XMLPARSEXMLPARSE

XMLPARSE produces an XML value given an SQL string
expression:

XMLPARSE ({ DOCUMENT | CONTENT }
<string value expression>
[{ PRESERVE | STRIP } WHITESPACE])

If DOCUMENT is specified, <string value expression> must
evaluate to a character string that conforms to XML 1.0 as
modified by the Namespaces recommendation; otherwise an

exception is raised.

71

XMLPARSE (contd.)XMLPARSE (contd.)

If CONTENT is specified, <string value expression> must
evaluate to a character string that conforms to a grammar
obtained from the grammar of XML 1.0 as modified by the
Namespaces recommendation with a new "start symbol",
defined as follows:

XMLvalue ::= XMLDecl? content
Otherwise, an exception is raised.

If the argument value contains in-line DTDs,
XMLPARSE will:

replace all entity references defined in an in-line DTD by
their expanded form,

apply the default values defined by an internal DTD.

72

XMLPARSE (contd.)XMLPARSE (contd.)

Examples:
INSERT INTO employees (id, xvalue)
VALUES (1001,
XMLPARSE (DOCUMENT '<Emp> John Smith
</Emp>'))

INSERT INTO employees (id, xvalue)
VALUES (1001,
XMLPARSE (CONTENT 'John Smith'))

INSERT INTO employees (id, xvalue)
VALUES (1001,
XMLPARSE (CONTENT '<First> John </First> <Last>
Smith </Last>'))

73

XMLPARSE (contd.)XMLPARSE (contd.)

Whitespace handling
If an element specification includes the attribute

xml:space='preserve'
then, XMLPARSE preserves all whitespace contained in the
element.

If an element specification includes the attribute
xml:space='default'

or has no such attribute, the behavior of XMLPARSE is
governed by whether the user has specified PRESERVE
WHITESPACE or STRIP WHITESPACE.

If the user has not specified either of the two options, STRIP
WHITESPACE is implicit.

74

XMLPARSE (contd.)XMLPARSE (contd.)

If PRESERVE WHITESPACE is specified, then XMLPARSE
preserves all whitespace contained in the argument string.

If STRIP WHITESPACE is specified or implied, then
XMLPARSE will drop all whitespace between two adjacent
element tags unless there is at least one non-whitespace
character.

75

XMLPARSE (contd.)XMLPARSE (contd.)

In the following example,
INSERT INTO employees (id, xvalue)
VALUES (1001,
XMLPARSE (CONTENT :hv STRIP WHITESPACE))

assume :hv contains the following value:
<?xml standalone='1.0' ?>

<well/>

Hello

Dolly

76

XMLPARSE (contd.)XMLPARSE (contd.)

XMLPARSE will treat the value in :hv as equivalent
to the following value

<?xml standalone='1.0'?>
<well/>

Hello

Dolly

77

XMLSERIALIZEXMLSERIALIZE

XMLSERIALIZE produces an SQL string value given an XML value
expression:
XMLSERIALIZE ({ DOCUMENT | CONTENT }

<XML value expression> AS <data type>

<data type> must be a character string type (CHAR, VARCHAR or
CLOB).

If DOCUMENT is specified, <XML value expression> must evaluate
to an XML value that has exactly one top-level element; otherwise
an exception is raised.

SQL/XML does not mandate the exact content of the resulting
string, but the resulting string, passed as an argument to
XMLPARSE using the specified DOCUMENT or CONTENT option
and PRESERVE WHITESPACE option, must yield the same XML
value produced by <XML value expression>.

78

XMLSERIALIZE (contd.)XMLSERIALIZE (contd.)

Example:
XMLSERIALIZE(DOCUMENT
XMLPARSE (DOCUMENT '<Emp> John Smith

</Emp>')
AS VARCHAR(100))

may produce the character string
<Emp> John Smith </Emp>
or
<?xml encoding="UTF-8" version="1.0"?> <Emp> John
Smith </Emp>
or
<?xml encoding="UTF-8" version="1.0"?>

<Emp> John Smith </Emp>
79

XMLROOTXMLROOT

XMLROOT produces an XML value with specified
version and standalone properties given an expression of
XML type:
XMLROOT (<XML value expression> ,

VERSION {<string value expression>| NO
VALUE }

[, STANDALONE { YES | NO | NO VALUE }]

Example:
INSERT INTO employees (id, xvalue)
VALUES (1001,
XMLROOT (XMLPARSE (DOCUMENT '<Emp> John
Smith </Emp>'), VERSION '1.0', STANDALONE YES)

80

IS DOCUMENTIS DOCUMENT

IS DOCUMENT predicate checks whether the
specified XML value is an XML document, i.e.,
whether it has exactly one top-level element:

<XML value expression> IS [NOT] DOCUMENT

Example:

SELECT XMLSERIALIZE (DOCUMENT xvalue AS
CLOB)
FROM employees
WHERE xvalue IS DOCUMENT;

81

XMLELEMENT XMLELEMENT

XMLELEMENT produces an XML value given
an SQL identifier that acts as the name of an element

an optional namespace declaration

an optional list of named expressions that provides names and
values of its attributes, and

an optional list of expressions that provides the element
content.

SELECT e.id,
XMLELEMENT (NAME "Emp",

e.fname || ' ' || e.lname) AS xvalue
FROM employees e WHERE ...

==>
ID XVALUE
1001 <Emp> John Smith </Emp>
... 82

XMLELEMENT (contd.)XMLELEMENT (contd.)

Attribute specifications must be bracketed by
XMLATTRIBUTES keyword and must appear as the third
argument if namespace declaration is specified, second
argument otherwise.

Each attribute can be named implicitly or explicitly.

SELECT e.id,
XMLELEMENT (NAME "Emp",

XMLATTRIBUTES (e.id AS "empid"),
e.fname || ' ' || e.lname)
) AS xvalue

FROM employees e WHERE ...

==>
ID XVALUE
1001 <Emp empid="1001"> John Smith </Emp>
...

83

XMLELEMENT (contd.)XMLELEMENT (contd.)

XMLELEMENT can produce nested element structure.

SELECT e.id,
XMLELEMENT (NAME "Emp",

XMLELEMENT (NAME "name",
e.fname || ' ' || e.lname),

XMLELEMENT (NAME "hiredate", e.hire)
) AS xvalue

FROM employees e WHERE ...

==>
ID XVALUE
1001 <Emp>

<name> John Smith </name>
<hiredate> 2000-05-24 </hiredate>

</Emp>

...
84

XMLELEMENT (contd.)XMLELEMENT (contd.)

XMLELEMENT can produce mixed content.

SELECT e.id,
XMLELEMENT (NAME "Emp", 'Employee '

XMLELEMENT (NAME "name",
e.fname || ' ' || e.lname), 'was hired on '
XMLELEMENT (NAME "hiredate", e.hire)

) AS xvalue
FROM employees e WHERE ...

==>
ID XVALUE
1001 <Emp>

Employee <name> John Smith </name>
was hired on <hiredate> 2000-05-24 </hiredate>

</Emp>
...

85

XMLELEMENT (contd.)XMLELEMENT (contd.)

XMLELEMENT can take scalar subqueries as arguments.

SELECT e.id,
XMLELEMENT (NAME "Emp",

XMLELEMENT (NAME "name", e.fname || ' ' || e.lname),
XMLELEMENT (NAME "dependents",

(SELECT COUNT (*) FROM dependents d
WHERE d.parent = e.id)) AS xvalue

FROM employees e WHERE ...

==>
ID XVALUE
1001 <Emp>

<name> John Smith </name>
<dependents> 3 </dependents>

</Emp>
...

86

XMLELEMENT (contd.)XMLELEMENT (contd.)

Namespace declarations can be specified in XMLELEMENT;
must appear before attribute specifications.

Lexical scoping rules apply for nested elements.

Syntax of namespace declarations:

<XML namespace declaration> ::=
XMLNAMESPACES (<XML namespace> [, ..])

<XML namespace> ::=
<URI> AS <prefix>
| DEFAULT <URI>
| NO DEFAULT

<URI> ::= <character string literal>
<prefix> ::= <identifier>

87

XMLELEMENT (contd.)XMLELEMENT (contd.)

Example with namespace declaration:

SELECT e.id,
XMLELEMENT (NAME "IBM:Emp",

XMLNAMESPACES ('http://a.b.c' AS IBM,
XMLATTRIBUTES (e.id AS "empid"),

e.fname || ' ' || e.lname)
) AS xvalue

FROM employees e WHERE ...

==>
ID XVALUE
1001 <IBM:Emp xmlns:IBM="http://a.b.c" empid="1001">

 John Smith </IBM:Emp>

...

88

XMLFORESTXMLFOREST

XMLFOREST produces a sequence of XML elements given
an optional namespace declaration and a list of named
expressions as arguments.

Each element can be named implicitly or explicitly.

If any of the expressions evaluate to the null value, it is
ignored. If all the expressions evaluate to the null value,
result is the null value.

89

XMLFOREST (contd.)XMLFOREST (contd.)

Example:

SELECT e.id,
XMLELEMENT (NAME "Emp",

XMLFOREST (e.fname || ' ' || e.lname AS "name", e.hire)
) AS xvalue

FROM employees e
WHERE ...

==>
ID XVALUE
1001 <Emp>

<name> John Smith </name>
<HIRE> 200-05-24 </HIRE>

</Emp>
....

90

XMLFOREST (contd.)XMLFOREST (contd.)

 Namespace declaration, if present, must be the first
argument.

SELECT e.id,
XMLELEMENT (NAME "Emp",

XMLFOREST (
XMLNAMESPACES (DEFAULT 'http://a.b.c',

'http://d.e.f' AS "xx"),
e.fname || ' ' || e.lname AS "xx:name", e.hire)

) AS xvalue
FROM employees e WHERE ...

==>
ID XVALUE
1001 <Emp>

<xx:name xmlns:xx="http://d.e.f"> John Smith
</xx:name>
<HIRE xmlns="http:a.b.c"> 200-05-24 </HIRE>

</Emp>
91

XMLCONCATXMLCONCAT

XMLCONCAT produces an XML value given given two or
more expressions of XML type.

If any of the expressions evaluate to the null value, it is
ignored. If all the expressions evaluate to the null value, the
result is the null value.

SELECT e.id,
XMLCONCAT (XMLELEMENT (NAME "name",

e.fname || ' ' || e.lname),
XMLELEMENT (NAME "hiredate", e.hire)
) AS xvalue

FROM employees e WHERE ...

==>
ID XVALUE
1001 <name> John Smith </name>

<hiredate> 200-05-24 <hiredate>
....

92

XMLAGGXMLAGG

XMLAGG is an <aggregate function>, similar to SUM, AVG,
etc.

The argument for XMLAGG must be an expression of XML
type.

For each row in a group G, the expression is evaluated and
the resulting XML values are concatenated to produce a
single XML value as the result for G.

An ORDER BY clause can be specified to order the results
of the argument expression before concatenating.

All null values are dropped before concatenating.

If all inputs to concatenation are null or if the group is empty,
the result is the null value.

93

XMLAGG (contd.)XMLAGG (contd.)

Example:

SELECT XMLELEMENT
(NAME "Department",

XMLATTRIBUTES (e.dept AS "name"),
XMLAGG (XMLELEMENT (NAME "emp", e.lname))

) AS xvalue
FROM employees e
GROUP BY e.dept;

==>
XVALUE
<Department name="Accounting">

<emp> Smith </emp>
<emp> Martin </emp>

</Department>
....

94

XMLAGG (contd.)XMLAGG (contd.)

ORDER BY can be used to order the result of aggregation.

SELECT XMLELEMENT
(NAME "Department",

XMLATTRIBUTES (e.dept AS "name"),
XMLAGG (XMLELEMENT (NAME "emp", e.lname)

ORDER BY e.lname)
) AS xvalue

FROM employees e
GROUP BY e.dept;

==>
XVALUE
<Department name="Accounting">

<emp> Martin </emp>
<emp> Smith </emp>

</Department>
.... 95

Statement-level Namespace Statement-level Namespace
Declarations Declarations

Namespace declarations can be attached to query
expressions and to certain SQL statements; such
namespaces will take effect for all publishing functions in
scope by default.

Namespace declarations for query expressions:

<query expression> ::= [<with clause>] <query exp body>

<with clause> ::=
WITH [RECURSIVE] <XML namespace declaration>
[<with list>]

96

Statement-level Namespace Statement-level Namespace
Declarations (contd.)Declarations (contd.)

Namespace declarations in DML statements: can be
specified in DELETE, UPDATE, MERGE, and INSERT
statements

Example syntax:

<delete statement:searched> ::=
DELETE
[WITH <XML namespace declaration>]
FROM <target table> [WHERE <search

condition>]

97

Statement-level Namespace Statement-level Namespace
Declarations (contd.)Declarations (contd.)

Namespace declarations for DDL statements: can be
specified only for the <generation clause> in column
definitions, check constraint definitions and assertion
definitions

Example syntax:

<check constraint definition> ::=
CHECK (
[WITH <XML namespace declaration>]
<search condition>)

98

Statement-level Namespace Statement-level Namespace
Declarations (contd.)Declarations (contd.)

Namespace declarations for compound statements in
PSM:

<compound statement> ::=
[<beginning label> <colon>]
BEGIN [[NOT] ATOMIC]
[DECLARE <XML namespace declaration>;]
[<local declaration list>]
[<local handler declaration list>]
[<SQL statement list>]

 END [<ending label>]

99

Mapping SQL identifiers to XML Mapping SQL identifiers to XML
NamesNames

Issues
SQL identifiers use an implementation-defined character set
while XML Names use UCS.

SQL regular identifiers are case-insensitive, while XML Names
are case-sensitive.

SQL delimited identifiers allow any legal characters while XML
restricts the characters that can be used in XML Names.

Solutions
Require an implementation-defined mapping from SQL
character set to UCS.

Use special escape sequences to deal with characters that are
illegal in XML Names.

100

Mapping SQL identifiers to XML Mapping SQL identifiers to XML
Names (contd.)Names (contd.)

Rules for mapping regular identifiers
Each character in SQL names is mapped to its upper case
equivalent.

employee from SQL is mapped to EMPLOYEE in XML.

What if SQL names start with XML?

Option 1: "Partially escaped" mode - do nothing special
 XMLTEXT from SQL mapped to XMLTEXT in XML.

Option 2: "Fully escaped mode" - map initial X to _x0058_
 XMLTEXT from SQL mapped to _x0058_MLTEXT in XML.

101

Mapping SQL identifiers to XML Mapping SQL identifiers to XML
Names (contd.)Names (contd.)

Rules for mapping delimited identifiers
Each character in SQL names retains its case

 "Employee" from SQL mapped to Employee in XML.

"Work_address" from SQL mapped to Work_address in XML.

What if SQL names contain chracters that are illegal in XML
Names?

Map illegal characters to _xNNNN_ or _xNNNNNN_ , where N is a
hex digit and NNNN or NNNNN is Unicode representation of the
character.

work@home" from SQL mapped to work_x0040_home in XML.

"last.name" from SQL mapped to last_x002E_name in XML.

What if SQL names contain _x?

Escape the _ in _x:
 "Emp_xid" from SQL mapped to Emp_005F_xid in XML.

102

Mapping SQL identifiers to XML Mapping SQL identifiers to XML
Names (contd.)Names (contd.)

Rules for mapping delimited identifiers (contd.)
What if SQL names started with xml in any case combinations?

Option 1: "Partially escaped" mode - do nothing special

Option 2: "Fully escaped" mode - map initial x to _x0078_ or X to
x0058:

 "xmlText" from SQL mapped to _x0078_mlText in XML.

What if SQL names included a : ?

Option 1: "Partially escaped" mode - map only the leading colon to
x003A

 ":ab:cd" from SQL mapped to _x003A_ab:cd in XML.

Option 2: "Fully escaped mode" - map every colon to _x003A_

 ":ab:cd" from SQL mapped to _x003A_ab_x003A_cd in XML

103

Mapping XML Names to SQL Mapping XML Names to SQL
identifiersidentifiers

Rules
Map all sequences of _xNNNN_ and _xNNNNNN_ to the
corresponding Unicode character; if there is no corresponding
Unicode character, map to a sequence of
implementation-defined characters.

Put double quotes around the result to make an SQL delimited
identifier; double each contained double quote.

employee from XML is mapped to "employee" in SQL.

EMPLOYEE from XML is mapped to "EMPLOYEE" in SQL.

work_x0040_home from XML mapped to "work@home" in SQL.

Map the resulting string to SQL_TEXT character set using
implementation-defined mapping rules - raise an exception if
the mapping is not possible.

104

Mapping SQL types to XML Mapping SQL types to XML
Schema typesSchema types

SQL predefined data types
SMALLINT, INTEGER, BIGINT, DECIMAL, NUMERIC

FLOAT, REAL, DOUBLE PRECISION

CHARACTER, CHARACTER VARYING, CHARACTER LARGE OBJECT

BINARY LARGE OBJECT

BOOLEAN

DATE, TIME, TIMESTAMP, INTERVAL

XML

SQL User-defined types
Distinct types

Structured types

SQL Constructed types
ROW

ARRAY

MULTISET

REF
105

Mapping SQL types to XML Mapping SQL types to XML
Schema types (contd.)Schema types (contd.)

XML Schema types
Numbers: decimal, float, double, 12 additional types derived
from decimal

Strings: string, 12 additional derived types

Boolean: boolean

Datetime: duration, date, dateTime, 6 more primitive types

Other: 5 additional primitive types

List types

Union types

Simple types

Complex types

106

Mapping SQL types to XML Mapping SQL types to XML
Schema types (contd.)Schema types (contd.)

Map each SQL predefined type to its closest analog
in XML Schema.

Appropriate XML Schema facets are used to
constrain the range of values of XML Schema types
to match the range of values of SQL types.

Annotations are used to capture the distinctions
among SQL types (e.g., CHARACTER VARYING
and CHARACTER LARGE OBJECT cannot be
distinguished in XML Schema).

Though the standard specifies the contents of annotations, it is
implementation-dependent whether these are generated.

In addition to the predefined types, mapping for row
types, collection types, and distinct types is
provided. 107

Mapping SQL types to XML Mapping SQL types to XML
Schema types (contd.)Schema types (contd.)

INTEGER type from SQL maps to the following
XML Schema type:

<xsd:simpleType>
<xsd:annotation>

<xsd:appinfo>
<sqlxml:sqltype kind="predefined"

name="INTEGER"/>
</xsd:appinfo>

</xsd:annotation>
<xsd:restriction base="xsd:integer"/>

<xsd:maxInclusive value="IMP_MAX"/>
<xsd:minInclusive value="IMP_MIN"/>

</xsd:restriction>
</xsd:simpleType>

108

Mapping SQL types to XML Mapping SQL types to XML
Schema types (contd.)Schema types (contd.)

SQL type CHAR (10) CHARACTER SET LATIN1
COLLATION deutsch maps to the following XML Schema
type:

<xsd:simpleType>
<xsd:annotation>

<xsd:appinfo>
<sqlxml:sqltype kind="predefined"

name="CHAR" length="10"
characterSetName="LATIN1"
collation="deutsch"/>

</xsd:appinfo>
</xsd:annotation>
<xsd:restriction base="xsd:string"/>

<xsd:length value="10"/>
</xsd:restriction>

</xsd:simpleType> 109

Mapping SQL values to XMLMapping SQL values to XML

Data type of values is mapped to corresponding XML
schema types.

 Values of predefined types are first cast to a character string
and then the resulting string is mapped to the string
representation of the corresponding XML value.

Values of numeric types with no fractional part are mapped
with no periods.

NULLs are mapped to either xsi:nil="true" or to absent
elements, except for values of collection types whose NULLs
are always mapped to xsi:nil="true".

For character values, characters such as <, >, &, carriage
return in the resulting string are replaced by their entitized
forms.

110

Mapping SQL values to XML Mapping SQL values to XML
(contd.)(contd.)

Examples

SQL Value XML Value
'Smith' Smith
10 10
99.05 99.05
99.0 99
TIME '12:30:00' 12:30:00
TIMESTAMP '2002-10-14 11:00:00' 2002-10-14T11:00:00
INTERVAL '2:30' HOUR TO MINUTE PT02H30M

111

Mapping SQL tables, schemas, Mapping SQL tables, schemas,
and catalogs to XML documentsand catalogs to XML documents

Two documents are generated - a XML schema
document and a XML document.

Users can control whether a table is mapped to a
single element or a sequence of elements.

In a single element option:
The table name serves as the element name.

Each row is mapped to a nested element with each element
named as "row".

Each column is mapped to a nested element with column name
serving as the element name.

In a sequence of elements option:
Each row is mapped to an element with the table name serving
as the element name.

Each column is mapped to a nested element with column name
serving as the element name. 112

Mapping SQL tables to XMLMapping SQL tables to XML

EMPLOYEE table in single-element option:

<employee>
<row>

<id> 1001 </emp_id>
<lastname> Smith </lastname>
...

</row>
<row>

<id> 1206 </emp_id>
<lastname> Martin </lastname>
...

</row>
</employee>

113

Mapping SQL tables to XML Mapping SQL tables to XML
(contd.)(contd.)

EMPLOYEE table in sequence-of-elements option:

<employee>
<id> 1001 </emp_id>
<lastname> Smith </lastname>
...

</employee>
<employee>

<id> 1206 </emp_id>
<lastname> Martin </lastname>
...

</employee>

114

Host Language BindingHost Language Binding

To transfer XML values from the SQL environment
to host language environment, XML values are
converted into character strings by implicit
invocation of XMLSERIALIZE operator.

To transfer XML values from the host language
environment to SQL environment, XML values in
the form of character strings are converted into
XML values by implicit invocation of XMLPARSE
operator.

115

Host Language Binding (contd.)Host Language Binding (contd.)

Host variable declarations must indicate both the XML type
and the intended character string type (VARCHAR or CLOB)

and either the DOCUMENT or CONTENT option:

EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS XML DOCUMENT AS CLOB (1M)

CHARACTER SET IS UTF8 xml_hv;
EXEC SQL END DECLARE SECTION;

It is the responsibility of SQL implementations to ensure that
the XML documents shipped to the host language program
are in the character encoding specified in the host variable
declaration.

116

Host Language Binding (contd.)Host Language Binding (contd.)

SET XML OPTION statement is provided to set the
DOCUMENT or CONTENT option for use by dynamic SQL

statements during assignments to dynamic parameters:

SET XML OPTION DOCUMENT;

117

SQL/XML Feature TaxonomySQL/XML Feature Taxonomy

SQL/XML functionality is divided into 44 features:
X010: XML type

X011: Arrays of XML type

X012: Multisets of XML type

X013: Distinct types of XML type

X014: Attributes of XML type

X015: Fields of XML type

X016: Persistent XML values

X020: XML Concatenation

X031: XMLElement

X032: XMLForest

X033: XMLRoot

118

Feature Taxonomy (contd.)Feature Taxonomy (contd.)

X034: XMLAgg

X035: XMLAGG: ORDER BY option

X041: Basic table mapping: null absent

X042: Basic table mapping: null as nil

X043: Basic table mapping: table as forest

X044: Basic table mapping: table as element

X045: Basic table mapping: with target namespace

X046: Basic table mapping: data mapping

X047: Basic table mapping: metadata mapping

X051: Advanced table mapping: null absent

X052: Advanced table mapping: null as nil

119

Feature Taxonomy (contd.)Feature Taxonomy (contd.)

X053: Advanced table mapping: table as forest

X054: Advanced table mapping: table as element

X055: Advanced table mapping: with target namespace

X056: Advanced table mapping: data mapping

X057: Advanced table mapping: metadata mapping

X060: XMLParse: CONTENT option

X061: XMLParse: DOCUMENT option

X062: XMLParse: explicit WHITESPACE option

X070: XMLSerialize: CONTENT option

X071: XMLSerialize: DOCUMENT option

X080: Namespaces in XML publishing

120

Feature Taxonomy (contd.)Feature Taxonomy (contd.)

X081: Query-level XML namespace declarations

X082: XML namespace declarations in DML

X083: XML namespace declarations in DDL

X084: XML namespace declarations in compound statements

X090: XML document predicate

X100: Host language support for XML: CONTENT option

X101: Host language support for XML: DOCUMENT option

X110: Host language support for XML: VARCHAR mapping

X111: Host language support for XML: CLOB mapping

X120: XML parameters in SQL routines

X121: XML parameters in external routines

121

SQL/XML conformanceSQL/XML conformance

To conform, implementations must support

X010: XML type (transient values only)

X031: XMLElement

X032: XMLForest

X034: XMLAgg

At least one of:

X070: XMLSerialize: CONTENT option

X071: XMLSerialize: DOCUMENT option

X100: Host language support for XML: CONTENT option and X110:
Host language support for XML: VARCHAR mapping

X101: Host language support for XML: DOCUMENT option X110:
Host language support for XML: VARCHAR mapping

X100: Host language support for XML: CONTENT option and X111:
Host language support for XML: CLOB mapping

X101: Host language support for XML: DOCUMENT option X111:
Host language support for XML: CLOB mapping

122

